
524 J Chapter 18 I Security

Table 18.1 Examples of threats.

Threat Theft and Loss or toss of Loss of
fraud confidentiality privacy integnt availäbiIl.’- ..-

:.- .tr-•t ;-•j.> .:.Jt:.:.i-• H.P’ k•.:.•.- :.-,‘-

Using another perso&s means of access / I /
Unauthorized amendment or copying of data V /Program alteration V V. VInadequate policies and procedures that allow
a mix of confidential and normal output V / /
Wire tapping V V /illegal entry by hacker V /Blackmail V V V
Creating ‘trapdoor’ into system V V VTheftof data, programs, and equipmenr V ---- —-‘ VFailure of security mechanisms, giving greater
access than normal

,.-. / V VStaff shortages or strikes
V Vlnadequatestafftraining / V V VViewing and disclosing unauthorized data V / VElectronic interference and radiation
/ VData corruption owing to power loss or surge V /Fire (electrical fault, lightning strike, arson),

flood,bomb
V VPhysical damage to equipment
V /Breaking cables or disconnection of cables

- - V VIntroduction of vinises
/ V

The extent that an organization suffers as a result of a threat’s succeeding depends upona number of factors, such as the existence of countermeasures and contingency plans. ForH
Li! example, if a hardware failure occurs corrupting secondary storage, all processing activitymust cease until the problem is resolved. The recovery will depend upon a number of‘. factors, which include when the last backups were taken and the time needed to restorethe system.

An organization needs to identify the types of threat it may be subjected to and initiateappropriate plans and countermeasures, bearing in mind the costs of implementing them.Obviously, it may not be cost-effective to spend considerable time, effort, and money onpotential threats that may result only in minor inconvenience. The organization’s businessmay also influence the types of threat that should be considered, some of which may berare. However, rare events should be taken into account, particularly if their impact wouldbe significant. A summary of the potential threats to computer systems is represented inFigure 18.1.

-8-

/h\

Database
Unauthonzed amenament or
copying of data
Theft of data
Data corruption due to power
loss or surge

I
Users
Using another persons means of
access
Viewing and disclosing
unauthonzed data
Inadequate Staff training
Illegal entry by hacker
Blackmail
Introduction of viruses

Programers/Operators
Creating trapdoors
Program alteration (such as creating
software that is insecure)
Inadequate staff training
Inadequate security policies and
procedures
Staff shortages or strikes

Figure 18.1 Summary of potential threats to computer systems.

Countermeasures — Computer-Based
Controls

The types of countermeasure to threats on computer systems range from physical controls
to administrative procedures. Despite the range of computer-based controls that are avail
able, it is worth noting that, generally, the scurity of a DBMS is only as good as that of
the operating system, owing to their close association. Representation of a typical multi-
user computer environment is shown in Figure 18.2. In this section we focus on the fol
lowing computer-based security controls for a multi-user environment (some of which
may not be available in the PC environment):

-9-

18.2 Countermeasures — Computer-Based Controls 525

Hardware
Fire/flood/bombs
Data corruption due to power
loss or surge
Failure of security mechanisms
giving greater access
Theft of equipment DBMS and Apphcatlon Software
Physical damage to equipment Failure of security mechanism
Electronic interference and radiation giving greater access

Program alteration
Theft of programs

Communication netwotics
Wire tapping
Breaking or disconnection of caoles
Electronic interference and radiation

Data/Database Administrator
Inadequate security policies
and procedures

5:

T

FigLire 18.2
Representj0of a
typical multi-user
Computer

environment

• authoZ00
• Views

• backup and recovery
• Zfltegrity

• encryption
• RAID technology

182.1 Authorization

Remote client

-10--

Table 18.3 Access control matrix.

18.2 Countermeasures — Computer-Based Controls 529

.

UdehtNe4tt eptioeWawierNo stW nchNue4r

Sales 0001 0001 0001 0000 0000 0000 15

SG37 0101 0101 0111 0101 0111 0000 100

SG5 1111 1111 1111 1111 1111 1111 none

I

propertyNo, type, and ownerNo attributes and Select, Update, and Insert privileges (shown as
0001 + 0010 ÷ 0100 = 0111) for the pnce and staffNo attributes, with a limit of 100 rows
for any query result set. Finally, user SG5 (Susan Brand) has Select, Update, Insert, and
Delete privileges (shown as 0001 + 0010 + 0100 + 1000 = 1111), in other words All privil
eges for all attributes, with no limit set on the number of rows for any query result set.

DBMSs use similar matrices to implement access control, although the precise details
of implementation vary from one system to another. On some DBMSs a user has tc tell
the system under which identifier he or she is operating, especially if the user is a inembej
of more than one group. It is essential to become familiar with the available authorization
and other control mechanisms provided by the DBMS, particularly where priorities may
be applied to different authorization identifiers and where privileges can be passed on. This
will enable the correct types of privileges to be granted to users based on their require
ments and those of the application programs that many of them will use.

Backup and Recovery

Bák4 T4i of prdfcalI tkifI odp‘fl rcfloØ flIe
- — ‘—., r--’

i (afl pos1bly progtams) onto offl1ne storh media
• ,.•, .- •• ;.-• -.••-• -. .—‘ .—••--.----, —-.- ••.••,- -

18.2.2

18.2.3

Views4Subschemas)

The view mechanism provides a powerful and flexible security mechanism by hiding parts
of the database from certain users. The user is not aware of the existence of any attributes
or rows that are missing from the view. A view can be defined over several relations with
a user being granted the appropriate privilege to use it, but not to use the base relations. In
this way, using a view is mo restrictive than simply having certain privileges granted to
a user on the base relation(s). We discussed views in detail in Sections 3.4 and 6.4.

-1,-

552 Chapter 19 I Transaction Management

Figure 19.1

Example
transactions.

Staff

PropertyForRent

A simple transaction against this database is to update the salary of a particular member ofstaff given the staff number, x. At a high level, we could write this transaction as shownin Figure 19.1(a). In this chapter we denote a database read or write operation on a dataitem x as read(x) or write(x). Additional qualifiers may be added as necessary; for example,in Figure 19.1(a), we have used the notation read(staffNo = x, salary) to indicate that wewant to read the data item salary for the tuple with primary key value x. In this example,we have a üansaction consisting of two database operations (read and write) and a non-database operation (salary = salary*l.l).
A more complicated transaction is to delete the member of staff with a given staff nurnberx, as shown in Figure 19.1(b). In this case, as well as having to delete the tuple in the Staffrelation, we also need to find all the PropertyForRent tuples that this member of staff managedand reassign them to a different member of staff, newStafflVo say. If all these updates arenot made, referential integrity will be lost and the database will be in an inconsistent state:a property will be managed by a member of staff who no longer exists in the database.A transaction should always transform the database from one consistent state to another.although we accept that consistency may be violated while the transaction is in progress.For example, during the transaction in Figure 19.1(b), there may be some moment whenone tuple of PropertyForRent contains the new newStaffNo value and another still containsthe old one, x. However, at the end of the transaction, all necessary tuples should have thenew newSrafjNo value.

A transaction can have one of two outcomes. If it completes successfully, the transactjIS Raid to have committed and the database reaches a new consistent state. On the otherhand, if the transaction does not execute successfully, the transaction is aborted, If a transaction is aborted, the database must be restored to the consistent state it was in before thetransaction started. Such a transaction is rolled back or undone. A committed transactioncannot be aborted. If we decide that the committed transaction was a mistake, we mustperform another compensating transaction to reverse its effects (as we discuss in Section 19.4.2). However, an aborted transaction that is rolled back can be restarted later and,depending on the cause of the failure, may successfully execute and commit at that time.

(stafiNo, fName, IName, position, sex, DOB, salary, branchNo)
(orooertyNo, street, city, postcode, type, rooms, rent, ownerNo, staffNo,
branchNo)

-36-

Figure 19.4
The lost update
problem.

Figure 19.5
The uncommitted
dependency
problem.

Figure 19.6
The inconsistent
anaIyss problem.

I

19.2 Concurrency Contro’ 559

The problems described in Examples 19.1—19.3 resulted from the mismanagement of
concurrency, which left the database in an inconsistent state in the first two examples
and presented the user with the wrong result in the third. Serial execution prevents such
problems occurring. No matter which serial schedule is chosen, serial execution never
leaves the database in an inconsistent state, so every serial execution is considered correct,
although different results may be produced. The objective of serializability is to find non-
serial schedules that allow transactions to execute concurrently without interfering with one
another, and thereby produce a database state that could be produced by a serial execution.

If a set of transactions executes concurrently, we say that the (nonserial) schedule is
correct if it produces the same results as some serial execution. Such a schedule is called
serializable. To prevent inconsistency from transactions interfering with one another, it
is essential to guarantee serializability of concurrent transactions. In serializability, the
ordering of read and write operations is important:

• If two transactions only read a data item, they do not conflict and order is not important.

• If two transactions either read or write completely separate data items, they do not
conflict and order is not important.

• If one transaction writes a data item and another either reads or writes the same data
item, the order of execution is important.

Consider the schedule S1 shown in Figure 19.7(a) containing operations from two con
currently executing transactions T7 and T8. Since the write operation on balk in T8 does not
conflict with the subsequent read operation on bal in T7, we can change the order of these
operations to produce the equivalent schedule S2 shown in Figure 19.7(b). If we also now
change the order of the following non-conflicting operations, we produce the equivalent
serial schedule S3 shown in Figure 19.7(c):

• Change the order of the write(bal,j of T8 with the write(bal) of T7.

• Change the order of the read(bal) of T8 with the read(baI) of T7.

• Change the order of the read(bal) ofT8 with the write(baI) of T7.

Figure 19.7

Equivalent

schedules:

(a) nonserial

schedule S1:

(b) nonserial

schedule S2

equivalent to S,;

(c) serial schedule

S3. equivalent to

S, and S2.

Tune T7 T8 T7 T T8

t \ begmjransaction begin_transaction -.. begin.Jransaction
read(bal,) read(bal3ç)

t3 ‘ ‘ wrile(baI) ivriteçBal,. . ‘ irit4aix) I

Scheduie S3 is a serial schedule and, since S1 and S2 are equivalent to S3, S1 and S2 areserializable schedules.
This type of serializability is known as conflict serializability. A conflict serializableschedule orders any conflicting operations in the same way as some serial execution.Under the constrained write rule (that is, a transaction updates a data item based on itsold value, which is first read by the transaction), a precedence (or serialization) graphcan be produced to test for conflict serializability. For a schedule S, a precedence graph isa directed graph G = (N, E) that consists of a set of nodes N and a set of directed edges E,which is constructed as follows:

w Create a node for each transaction.
• Create &directed edge T. —* T1, if I reads the value of an item written by T.
• Create a directed edge T —+ T. if T, writes a value into an item after it has been readby T1.

• Create a directed edge T — T, if T1 writes a value into an item after it has been writtenby T.

If an edge T - T, exists in the precedence graph for S, then in any serial schedule S’equivalent to S, T must appear before T. If the precedence graph contains a cycle theschedule is not conflict serializable.

Example 19.4 Non-conflict serializable schedule

Consider the two transactions shown in Figure 198. Transaction T9 is transferring £100from one account with balance baIt to another account with balance bal, while T10 isincreasing the balance of these two accounts by 10%. The precedence graph for thisschedule, shown in Figure 19.9, has a cycle and so is not conflict serializable.

560 Chapter 19 I Transaction Management

Figure 198
Two concurrent
update transactions.

19.2 Concurrency Control 561

View serializability

x

I

Figure 19.9
Precedence graph
for Figure 19.8.

There are several other types of serializability that offer less stringent definitions of sched
ule equivalence than that offered by conflict serializability. One less restrictive definition
is called view serializability. Two schedules S1 and S2 consisting of the same operations
from n transactions T1, T2 T are view equivalent if the following three conditions
hold:

• For each data item x, if transaction T, reads the initial value of x in schedule S1, then
transaction T must also read the initial value of x in schedule S2.

• For each read operation on data item x by transaction T, in schedule S1, if the value read
by x has been written by transaction T, then transaction T must also read the value of
x produced by transaction T in schedule S2.

• For each data item x, if the last write operation on x was performed by transaction
T1 in schedule S1, the same transaction must perform the final write on data item x in
schedule S2.

A schedule is view serializable if it is view equivalent to a serial schedule. Every
conflict serializable schedule is view serializable, although the converse is not true. For
example, the schedule shown in Figure 19.10 is view serializable, although it is not conflict
serializable. In this example, transactions T12 and T13 do not conform to the constrainedwrite rule; in other words, they perform blind writes. It can be shown that any view
serializable schedule that is not conflict serializable contains one or more blind writes.

Time lit .. T12 T13

- : l,n_act
t4

- . ‘ — ‘. .
- wnte(bai

- ommitV -r
4wntebaI) “

commit
-

t8 1- — —.-
- 4 begm.jransacbøn

- wnteaI,
t10 —

‘ L-41 ‘ COit

Figure 19.10
View serializable
schedule that is not
conflict serializable.

19.2 Concurrency Control 565

If upgrading of locks is allowed, upgrading can take place only during the growing
phase and may require that the transaction wait until another transaction releases a shared
lock on the item. Downgrading can take place only during the shrinking phase. We now
look at how two-phase locking is used to resolve the three problems identified in Section
19.2.1.

Example 19.6 Preventing the lost update problem using 2PL

A solution to the lost update problem is shown in Figure 19.11. To prevent the lost update
problem occurring, T2 first requests an exclusive lock on bal,. It can then proceed to read
the value of bal, from the database, increment it by £100, and write the new value back to
the database. When T7 starts, it also requests an exclusive lock on bal. However, because
the data item bal, is currently exclusively locked by T2, the request is not immediately
granted and T1 has to wait until the lock is released by T,. This occurs only once the com
mit of T, has been completed.

Figure 19.11
Preventing the lost

update problem.

Example 19.7 Preventing the uncommitted dependency problem
using 2PL

A solution to the uncommitted dependency problem is shown in Figure 19.12. To prevent
this problem occurring, T4 first requests an exclusive lock on bat,,. It can then proceed to
read the value of bat, from the database, increment it by £100, and write the new value
back to the database. When the rollback is executed, the updates of transaction T4 are
undone and the value of bat, in the database is returned to its original value of £100. When
T3 starts, it also requests an exclusive lock on bat,,. However, because the data item bat, is
currently exclusively locked by T4, the request is not immediately granted and T3 has
to wait until the lock is released by T4. This occurs only once the rollback of T4 has been
completed.

t2

t3

• t4

±5 -

t7

tB

ts

tb

566 Chapter 19 I Transaction Management

Figure 19.12
Time T3 T4 baItPreventing the

ijncomm,tted -
- bgin.transaction 100

dependency t2.
-. fl

- --, write_1ock(baI) - 100:
problem read(baI,) 100

t4 begl!Ltransacboe baI=bai,÷ 100 100
writejodc(balj

C
itebal 20(1

t5 WAIT roflbadcJun1ock(baI) 100
read(bal,j ‘

— ‘ 900
t8 bal = bai’ — 10 100

wrtè(ba!) C -: 9o: -

: c /änloclc(bai) - 90:

Example 19.8 Preventing the inconsistent analysis problem using 2PL

A solution to the inconsistent analysis problem is shown in Figure 19.13. To prevent this
problem occurring, T5 must precede its reads by exclusive locks, and T6 must precede its
reads with shared locks. Therefore, when T5 starts it requests and obtains an exclusive lock
on bal,. Now, when T6 tries to share lock bali the request is not immediately granted and
T5 has to wait until the lock is released, which is when T5 commits.

Figure 19.13 C
-

Preventing the
Time T5 T6 baI. baI ba6 sum

inconsistent t1 begut_transaction 100 50 25
analysis problem bn_tnsa±ion, sum=O 100 50 25 0

t .-writeJock(bai5)--. ,,. .--i00--5-25- 0,-
t4 read(baI,) readjock(baI,) 100 50 2 0
t5 baI=bal—10 WAll’ 100 50 25 0
t6 wrte(baI, WAIT 90 50 25 0

write 1ock(bal) WAIT 90 50 25 0 i

read(bal} WAlT 90 50 25 0
baI=ba1t-10 WAIT 90 50 25- 0
wnte(baI) WAIT C 90 50 3 0

t11 comnuit)un1o&(bai ba!_) -:- ‘- WAlT.. ‘-. - - 90 50 - 3’. 0’

C: :read(balx) 90 50. :35 , 0’.

sum=sum+bal 90 5(1 35 90
t14 - --s. iea&1o&(bal,) ‘ : - 90- 30. 35’ 90’

C
read(bal,) 90 ,- 50 35 90

t16
- --:‘

--•:-

-- mmiffi+bai - 90 50
-- 35’ “140 --

t7 -- - ‘- -.- red_ioba) - :90
- 5 35’ -‘148

t1s -- -- - - - read(baI2)- - - 90 - 50 -_ 35 - 140
- - -

- sum -sum + baIt - 90 - 50 35 175-
-

- - commit/un1ock(ba1, baI’, bait) 90 - - 50 35 - 175-

19.2 Concurrency Control 567

It can be proved that if every transaction in a schedule follows the two-phase lock
ing protocol, then the schedule is guaranteed to be conflict serializable (Eswaran et al.,
1976). However, while the two-phase locking protocol guarantees serializability, problems
can occur with the interpretation of when locks can be released, as the next example
shows.

Example 19.9 Cascading rollback

Consider a schedule consisting of the three transactions shown in Figure 19.14, which con
forms to the two-phase locking protocol. Transaction T14 obtains an exclusive lock on baI
then updates it using bal, which has been obtained with a shared lock, and writes the value
of bal, back to the database before releasing the lock on baf,,. Transaction T15 then obtains
an exclusive lock on bal,,, reads the value of bal, from the database, updates it, and writes
the new value back to the database before releasing the lock. Finally, T16 share locks bal,
and reads it from the database. By now, T14 has failed and has been rolled back. However,
since T15 is dependent on T14 (it has read an item that has been updated by T14), T15 must
also be rolled back. Similarly, T16 is dependent on T15, so it too must be rolled back. This
situation, in which a single transaction leads to a series of rollbacks, is called cascading
rollback.

Figure 19.14

Cascading rollback

with 2PL.

I

