524 I Chapter 18 B Security

Table 18.1 Examples of threats.

Using another person’s means of access v
Unauthorized amendment or copying of data v v
Program alteration — L v /. v
Inadequate policies and procedures that allow g
a mix of confidential and normal output 4 s 4 4
Wire tapping 4 4 v 4
Hllegal entry by hacker v/ [v
Blackmail 4 4 4
Creating ‘trapdoor” into system v v v
Theft of data, programs, and equipment ™ TTy T rm——y - v = v
Failure of security mechanisms, giving greater
access than normal s 4 4 v
Staff shortages or strikes v v
Inadequate staff training v 4 v v
Viewing and disclosing unauthorized data v v v
Electronic interference and radiation 4 4
Data corruption owing to power loss or surge 4 v
Fire (electrical fault, lightning strike, arson),
flood, bomb . v v
Physical damage to equipment v v
Breaking cables or disconnection of cables 4 v
Introduction of viruses v 4
The extent that an organization suffers as a result of a threat’s succeeding depends upon
:! N a number of factors, such as the existence of countermeasures and contingency plans. For
‘Wt example, if a hardware failure occurs corrupting secondary storage, all processing activity
wlt-’ must cease until the problem is resolved. The recovery will depend upon a number of

factors, which include when the last backups were taken and the time needed to restore
the system.

An organization needs to identify the types of threat it may be subjected to and initiate
appropriate plans and countermeasures, bearing in mind the costs of implementing them.
Obviously, it may not be cost-effective to spend considerable time, effort, and money on
potential threats that may result only in minor inconvenience. The organization's business
may also influence the types of threat that should be considered, some of which may be
rare. However, rare events should be taken into account, particularly if their impact would
be significant. A summary of the potential threats to computer systems is represented in
Figure 18.1.

18.2 Countermeasures - Computer-Based Controis 525

Hardware

Fire/flood/bombs

Data corruption due to power

loss or surge

Failure of security mechanisms
giving greater access

Theft of equipment

Physical damage to equipment
Electronic interference and radiation

DBMS and Application Software
Failure of security mechanism
giving greater access

Program alteration

Theft of programs

\ 4

Users

Using another person’s means of
access

Viewing and disclosing
unauthorized data

inadequate Staff training

liiegal entry by hacker

Blackmait

Introduction of viruses

Communication networks

Wire tapping

Breaking or disconnection of cables
Electronic interference and radiation

Programers/Operators

Creating trapdoors

Program aiteration (such as creating
software that is insecure) R
Inadequate staff training
Inadequate security policies and
procedures

Staff shortages or strikes

Figure 18.1 Summary of potential threats to computer systems.

Countermeasures - Computer-Based

Controls

Database

Unauthorized amendment or
copying of data

Theft of data

Data corruption due to power
loss or surge

Data/Database Administrator
Inadequate security policies
and procedures

The typés of countermeasure to threats on computer systems range from physical controls
to administrative procedures. Despite the range of computer-based controls that are avail-
able, it is worth noting that, generally, the security of a DBMS is only as good as that of
the operating system, owing to their close association. Representation of a typical multi-

user computer efivironment is shown in Figure 18.2. In this section we focus on the fol-
lowing computer-based security controls for a multi-user environment (some of which
may not be available in the PC environment):

P
— _,,__,_..71519.-'*-_—_"'_?‘“_ o T Lt S
T R A AR - —

~3

i

* reriempy

“——y
'

® authorization
B views

® backup and Tecovery

® integrity g
® encryption

& RAID technology.

Figure 18.2
Representation of a
typical muiti-yser
computer
environment.

Remote ciient

Secure
" internal
N network

. (intranet)

18.2.1 Authorizatio"n

gk

SG37 o101 0101 0111 0101 0111 0000 100
SG5 1111 1111 1111 1111 1111 1111 none

propertyNo, type, and ownerNo attributes and Select, Update, and Insert privileges (shown as
0001 + 0010 + 0100 = 0111) for the price and staffNo attributes, with a limit of 100 rows
for any query result set. Finally, user SG5 (Susan Brand) has Select, Update, Insert, and
Delete privileges (shown as 0001 + 0010 + 0100 + 1000 = 1111), in other words All privil-
eges for all attributes, with no limit set on the number of rows for any query resuit set.
DBMSs use similar matrices to implement access control, although the precise details

of implementation vary from one system to another. On some DBMSs, a user has to tell
the system under which identifier he or she is operating, especially if the user is a member

of more than one group. It is essential to become familiar with the available authorization
and other control mechanisms provided by the DBMS, particularly where priorities may
be applied to different authorization identifiers and where privileges can be passed on. This
will enable the correct types of privileges to be granted to users based on their require-
ments and those of the application programs that many of them will use. -

Views.(Subschemas)

The view mechanism provides a powerful and fiexible security mechanism by hiding parts
of the database from certain users. The user is not aware of the existence of any attributes
or rows that are missing from the view. A view can be defined over several relations with
a user being granted the appropriate privilege to use it, but not to use the base relations. In
this way, using a view is moz restrictive than simply having certain privileges granted to
a user on the base relation(s). We discussed views in detail in Sections 3.4 and 6.4.

Backup and Recovery

AS)
R5 & LSRN

18.2 Countermeasures — Computer-Based Controls

18.2.2

18.2.3

-112.

552 .| Chapter 19 § Transaction Management

Figure 19.1
Example
transactions.

Staff (staffNo, fName, IName, position, sex, DOB,:salary, branchNo)
PropertyForRent (Qmp_eny_ug, street, city, postcode, type, ‘rooms, rent, ownerNo, staffNo,
' branchNo) s

A simple transaction against this database is to update the salary of a particular member of
staff given the staff number, x. At a high level, we could write this transaction as shown

item x as read(x) or write(x). Additional qualifiers may be added as necessary; for example,
in Figure 19.1(a), we have used the notation read(staffNo = x, salary) to indicate that we
want to read the data item salary for the tuple with primary key value x. In this example,
we have a transaction consisting of two database operations (read and write) and a non-
database operation (salary = salary*1.1).

A more complicated transaction is to delete the member of staff with a given staff num-
ber x, as shown in Figure 19.1(b). In this case, as well as having to delete the tuple in the Staff
relation, we also need to find all the PropertyForRent tuples that this member of staff managed
and reassign them to a different member of staff, newStaffNo say. If all these updates are
not made, referential integrity will be lost and the database will be in an inconsistent state;
a property will be managed by a member of staff who no longer exists in the database.

A transaction should always transform the database from one consistent state to another,

., although we accept that consistency may be violated while the transaction is in progress.

" For example, during the transaction in Figure 19.1(b), there may be some moment when
one tuple of PropertyForRent contains the new newStaffNo value and another still contains
the old one, x. However, at the end of the transaction, all necessary tuples should have the
new newStaffNo value.

A transaction can have one of two outcomes. If it completes successfully, the
is saj mitted and the database reaches a new consistent state. On the other
i} if the transaction does not execute successfully, the transaction is aborted, If a trans-
action is aborted, the database must be restored to the consistent state it was in before the
transaction started. Such a transaction is rolied back or undone. A committed transaction
cannot be aborted. If we decide that the commy transaction was a mistake, we must
perform another comj)ensating transaction to reverse its effects (as we discuss in Sec-
tion 19.4.2). However, an aborted transaction that is rolled back can be restarted later and,
depending on the cause of the failure, may successfully execute and commit at that time,

Figure 19.4
The lost update
probiem.

Figure 19.5
The uncommitted
dependency
problem.

Figure 19.6
The inconsistent
analysis problem.

19.2 Concurrency Control 559

The problems described in Examples 19.1-19.3 resuited from the mismanagement of
concurrency, which left the database in an inconsistent state in the first two examples
and presented the user with the wrong result in the third. Serial execution prevents such
problems occurring. No matter which serial schedule is chosen, serial execution never
leaves the database in an inconsistent state, so every serial execution is considered correct,
although different results may be produced. The objective of serializability is to find non-
serial schedules that allow transactions to execute concurrently without interfering with one
another, and thereby produce a database state that could be produced by a serial execution.

If a set of transactions executes concurrently, we say that the (nonserial) schedule is
correct if it produces the same results as some serial execution. Such a schedule is called
serializable. To prevent inconsistency from transactions interfering with one another, it
is essential to guarantee serializability of concurrent transactions. In serializability, the
ordering of read and write operations is important:

m If two transactions only read a data item, they do not conflict and order is not important.

m If two transactions either read or write completely separate data items, they do not
conflict and order is not important.

m If one transaction writes a data item and another either reads or writes the same data
item, the order of execution is important.

Consider the schedule S, shown in Figure 19.7(a) containing operations from two con-

currently executing transactions T, and T,. Since the write operation on bal, in Ty does not

conflict with the subsequent read operation on bal, in T,, we can change the order of these

operations to produce the equivalent schedule S, shown in Figure 19.7(b). If we also now

change the order of the following non-conflicting operations, we produce the equivalent

serial schedule S, shown in Figure 19.7(c):

(] Chai{ge the order of the write(bal,) of T with the write(bal,) of T,.
m Change the order of the read(bal,) of T, with the read(bal,) of T,.
® Change the order of the read(bal,) of Ty with the write(bal,) of T,.

Figure 19.7
Equivalent
schedules:

(a) nonseriat
schedule S,;

(b) nonserial
scheduie S,
equivalent to S,;
(c) serial schedule
S,, equivalent to
S,and S,.

560 , Chapter 19 I Transaction Management

Schedule S, is a serial schedule and, since S, and S, are equivalent to S5, S, and S, are
serializable schedules. .

This type of serializability is known as conflict serializability. A conflict serializable
schedule orders any conflicting operations in the same way as some serial execution.
Under the constrained write rule (that is, a transaction updates a data item based on its
old value, which is first read by the transaction), a precedence (or serialization) graph
can be produced to test for conflict serializability. For a schedule S, a precedence graph is
a directed graph G = (N, E) that consists of a set of nodes N and a set of directed edges E,
which is constructed as follows:

m Create a node for each transaction.

® Create a directed edge T, — T;, if T, reads the value of an item written by T..

@ Create a directed edge T, —» T, if T, writes a value into an item after it has been read
by T..

@ ® Create a directed edge T, — T;, if T; writes a value into an item after it has been written

by T..

If an edge T, — T, exists in the precedence graph for S, then in any serial schedule S’

equivalent to S, T; must appear before T,. If the precedence graph contains a cycle the

schedule is not conflict serializable.

I Example 19.4 Non-conflict serializable schedule

Consider the two transactions shown in Figure 19.8. Transaction T, is transferring £100
from one account with balance baj, to another account with balance bal, while T, is

- increasing the balance of these two accounts by 10%. The precedence graph for this
schedule, shown in Figure 19.9, has a cycle and so is not conflict serializable.

Figure 19.8
Two concurrent

y update transactions.
3

19.2 Concurrency Control 561

Figure 19.9
Precedence graph
for Figure 19.8.

—

View serializability

There are several other types of serializability that offer less stringent definitions of sched-
ule equivalence than that offered by conflict serializability. One less restrictive definition
is called view serializability. Two schedules S, and S, consisting of the same operations
from n transactions T,, T,,..., T, are view equivalent if the following three conditions

hold:

w For each data item x, if transaction T, reads the initial value of x in schedule S,, then
transaction T; must also read the initial value of x in schedule S..

® For each read operation on data item x by transaction T, in schedule S,, if the value read
by x has been written by transaction T}, then transaction T, must also read the value of
x produced by transaction T;in schedule S,.

® For each data item x, if the last write operation on x was performed by transaction
T; in schedule S,, the same transaction must perform the final write on data item x in
schedule S,.

A schedule is view serializable if it is view equivalent to a serial schedule. Every
conflict serializable schedule is view serializable, although the converse is not true. For
example, the schedule shown in Figure 19.10 is view serializable, although it is not conflict
serializable. In this example, transactions T,; and T,; do not conform to the constrained
write rule; in other words, they perform blind writes. It can be shown that any view
serializable schedule that is not conflict serializable contains one or more blind writes.

Figure 19.10
View serializabie
scheduie that is not
conflict serializabie.

?

19.2 Concurrency Control 565

If upgrading of locks is allowed, upgrading can take place only during the growing
phase and may require that the transaction wait until another transaction releases a shared
lock on the item. Downgrading can take place only during the shrinking phase. We now
look at how two-phase locking is used to resolve the three problems identified in Section

19.2.1.

I Example 19.6 Preventing the lost update problem using 2PL

A solution to the lost update problem is shown in Figure 19.11. To prevent the lost update
problem occurring, T, first requests an exclusive lock on bal,. It can then proceed to read
the value of bal, from the database, increment it by £100, and write the new value back to
the database. When T, starts, it also requests an exclusive lock on bal,. However, because
the data item bal, is currently exclusively locked by T, the request is not immediately
granted and T, has to wait until the lock is released by T,. This occurs only once the com-
mit of T, has been completed.

I Example 19.7 Preventing the uncommitted dependency problem

using 2PL

A solution to the uncommitted dependency problem is shown in Figure 19.12. To prevent
this problem occurring, T, first requests an exclusive lock on bal,. It can then proceed to
read the value of bal, from the database, increment it by £100, and write the new value
back to the database. When the rollback is executed, the updates of transaction T, are
undone and the value of bal, in the database is returned to its original value of £100. When
T, starts, it also requests an exclusive lock on bal,. However, because the data item bal, is
currently exclusively locked by T,, the request is not immediately granted and T, has
to wait until the lock is released by T,. This occurs only once the rollback of T, has been
completed.

Figure 19.11
Preventing the lost
update problem.

566 , Chapter 19 B Transaction Management

Figure 19.12

Preventing the

uncommitted .

dependency

problem.
Example 19.8 Preventing the inconsistent analysis problem using 2PL
A solution to the inconsistent analysis problem is shown in Figure 19.13. To prevent this
problem occurring, Ts must precede its reads by exclusive locks, and Ty must precede its
reads with shared locks. Therefore, when T; starts it requests and obtains an exclusive lock
on bal,. Now, when T tries to share lock bal, the request is not immediately granted and
Té has to wait until the lock is released, which is when T, commits.

Figure 19.13

Preventing the

inconsistent

analysis problem.

19.2 Concurrency Control 567

It can be proved that if every transaction in a schedule follows the two-phase lock-
ing protocol, then the schedule is guaranteed to be conflict serializable (Eswaran et al.,
1976). However, while the two-phase locking protocol guarantees serializability, problems
can occur with the interpretation of when locks can be released, as the next example

shows.

—
Example 19.9 Cascading rollback

Consider a schedule consisting of the three transactions shown in Figure 19.14, which con-
forms to the two-phase locking protocol. Transaction T,, obtains an exclusive lock on bal,
then updates it using bal,, which has been obtained with a shared lock, and writes the value

@ of bal, back to the database before releasing the lock on bal,. Transaction T, then obtains
an exclusive lock on bal,, reads the value of bal, from the database, updates it, and writes
the new value back to the database before releasing the lock. Finally, T, share locks bal,
and reads it from the database. By now, T, has failed and has been rolled back. However,
since Tys is dependent on T4 (it has read an item that has been updated by T,,), T,s must
also be rolled back. Similarly, T4 is dependent on T,s, so it too must be rolled back. This
situation, in which a single transaction leads to a series of rollbacks, is called cascading
rollback.

Figure 19.14
Cascading rollback
with 2PL.

