 Group Number: 01 Project Name: Hotel DeepSleep Project
 Members: Wanling Feng, Sandeep Chaudhary, Xiaolong Tang, Grace Mureithi

HOTEL DEEPSLEEP PROJECT REPORT

 Group: 1
 Members: Grace Mureithi
 Sandeep Chaudhary
 Xiaolong Tang
 Wanling Feng
 Date: 29th May 2009
Contents
1	Project Establishment	4
1.1	Purpose	4
1.2	Activities	5
1.3	Learning objectives	5
1.4	Problem definition	5
1.5	Risk analysis	6
1.6	Project plan	6
1.6.1	WEEK 11	6
1.6.2	WEEK 12	7
1.6.3	WEEK 13&14	7
1.7	Resources	7
1.7.1	Methodology	7
1.7.2	Time	7
1.7.3	Software	7
1.7.4	Hardware	8
1.7.5	Human resources	8
1.8	Planning inception iteration	8
1.9	Signing the group contract	8
1.10	Conclusion	10
2	Inception 1st iteration	11
2.1	Purpose	11
2.2	Activities	11
2.2.1	Business model	11
2.2.2	IT-Strategy	19
2.2.3	Vision	20
A Day in the life of Jack, the Receptionist.	20
2.2.4	Elicit stakeholders requests	20
2.2.5	Find actors and use cases	20
2.2.6	Use case Diagram	21
2.2.7	Detailed use-cases	22
2.2.8	Glossary	23
2.2.9	Risk list (revised)	23
2.2.10	Conclusion	23
3	Elaboration 1st iteration	24
3.1	Purpose	24
3.2	Activities	24
3.2.1	Develop the domain model	25
3.2.2	Detail use cases	26
3.2.3	Brief Use cases	29
3.2.4	Architectural analysis	29
3.2.5	Use case analysis	30
3.2.6	Use Case Design	36
3.2.7	GUI Design	38
3.2.8	Plan Coding	39
3.2.9	Coding of classes	39
3.2.10	Risk List	42
3.3	Conclusion	42
4	Elaboration 2nd Iteration	44
4.1	Purpose	44
4.2	Review Activity	44
4.2.1	Extend the Domain Model	44
4.2.2	Detail Relevant Use cases	45
4.2.3	Architectural Analysis	46
4.2.4	Use case Analysis	46
4.2.5	Use case Design	49
4.2.6	Class Design	50
4.2.7	GUI Design	50
4.2.8	Plan Coding	50
4.2.9	Coding of Classes	50
4.2.10	Risk List, Revised	52
4.3	Conclusion	52
5	Construction 1st iteration	54
5.1	Purpose	54
5.2	Review activities	54
5.2.1	Choice of RDB	54
5.2.2	Review of OOD model	54
5.2.3	Categories and transformation into relations	55
We categorized the class into 4 categories: view layer, handler layer, collection layer, model layer.	55
5.2.4	Transform associations and generalization into relations	55
5.2.5	Architectural Analysis	56
5.2.6	Create a Database Model Diagram	57
5.2.7	Define and describe the relations, attributes, keys and domains	57
5.2.8	Normalize the table	59
5.2.9	Code persistent class	60
5.3	Conclusion for this iteration	63
6	Conclusion	63
6.1	Final product	67
6.2	Product for further consideration	67
6.3	System Development	Error! Bookmark not defined.
6.4	Team work	Error! Bookmark not defined.
6.4.1	Wanling Feng	65
6.4.2	Sandeep Chaudhary	65
6.4.3	Xiaolong Tang	66
6.4.4	Grace Mureithi	66

[bookmark: _Toc231013630][bookmark: _Toc231315102]Project Establishment
[bookmark: _Toc231013631][bookmark: _Toc231315103]Purpose
The purpose of the project establishment is to define the problem and analyze it. During the establishment we also plan and decide what we need for the project. This means identifying the tools that we will use and the methodologies. At this stage we also do team building and sign a group contract that will contain the rules and agreement between the group members that will participate in the project.
[bookmark: _Toc231013632][bookmark: _Toc231315104]Activities
In this phase we are just setting the basis for the project, getting to know our weaknesses and strengths as a group and how well we will work together. We also will try and find out what the objectives of this project are and what the basic question is and how to go about it.
· Learning objectives
· Problem analysis
· Risk analysis
· Project plan
· Resources
· Planning inception iteration
· Signing the group contract
[bookmark: _Toc231013633][bookmark: _Toc231315105]Learning objectives
This was inspired from the project charter.
Our objective is to fully understand how to apply UP, UML and Java in real life situations, also how to connect SW-Design and SW-Construction. We get experience in team building and working in groups.
This is clearly stated in the group contract.
[bookmark: _Toc231013634][bookmark: _Toc231315106]Problem definition
As per the project charter, Hotel Deep Sleep lacks an IT system to handle its operations. Even though we know this, we need to do a full problem analysis to get a full overview of the clients needs.
Although we do not have a real client we use the project charter handed to us to identify the needs of Hotel Deep Sleep.
We will have to figure out how to apply the methodologies and tools we have been taught in the last two semesters in the real world, i.e. how to create an IT system for our client using UML and Java programming.
So the problem is, how do we use java programming, SQL, database constructors, UML & UP to find our purpose? More so how do we relate the four disciplines to each other and apply them to our project?
[bookmark: _Toc231013635][bookmark: _Toc231315107]Risk analysis
	Risk
	Probability
1-5
	Consequence
1-5
	Total
	Mitigation Plan
	Fail Plan

	Problems with Design.
	3
	2
	6
	Read the Larman book more,
and the class notes.
Also follow the TMT project example: http://www.upedu.org/upedu/
	Consult with the teachers.
Use previous projects to get the scope of what we are supposed to do

	How to make the report.
	4
	3
	12
	Read the information from the last semester students.
	Consult to the teachers.
Use reports done in the previous years for reference.

	Programming might take time
	4
	5
	20
	Do the easy things in design quickly and leave more time to build and test the system.
	Ask for help from the peer group or the SW-construction teacher.

	Absence of Group member
	3
	2
	6
	Try our best to cover work lost and in extra time explain to the member what he lost.
	Consult with the teachers for help.Do away with the member if the absences are too many and avoidable.

We used a scale of 1-5 to measure the the risk. 1 being the least critical damage and 5 being the highest.
The programming risk is critical because if we don’t enough time to test the program and make sure it is running well, we will not present the project in time.
We calculated risk by multiplying the probability of the threat to the impact.
The other risks are not so critical and can be avoided.

[bookmark: _Toc231013636][bookmark: _Toc231315108]Project plan
Project starts 06 marts 2009; group formation and familiarization.
[bookmark: _Toc224620869][bookmark: _Toc231013637][bookmark: _Toc231315109]WEEK 11
Project establishment
· Create a project plan (12 hours)
· Problem definition (2-3 hours)
· Risk list(1-2 hours)
· Planning for inception iteration(2 days)
· Signing the group contract(1 hour)
· Business Model(3 days)
[bookmark: _Toc224620870][bookmark: _Toc231013638][bookmark: _Toc231315110]WEEK 12
Inception 1st iteration
· Find actors and use cases(14 hours)
· Use case modeling(2-3 days)
· Detail two use cases(2 days)
· Revise project plan and risk list(2-3 hours)
· Plan for elaboration iteration(16 hours)
[bookmark: _Toc224620871][bookmark: _Toc231013639][bookmark: _Toc231315111]WEEK 13&14
Elaboration iteration 1
· Architectural and use case analysis
· Use case design
· Class design
· GUI design
· Plan coding.
· Coding classes and unit testing.

At this point we cannot plan the whole project now or tell the exact time we will use on specific activities because we are just about to enter the inception phase and if we plan everything now it will be a waterfall process and this is not recommended in UP Because of this the times in inception are approximated.
[bookmark: _Toc231013640][bookmark: _Toc231315112]Resources
[bookmark: _Toc231013641][bookmark: _Toc231315113]Methodology
Overall project: We used UP(Unified Process) which is a popular iterative and incremental software development process framework.
Programming: At this point of the project we will use Java language for basic programming and SQL for database construction.
Design: In designing the IT System we will UML (Unified Modeling Language) for design and analysis.
[bookmark: _Toc231013642][bookmark: _Toc231315114]Time
We have from week 11 to week 23 to do the project. We can work during class times, after class and on the weekends.
[bookmark: _Toc231013643][bookmark: _Toc231315115]Software
NetBeans 6.5: It is the main tool we use for coding and UML diagramming.
MySQL: A Microsoft program that we will use for database construction and manipulation.
Microsoft Office 2007: For report writing, representation and manipulation.
[bookmark: _Toc231013644][bookmark: _Toc231315116]Hardware
The school provides computers with the required software and internet, printers and scanners 7 days a week.
[bookmark: _Toc231013645][bookmark: _Toc231315117]Human resources
These include four students who make one group and two consultants who are our teachers.
Details of this are in the group contract.
[bookmark: _Toc231013646][bookmark: _Toc231315118]Planning inception iteration

[bookmark: _Toc231013647][bookmark: _Toc231315119]Signing the group contract
The group contract is fully shown in appendix A
[bookmark: _Toc224620858]Short description of Group 1 members
Wanling Feng: Born in 14-08-1985 in China. I stayed at Denmark for 1.5years,and I like my classmates and nice teachers(Michael C, Lars K) .And I am supposed to graduate from university.
Xiaolong Tang(Jack): My birthday is 23 Feb 1989.I was born in Dalian China. I love to study in Denmark. This is a pretty good country.
Sandeep Chaudhary: I was born in 20-05-1987 in Nepal, and I came to Denmark in 29 Aug 2008 for my higher study .I love studying and as well visiting new places.
Grace Mureithi: Born on 06 may 1989 in Kenya. I came for higher study in Denmark last year September. I love studying computer science and I the way the lessons are taught.
[bookmark: _Toc224620859]
Individual Strength and Weaknesses
	Name
	Strengths
	Weaknesses

	Wanling Feng
	Good in Design part and base things for programming, system.
	Cover work on Design myself, but I need more help on Programming.

	Grace Mureithi
	Motivated, positive, good in both Programming and design. Also very good English and professional.
	Lack of patience, and a bit too serious at times. Also need a bit of time to understand concepts.

	Sandeep Chaudhary
	Organized, dependable, punctual, motivated, good in design and programming but little weaker in programming. And also good English.
	A bit too serious at times and also needs a bit a time to understand concepts.

	Xiaolong Tang(Jack)
	I think I am good at writing some codes. Business and design, they are OK for me.
	I am not good at speaking.

[bookmark: _Toc224620860]
Group Strengths and Weaknesses
Strengths:
We come to school everyday, sometimes we come on weekend. We are available most of the time to meet.
We all do personal reading which makes it easier to do the project because everyone comes with their own ideas.
We have members that are good in programming and others design. Some are also good in both so it is balanced.
We are all from different countries so we speak English all the time which will help us improve our English.
Weaknesses:
We don’t have so much free time to do our personal studies but we try.
We live far from each other so the most suitable place to live is school which is far and inaccessible for most of the weekend.
If one person is good in design, they’re terrible in sw-construction or vice versa.
We are all not good in presentation. We may know the concepts but we can’t explain them properly when explaining orally.

[bookmark: _Toc224620861]Advisors
Michael Claudius
International co-ordinator
E-mail: Michael @ rhs.dk

Lars Kofod
E-mail: kofod @ rhs.dk

[bookmark: _Toc224620862]Peer Review Contact
The group has agreed with Study Group number 4 to do Peer Review. This means meeting from time to time, exchange ideas and give feedback on each other’s work.

[bookmark: _Toc224620875]Project Organization (roles)
Read ahead and be well prepared before meetings. Share ideas in group meetings.
We decided to share the project management roles so that every member can gain experience on project management.
The roles are also equally shared so everyone can gain experience in every field.

[bookmark: _Toc224620886]Commitment
The above set of rules and roles has been decided and agreed upon in the group. The Group Working Contract can only be changed in agreement of all members of the group or in special situations (in case of longer absence or non participation) in agreement of ¾ members and in dialog with the project supervisor.

[bookmark: _Toc224620887]Signature
With our signature we acknowledge the above rules and roles and will do the best to perform accordingly:
	
	Wanling Feng
	Grace Mureithi
	Sandeep Chaudhary
	Xiaolong Tang(Jack)

	Date:

	Tuesday, March 10, 2009
	Tuesday, March 10, 2009
	Tuesday, March 10, 2009
	Tuesday, March 10, 2009

	Place:

	Roskilde Handelsskole
	Roskilde Handelsskole
	Roskilde Handelsskole
	Roskilde Handelsskole

[bookmark: _Toc231013648][bookmark: _Toc231315120]Conclusion

What we have done
· We have built our team and signed the group contract.
· We have set our group goals.
· We have an idea of what is needed in the contract.
· We have analyzed a few of the risks likely to happen.

Problems in this iteration
· Risk analysis was hard since we have not done anything like this before.
· Project planning was also difficult because we did not know how to get along with it.

[bookmark: _Toc231013649][bookmark: _Toc231315121]Inception 1st iteration	
[bookmark: _Toc231013650][bookmark: _Toc231315122]Purpose
The purpose of this is to finalize the problems analysis and set the objectives. At the end we will have achieved the objectives milestone.
At this point, we have done the business analysis and from the IT-Strategy have come to the decision to work on the Guest Administration System that handles reservation because it weighs more in terms of business value.
[bookmark: _Toc231013651][bookmark: _Toc231315123]Activities
In this iteration we will do:
Business model: this will give us an overview of Hotel Deep Sleep and what it is lacking and from there determine what we as IT developers can do for it.
IT-Strategy: this is gotten from the business model and contains different projects that the IT-System in Hotel Deep Sleep needs. From here we will pick one project to work on.
Vision: This envisions how we see Hotel Deep Sleep running after we complete our system and it is functioning well.
Elicit stakeholder’s requests: find out the person interested in the system and what he needs the system to do.
Find actors and use cases: specify relevant actors for the system and identify use case.
Detail a use case: find an important use case using the EBP test and present it in a fully dressed format.
Supplementary specification: to determine the non-functional requirements of the system.
Glossary: a word list/dictionary of the words used in the project.
Do project management: conclusion, plan next iteration, revise risk list and project plan.

[bookmark: _Toc231013652][bookmark: _Toc231315124]Business model
We used the basic business model to analyze the business environment of Hotel Deep Sleep.
[bookmark: _Toc228334728]Context
Hotel Deep Sleep is a Hotel in the outskirts of Copenhagen. It is an old fashioned hotel built during the 2nd world war and esteems or distinguishes itself from other hotels with its old European style.
It is located in a commercial town and most of its clients are local and foreign business men.
It has four departments: The video shop, the restaurant, fitness centre and room services.
[bookmark: _Toc228334729]Business Analysis
[bookmark: _Toc228334730]SWOT-Analysis
It is used to analyze the organization and its environment. SWOT stands for strengths, weaknesses, opportunities and threats where strength and weaknesses are internal factors and the rest are external.

· STRENGTHS
· Quality food in the restaurant
· Wide variety of rooms.
· Still uses the traditional European style of furnishing
· Loyal customers since the early days
· Service bundling
· Located at place with different views(scenery)
· Moderately expensive(slightly affordable)

· WEAKNESSES
· It has no IT-system
· No wide variety of food in the restaurant
· It is outside the city and far from the airport.
· Poor quality services
· It is not popular.
· Poor marketing skills.

· OPPORTUNITIES
· It is trying to form strategic alliances with other chains of hotels and cruise companies.
· It is currently developing an IT-system to ease its activities and administration.
· It is making plans to start marketing through the internet.

· THREATS
· Hotels with modern style of furnishing and service
· Restaurants with wide variety of food
· Global economic crisis.

[bookmark: _Toc228334731]Five Forces Analysis

Five Forces Analysis helps to contrast a competitive environment. Five forces analysis looks at five key areas namely the threat of entry, the power of buyers, the power of suppliers, the threat of substitutes, and competitive rivalry.
Threat of entry:
Threat of entry is low because:
· Government restrictions and laws.
· High cost of entry into the hotel industry.
· Loyalty of customers to the hotel
· Hotel DeepSleep offers traditional European furniture and service which any recent or upcoming hotels cannot access.

Power of buyers:
The power of customers is high because they can easily switch to using other hotels. This is because they are not satisfied with the current hotel services, the hotel is relatively inaccessible and also it is not popular.

Power of suppliers:
Hotel DeepSleep’s power of supply is low because there are a lot in the market and it offers no major differentiation in the product (traditional European style is not a big deal to the customers).

Threat of substitutes:
The threat of substitutes for the hotel is high because:
· It is easy to find cheaper and better hotels in the area.
· Some customers prefer hotels in the city.
· Customers can do without the hotel, i.e. they do not depend on the hotel so much.

Competitive rivalry:
[bookmark: _Toc228334732]The competitive rivalry is high because the threat of substitutes is high as explained above. Also, because the buyers and suppliers in the market attempt to control the business.

Porter’s Generic Strategies.
This strategy is used to determine the source of competitive advantage for a business. The generic strategies are: 1) Cost leadership, 2) Differentiation, and 3) Focus.

The source of competitive advantage for hotel DeepSleep is differentiation. It offers an traditional European atmosphere for its customers which is hard to get in other hotels. It achieves this through its furniture and style of service.
[bookmark: _Toc228334733]
Value Chain Analysis
The value chain is a systematic approach to examining the development of competitive advantage. The chain consists of a series of activities that create and build value. They culminate in the total value delivered by an organization. The 'margin' depicted in the diagram is the same as added value. The organization is split into 'primary activities' and 'support activities.'

Primary Activities

· Inbound logistics	
The hotel purchases unprepared food every morning for the days use from Copenhagen catering services. The fitness machines and furniture are upgraded once every year when need be from phoenix machines and furniture. The video orders for videos from Fox Cinemas when need arises or when there is a demand for particular videos.

· Operations
The restaurant prepares the food accordingly in its kitchen. Hotel housekeepers prepare and arrange the rooms for the customers of the hotel every morning when the guests vacate the room or when need be. Møllen cleaning services are responsible for cleaning the rest of the hotel.
There is a general employee responsible for repairing broken furniture and utilities in the hotel. The manager for the fitness center and his employees are responsible for maintenance of the fitness machines.
The video shop employees tag and record received and rented videos.

· Outbound logistics
The customer is given a room key once he pays for the desired room. Food is served in the restaurant 3 times a day i.e. breakfast, lunch and dinner. If the desires to have in his room he can call the reception and ask and a waiter will take the food to his room.
The fitness open throughout and there is always one instructor to assist the customers.
The customers can borrow maximum 2 videos at one time for 2 days and if he leaves the hotel before he has to return before checking out. Some videos can also be bought.

· Marketing and sales
It offers its services in bundles and offers discounts for frequent visitors and special service for VIP guests though it is not strong in advertising its products.

· Service
It provides reservation services, travel planning, transport services, room service and complaint handling.
Support Activities
· Firm infrastructure
There are four different mangers, each controlling one of the four departments in the hotel. There is one general manager in charge of the four managers and the founder (CEO) of the hotel.
· Human resource management
Most of the hotel employees are gotten from Braff Job Agency and have to be qualified.
· Technology development
The hotel has no defined IT-system/structure.
· Procurement
Each department is responsible for its own outsourcing and procurement.
[bookmark: _Toc228334734]

Boston Matrix

Boston Matrix is valuable tools which helps or assists in formulation of plan of the business market share and market growth for the upcoming feature or running present.
According to the market share and market growth Boston Matrix is divided into 4 parts as star, cash cow, dog and question mark (problem child).
Hotel DeepSleep is a dog because it has relatively low market share and low growth rate

[bookmark: _Toc228334735]Basic Business Model

 (

OFFERING
Physical
component: rooms and videos.
Price/cost: moderately expensive
Service component: fitness, room service, quality food, transport, restaurant.
MARKET/INDUSTRY
Customers: Business men, travelers
Competitors: Modern hotels, hotels inside the city and

 other restaurants.

ACTIVITIES AND ORGANISATION
Planning for travelers during different seasons.
Reservation of rooms for guests.
VIP service and arrangements for special guests.
Organizing all the processes.
Organization of employees and management.
Administration.
RESOURCES
Human: S
killed manpower.
Physic
al: Furniture, fitness machines, etc.
Financial: Personal capital, local banks and chamber of commerce

SUPPLIERS
Factor Market:
 Møllen cleaning services, Braff
 job agency, Danske Bank.
Production input:
 Copenhagen catering,
Crawford
 Furniture, phoenix machines, Fox
 Cinemas.
)
[bookmark: _Toc228334736]

Market/Industry
· CUSTOMERS
The customers of Hotel DeepSleep are travelers and businessmen. The travelers usually come in plenty during the summer but the businessmen can come anytime of the year.
The Businessmen are mostly sent from foreign cities by specific companies that have used hotel DeepSleep for a long time.
The travelers can either stay in hotel DeepSleep as a family unit, a couple or individually.
The customers who use hotel DeepSleep have known it from the early years so they don’t mind the old fashioned style of Hotel DeepSleep but actually like it.
· COMPETITORS
The main competitors of the hotel are hotels inside the city, modern hotels, international hotels and restaurants and the variety of restaurants that surround the hotel and provide different types of food.
This is because the hotel is not so technologically advanced in terms of IT, also it is in the outskirts of the city. It also provides a low range of variety of foods although they are of high quality.
[bookmark: _Toc228334737]The Porters five forces analysis is used at this level to contrast the competitive environment.

Offerings
The hotel offers its products in bundles. A customer who chooses to stay at hotel DeepSleep gets accommodation, restaurant services, video shop and fitness.
Hotel DeepSleep offers different kinds of rooms. It offers luxury rooms for VIP guests, family rooms, single rooms and honeymoon suites. Apart from that the hotel also provides special rooms with different views of the city, the sea, the forest etc. It also offers conference halls and reservation services.
The fitness centre offers indoor exercise facilities for customers and also trainers. The restaurant provides different kinds of meals and is open throughout; the video shop provides rental services for videos to the customers.
[bookmark: _Toc228334738]The porter’s generic strategies are used to analyze the offerings level in the business model.

Activities and Organization
The hotel is organized into four different departments: rooms, restaurant, fitness centre and video shop each with its own manager all controlled by the owner or founder of Hotel DeepSleep. Each department

has its own employees.
Reservation of rooms is done by the receptionist and the customer is given the choices of rooms he can reserve. The hotel also plans for the high number of travelers expected in the high season, usually the summer. For VIP guests the hotel arranges special services and arrangements like transport to the airport and the surrounding areas and discounts for some services.
The value chain is used to analyze this level of the business model.
[bookmark: _Toc228334739]
Resources
Human resources for the hotel are mainly skilled manpower usually gotten from job agencies.
Physical resources in the hotel are like the building, furniture, fitness machines etc
Financial resources are from Peter’s (founder) personal finances, loans from local banks and the local chamber of commerce
[bookmark: _Toc228334740]The SWOT analysis tool is used to analyze the resources level n the business model.

Suppliers
The suppliers who provide Hotel DepSleep with its factors of production, i.e. capital and labour include: Møllen cleaning services, Braff job agency, Danske Bank etc
The ones who provide production input are: Copenhagen catering, Crawford furniture, phoenix machines, Fox video center, etc.
The Porters five forces analysis is used at this level in the business model

[bookmark: _Toc231013653][bookmark: _Toc231315125]IT-Strategy
We were able to develop an IT-strategy from the business model as detailed in appendix 3. we chose to deal with the guest administration system in our project.
Our IT strategy is divided into two. The services which should be provided to the customers and what the IT system should include.
The services include internet access in every room, computers in VIP rooms and the hotel cyber café, a public address system in the hotel conference room and a website so they can get information about the hotel and book rooms beforehand.
The system includes:
· Guest Administration System: This system involves handling reservation for guests, registering guests upon arrival, transferring guests into new rooms when needed and if possible, recording guest departure and handling general billing.
· Employee Administration System: Managers have more right than the normal staff to this system. They can search the information and register the user name and passwords for staff. Manager also can see the more private information of the hotel. It also handles employee registration.
· Hotel Registration System: This system handles the registration of hotel items that come from suppliers e.g. furniture, machinery, videos etc. they are saved in the system for stock taking and are tagged indicating that they belong to Hotel Deep Sleep.

We have chosen to do the Guest Administration System because at the moment it is the biggest priority as the customers/guests are important. This is shown in the business model where we concluded that the power of buyers is high.

[bookmark: _Toc231013654][bookmark: _Toc231315126]Vision
Actors: Manager, Receptionist, Staffs
The Guest Administration System we envision handles the reservation of rooms for guests in Hotel DeepSleep. After completion we expect that the system should be able to handle reservations, i.e. register new reservations, record guest arrival, register guest information, cancel reservations, record guest activities and record guest departure.
 The software system is also managing interaction between the four departments i.e. rooms, fitness, video shop and restaurant. There should be a tool which the staff, after logging into the system can use to view guest information which includes whether the guest has used the hotel before and goods and services that the guest has purchased from the hotel during his current stay in the hotel.
[bookmark: _Toc225908631][bookmark: _Toc228334746][bookmark: _Toc231013655][bookmark: _Toc231315127]A Day in the life of Jack, the Receptionist.
He sits at the reception and a customer arrives. The customer says that he has a reservation. Jack asks for his name and checks for it in the computer. The system shows the details of his reservation and the room number for the customer. He asks the customer if he has visited the hotel before. The customer says he has but his son who is taking a separate room is a first time guest. The son gives him his general information as it his first time and Jack fills the information into the system. He the records the arrival of the guests, changes the room status as occupied, gives them their room cards and welcome pack and wishes them a good stay.

The next day the guest asks how much money he has spent so far. Jack enters the room card requests the system for the guest’s bill. The system shows a list of activities in the fitness centre and the restaurant and how much they cost him. Jack then prints it out for the guest.
Two days later Jack comes to work and as usual first logs into the system and requests to system for the rooms meant to be evacuated on that day. He then contacts the guests in the respective rooms and reminds them they are supposed to check out.

During check out he uses the room card to get the total bill and prints out the invoice and hands it to the guest who pays accordingly.

The system handles the payment and Jack records the departure.
[bookmark: _Toc231013656][bookmark: _Toc231315128]Elicit stakeholders requests
Receptionist: He is the direct user of the system. He wants to reserve reservations, guests and handle general guest activities
[bookmark: _Toc231013657][bookmark: _Toc231315129]Find actors and use cases
The receptionist is the primary actor.
We used the following tests to test the use case:
· Boss Test: Your Boss asks what you have been doing all day and you name a use case. Is he happy? If not then the use case fails the boss test.
· EBP (Elementary Business Process) test: A task performed by one person at one time, in response to a business event, which adds measurable business value and leaves data consistent.
· Size Test: A use case cannot have just one action or step.
	Use Case Number
	Name
	Description

	UC1
	Add Room
	Adds room information to the hotel database

	UC2
	Search Room
	Search for a room of a specific type .

	UC3
	Register Reservation
	Record a reservation for a room

	UC4
	Cancel Reservation
	Cancel a reservation made for a room

	UC5
	Register Guest
	Register that a guest has occupied a room

	UC6
	Search Guest
	Search for guest information using IdNo or passportNo

	UC7
	Transfer Guest
	Put guest information into a new room

	UC8
	Delete Guest
	Removes guest and his information from hotel database.

	UC9
	Process Departure
	Record a guest as having departed

	UC10
	Update Invoice Info
	Add a purchase made by a guest to his card

	UC11
	Send Notification
	Inform rooms meant to be evacuated on a given date

[bookmark: _Toc231013658][bookmark: _Toc231315130]Use case Diagram

[bookmark: _Toc231013659][bookmark: _Toc231315131]Detailed use-cases
Use Case UC2: Search Room
Scope: Guest Administration System
Level: User Goal
Primary Actor: Receptionist and Manager
Stakeholder and interests:
Receptionist: To find the room as per the guest’s need.
Pre Condition: Receptionist or Manager is logged into the system. System is running properly. A guest has given a request for specific room.
Post Condition: A room of the correct description is found.
Main Success Scenario:
1. Receptionist starts a new search room.
2. Receptionist enters room information(type, category, status)
3. System presents rooms requested.

Alternative Scenario:
 2a. There are no available rooms of guest’s choice:
1) Receptionist starts new search room with new room information.
 2b. There are no more rooms available.
1) End of use case.
Use Case UC3: Register Reservation
Scope: Guest Administration System
Level: User Goal
Primary Actor: Receptionist
Stakeholder and interests:
Receptionist: To logged in the system. And register reservation.
Guest: To book room in the date they want.
Pre Conditions: Receptionist is logged into the system. System is running successfully. Guest has arrived or phoned and receptionist has searched the room.
Post Conditions: reservations are saved into the system and room status is changed to reserved.
Main Success Scenario:
1. Receptionist starts new register reservation.
2. Receptionist searches for rooms using type, category, dateFrom and dateTo and the guest picks according to his desire.
3. System presents the room numbers of available rooms.
4. Receptionist registers reservation information.
5. System saves the reservation and presents the reservation information.

Alternative Scenario:
a. At any time system fails:
1) Receptionist restarts the system, logs in and starts a new register reservation.

[bookmark: _Toc231013660][bookmark: _Toc231315132]Glossary
	Room
	An entity in a hotel that the guest pays to use.

	Reservation
	A booking for a room for one guest for a specific period of time.

	Guest
	A person who uses and pays for the hotel facilities especially room

	Room Type
	The size of the room i.e. whether it is a double, single or family space.

	Room Category
	The class of the room i.e. whether it is for v.i.p (expensive) or normal (affordable)

	Guest Nationality
	Whether the guest is a local traveler or from a foreign country.

[bookmark: _Toc231013661][bookmark: _Toc231315133]Risk list (revised)
	 Risk
	 Probability
 1-5
	 Consequence
 1-5
	 Total

	Problems with Design.
	 3
	 2
	 6

	How to make the report.
	 4
	 3
	 12

	Programming might take time
	 4
	 5
	 20

	Absence of Group member
	 3
	 2
	 6

We encountered problems with design as we spent a lot of time detailing all the use cases instead of just two or three. The risk was not so high but we managed it and learnt from it.
We also had problems with deciding what to put in the report but got guidance from our advisors.

[bookmark: _Toc231013662][bookmark: _Toc231315134]Conclusion

Problems
· We spent so much time on the use cases because we thought we had to do all them in fully dressed which was not right.
· We had trouble with use case modeling as we did not know where to set the system boundary.
What we have learnt
· It is easy to get sidetracked so we have to focus on our system alone.
· We have to do everything iteratively as we have to go back and change details about everything.

Next step
The next step is elaboration iteration one where we detail the use cases, create a domain diagram, design and analyze the use cases. Finally we will start programming and do unit testing for the basic classes we will have created.

[bookmark: _Toc231013663][bookmark: _Toc231315135]Elaboration 1st iteration
[bookmark: _Toc231013664][bookmark: _Toc231315136]Purpose
 We have now passed the objectives milestone and are in the elaboration phase of UP. So far we have 11 use cases and a use case diagram. In this iteration we start coding and build the systems architecture.
[bookmark: _Toc231013665][bookmark: _Toc231315137]Activities
At this point we have an idea of what we are doing in the project and have the detailed use cases that we will use.
· Develop the domain model
· Detail relevant use case(s).
· Architectural analysis.
· Use case analysis
· Use case design
· Class design
· GUI design
· Plan coding
· Coding of classes
· Unit testing
· Revise project plan, risk list and iteration plan for next iteration.

[bookmark: _Toc231013666][bookmark: _Toc231315138]Develop the domain model

This is our overall domain model. It consist of three sub systems in it i.e.1) Item Administration at the right side, 2) Payment System for room and items at the bottom and 3) Guest, Reservation and Room Administration for Hotel system at the upper part.
We later came to find out that the domain diagram was too big and designing the program according to it would take time. So we developed a new domain diagram by picking out the conceptual classes that would fit into our goal of creating a system that handles reservation mainly.
It is shown below:

[bookmark: _Toc231013667][bookmark: _Toc231315139]Detail use cases
The detailed use cases are shown in appendix 4.3
Here we have shown only one detailed use case and in this section we will also describe the use cases using GUI design.
Use Case UC5: Register guest
Scope: Guest Administration System
Level: User Goal
Primary Actor: Receptionist
Stakeholder and interests:
Guest: To be registered in the hotel as a guest and have access to hotel services.
Receptionist: To register customer as a hotel guest successfully.
Pre Conditions: Staff is logged into the system. System is running successfully. Guest has arrived at the reception.
Post Conditions: The guest information has been saved into the system, system running in succeed.
Main Success Scenario:
1. Reception starts a new register guest.
2. Receptionist enters the reservation number into the system.
3. System searches for and presents the reservation details (room number and length of stay).
4. Receptionist enters guest information into the system.
5. Receptionist confirms to the system that the guest can now occupy the room he had reserved.
6. System changes the room status from reserved to occupied.

Alternative Scenario:
a. At any time system fails:
1) Receptionist restarts the system, logs in and starts a new register guest.
2a. Guest has no reservation
1) Receptionist starts process reservation.
2) If the room that the guest desires is available, Receptionist starts register guest.
2b. Guest has lost his reservation number.
1) Receptionist enters the date of the reservation and name of the guest.
2) System searches for the reservation using this information.
3) Continue use case.
4a. The guest has visited the hotel before
1) The receptionist requests the system to gets his information(name, cpr/passport number, etc)
2) System presents guest information.

Register Reservation
· The receptionist will open the reservationGUI from the HotelGUI by clicking Reservation Administration option.

· He then chooses the register reservation option.

· He enters the required information.

· Upon completion the text area displays that the registration was successful and displays the reservation information.

Similarly, we have also done the GUI designs for UC: Search Room and UC: Register Guest.
For GUI designs of use cases: Search Room and Register Guest see Appendix.
We have done the GUI designs above where we used following principles:
· User familiarity
· Consistency
· Minimal surprise
· User guidance
We did not find a way to apply recoverability and user diversity.

[bookmark: _Toc231013668][bookmark: _Toc231315140]Brief Use cases
Here we have written the remaining use cases that we have decided to do in this iteration. We have illustrated them as brief use cases because these use cases are not so important for our system.
Search Guest
· Receptionist starts a new search guest.
· Receptionist enters guest name.
· System presents guest information.
· Reception confirms that the guest information has been the system.
Delete Guest
· Receptionist starts a new delete guest.
· Receptionist enters guest number.
· System presents guest information (name, address, country…).
· Receptionist requests the system to delete the guest.
· System shows the guest information has been deleted.
Cancel Reservation
· Receptionist starts a new cancel reservation.
· Receptionist enters the reservation number.
· System presents reservation information.
· Receptionist to requests the system to delete the reservation.
· System changes the room status.

[bookmark: _Toc231013669][bookmark: _Toc231315141]Architectural analysis
We have to the MVC layered method which stands for model view controller.
Our model classes are Room and Reservation with their collection classes Room Catalog and Reservation Catalog.
Our viewer classes are RoomGUI and ReservationGUI which are accessed through the HotelGUI.
Our controller classes are RoomAdministration and ReservationAdministration.
The GUI connects with the model and collections through the controller classes.

 (
MODEL
) (
COLLECTION
) (
HANDLER
) (
VIEW
)

[bookmark: _Toc231013670][bookmark: _Toc231315142]Use case analysis
We will do this analysis by means of System sequence diagrams and operation contracts.
System sequence Diagram
This shows communication between the main actor and the system. The construction of our SSD depended on the use cases. The steps shown in the SSD were gotten from their respective use cases.
Search Room (UC2: Search Room)

Register Reservation (UC3: Register Reservation)	

Cancel Reservation (UC4: Cancel Reservation)

Register Guest (UC5: Register Guest)

Search Guest (UC6: Search Guest)

Delete Guest (UC8: Delete Guest)

Operation Contract
At this point we have only 3 operation contracts derived from the system sequence diagrams. We will only show the pre and post conditions. The full operation contracts are in appendix 7.

UC1: Add Room
We decided to do the operations of add room only in our SQL. So, we haven’t illustrated the operation contracts for it.

UC2: Search Room:
We did not find any tangible OC’s for this use case because we argued that to qualify for an OC the actions should cause a change in the system.

UC3: Register Reservation
Contract OC1: makeNewReservation
Operation: makeNewReservation()
Precondition: None		

Postconditions:
· A reservation instance r was created.
· r was associated to Room and ReservationCatalog.
· Attributes of r were initialized.

Contract OC2: enterReservationInformation
Operation: enterReservationInfo (guestName, roomNo, dateTo, dateFrom,
 reservationDate)
Precondition: There is a reservation underway.

Postconditions:
· Attributes of r were set to information entered.

Contract OC3: endReservation
Operation: endReservation()
Precondition: There is a reservation underway.

Postconditions:
· Reservation.isComplete became true.

UC4: Cancel Reservation
Contract OC1: makeNewCancelReservation
Operation: makeNewCancelReservation()
Precondition: None
Postconditions:
· A CancelReservation instance r was created.
· r was associated with Room and ReservationCatalog.
· Attributes of r were initialized.

Contract OC2: deleteReservation
Operation: deleteReservation()
Cross References: Use Case: Cancel Reservation
Precondition: There is a cancelReservation underway.

Postconditions:
· All attributes of r were deleted.
· All associations of r were removed.

Contract OC3: endCancelReservation
Operation: endDeleteReservation()
Cross References: Use Case: Cancel Reservation
Precondition: There is a cancelReservation underway.

Postconditions:
· CancelReservation.isComplete became true.

UC5: Register Guest

Contract OC1: makeNewRegisterGuest
Operation: makeNewRegisterGuest
Cross References: Use Case: Register Guest
Precondition: None

Postconditions:
· A Guest instance g was created.
· g was associated with GuestCatalog.
· Attributes of g were initialized.

Contract OC2: enterGuestInformation
Operation: enterGuestInfo(name: Name, id: Id…)
Cross References: Use Case: Register Guest
Precondition: There is a registration underway.
Postconditions:
· Attributes of g were set to information entered.

Contract OC3: endRegisterGuest
Operation: endRegisterGuest()
Cross References: Use Case: Register guest
Precondition: There is a registration underway.

Postconditions:
· Registration.isComplete become true.

UC6: Search Guest:
We did not find any tangible OC’s for this use case because we argued that to qualify for an OC the actions should cause a change in the system.

UC8: Delete Guest
Contract OC1: makeNewDeleteGuest
Operation: deleteGuest()
Cross References: Use Case: Delete Guest
Precondition: None

Postconditions:
· A Delete instance d was created.
· d was associated with GuestCatalog.
· Attributes of d were initialized.

Contract OC2: deleteGuest
Operation: deleteGuest()
Cross References: Use Case: Delete Guest
Precondition: There is a delete underway.
Postconditions:
· Attributes of d were deleted.
· All associations of d were removed.

Contract OC3: endDeleteGuest	
Operation: endDeleteGuest()
Cross References: Use Case: Delete Guest
Precondition: There is a delete underway.

Postconditions:
· Delete.isComplete became true.

[bookmark: _Toc231013671][bookmark: _Toc231315143]Use Case Design
Sequence Diagram
· Reservation Administration

· Room Administration

· Guest Administration

Class Diagram

[bookmark: _Toc231013672][bookmark: _Toc231315144]GUI Design
We have done the GUI designs above where we used following principles:
· User familiarity
· Consistency
· Minimal surprise
· User guidance
We did not find a way to apply recoverability and user diversity.
The layout of our GUI Design is shown as:

	
[bookmark: _Toc231013673][bookmark: _Toc231315145]Plan Coding
We plan coding according to the architectural analysis we did before.
We start with the worker class and the collection classes for these workers.
We did the experiment for our java classes only because we didn’t have persistent class at the moment.
[bookmark: _Toc231013674][bookmark: _Toc231315146]Coding of classes
Our Guest Administration System consists of Guest, Reservation and Room classes. We started our coding from the classes of Guest, Room and then Reservation. Reservation connects it the Guest and Room.
In our program we have four classes. They are GUI, Handler, Collection and Model for each i.e. Guest, Reservation and Room. The Handler class connects the GUI class to the Collection and Model class. For that we use an instance of Collection class in the Handler class and an instance of Handler class in the GUI. Then if we call a method from GUI, the Handler class will connect to the Collection class and call the method from this class. The Collection class contains code that describes the behavior of that method manipulating an object of the model class. At last the collection class returns the required value to the Handler and finally Handler returns the value to the GUI.
This is how the codes work in our program for all systems. We have tried to show the working of the code and also the actual layout in more detail as:
For example: Let us take the Guest Administration Class and we call the method searchGuest(guestName).
Guest GUI
The GuestGUI uses the instance of the GuestAdministration which is illustrated as:
public class GuestGUI extends javax.swing.JFrame {
 Guest g;
 GuestAdministration guestHandler;
 public GuestGUI() {
 initComponents();
 guestHandler = new GuestAdministration();
 }

We see the one constructor of GuestGUI and “GuestAdministration guestHanlder” is the instance used by the GUI which helps to connect with Guest Administration. Now, we call the method searchGuest(guestNumber).

Guest Administration
public class GuestAdministration {
 GuestCatalog guestCat;

 public GuestAdministration() {
 guestCat = new GuestCatalog();
}	
Similarly, we can see the one constructor of Administration class and “GuestCatalog guestCat” is the instance of class GuestCatalog used by GuestAdministration.

public Guest getGuest(int guestName) {
 return guestCat.getGuest(guestName);
 }
And this is the method in this class which we called from GUI. This method is returning guest using guestName from guest Catalog. Now GuestAdministration will call the method from GuestCatalog as it uses an instance of GuestCatalog.

Guest Catalog
public class GuestCatalog {
 LinkedList<Guest> guests;
 public GuestCatalog() {
 guests = new LinkedList<Guest>();
 }
In GuestCatalog we have decided to use linked list because we often have to register and delete guests so it is easy to add or delete guests in linked list as well as search guest. We can see one constructor here where we are initializing our linked list.
Similarly, we also used linked list in ReservationCatalog due to the same reason. But we used array list in our RoomCatalog because we use array list for Stable classes. And we don’t add or delete room often, it very rare. So, we think Room class is stable one.
We knew that the hash map was better than these linked list and array list. But we didn’t use it because we wanted the code to be done fast so we decided to use linked list and array list.

Guest getGuest(String guestName) {
 Iterator i = guests.listIterator();
 Guest g = null;
 Guest g1 = null;
 while (i.hasNext()) {
 g=(Guest) i.next();
 if(g.getName().equalsIgnoreCase(guestName)){
 g=g1;
 }
 }
 return g1;
 }
And this is the method that is called by the Administration class. Here, we declare an iterator “i” which loops through the linked list to find the guest and we also declare two guests initialized to null. We are using while loop, the line ‘g=(Guest) i.next’ is typecasting/changing the content in the index to an object of the type Guest and assigning it to “g” .Then we are using “if” sentence for comparing the guest name. If guest is found, it is assigning to g1 and at last returning g1.

Actual Layout
This is the testing of GuestAdministration class. It is also same for Reservation and Room classes.

For more code of the programs and testing see Appendix.

And we have also tried to follow the GRASP patterns in making our program classes. According to it we have divided our classes into four different parts and assigned the administration class as Controller class because this administration class represents the overall system and is responsible for controlling the other classes. We have tried to keep low coupling among the classes by dividing our classes into model, collection, handler and view. As well as we have followed the principle of high cohesion by not doing all the stuffs in one class, instead we have different classes doing different things. And the Creator is collection class because the collection class closely uses model class and it has the initializing data for model class that will be passed to model when it is created.
[bookmark: _Toc231013675][bookmark: _Toc231315147]Risk List
	 Risk
	 Probability
	 Consequence
	 Total

	Problems with Design.
	 3
	 2
	 6

	How to make the report.
	 4
	 5
	 20

	Programming might take time
	 4
	 5
	 20

	Absence of Group member
	 3
	 2
	 6

We had experienced all the risks. We spent so much time on the domain model because we did not know what should or should not be included in the domain model.
We also experienced the programming taking too much time since we had to test it so many times.
The risk of making the report was increased.

[bookmark: _Toc231013676][bookmark: _Toc231315148]Conclusion

Problems:
· We did not know what to include in the domain model so it took as a while to decide and by the time we made a final decision we had already started programming and had to go back to the previous domain model to change it.
· When programming we discovered it was difficult to cover some of the use cases or had to change the use cases to fit our program.
· We took too much time designing and as expected had/ have little time to finish the programming.
· Delegation of duties was difficult and at times we forgot to delegate some of the duties and ended up confused and delayed.
What we have learnt
· We have to read more to understand what is going on.
· We should stop and check at some point for mistakes so we don’t have to make changes when we are far ahead.
· To make the workflow smooth and easy, we can also assign the role of manager turn by turn to each member of the group so that the manager decides and manages how the work should be carried out and assign different work to different people.
Next step
 Now we move into elaboration iteration 2 where we will extend our diagrams and program to handle the hotel database.

[bookmark: _Toc231013677][bookmark: _Toc231315149]Elaboration 2nd Iteration
[bookmark: _Toc231013678][bookmark: _Toc231315150]Purpose
We have now finished the 1st Iteration of the elaboration phase and are in the 2nd Iteration. In this iteration we revise and work on our remaining use cases i.e. Transfer Guest, Process Departure, Update Invoice Information and Send Notification. We finalize and analyze all our use case analysis, architectural analysis and extend the domain model, class diagram, architectural analysis. We also illustrate the sequence diagrams and operation contracts for our remaining use cases and plan coding for the persistent class.
[bookmark: _Toc231013679][bookmark: _Toc231315151]Review Activity
· Extend the domain model:
· Detail relevant use cases:
· Architectural analysis:
· Use case analysis:
· Class design:
· GUI design:
· Plan coding:
· Coding of classes:
· Unit testing:
· Risk list, revised:

[bookmark: _Toc231013680][bookmark: _Toc231315152]Extend the Domain Model
As we are working on our remaining use cases, we also need to extend our domain model. So we have extended our domain model by adding the classes of payment to handle the payment of the rooms only.
And our remaining use cases are related to the payment.
And we also made some small changes in the attribute of the guest class. We added one attribute i.e.roomNo in the guest class because we needed it here for our preliminary bill payment and make it easy. This one doesn’t last forever and is only for our testing purpose.
It is shown as:

[bookmark: _Toc231013681][bookmark: _Toc231315153]Detail Relevant Use cases
In this iteration we just work on the use cases 7,9,10 and 11.The use cases 1-6 and 8 we have already done in 1st Iteration.
We have illustrated the use cases 7,9,10 and 11 again as brief use cases because now we were all aware about our system , knew how was it is going to be like and we want to keep our speed on our program- ing. We also knew what to do at this moment so we wrote these use cases as brief.
Use Case UC7: Transfer Guest
Main Success Scenario
· Receptionist starts a new transfer guest.
· Receptionist requests system to search for guest information.
· System presents guest information.
· Receptionist request system to search for available rooms.
· System presents available rooms.
· Receptionist confirms transfer.
· System transfers bill information and guest information to new room’s card
· Receptionist requests the system to change the status for both rooms to available and occupied respectively.
Use Case UC9: Process Departure
Main Success Scenario
· Receptionist starts new process departure.
· Receptionist enters guestNo.
· System presents guest information.
· Receptionist enters the length of stay.
· System calculates and presents guest’s bill.
· Receptionist enters payment.
· System handles payment.
· System changes the room status to available.
Use Case UC10: Update Invoice Information
Main Success Scenario
· Staff starts new update invoice information.
· Staff enters the product number.
· System presents the product information.
Repeat steps 2-3 until indicates done.
· System calculates and presents the total price.
· Staff enters room card ID into the system.
· System puts total bill to the room card and presents message when done.

Use Case UC11: Send Notification
Main Success Scenario
· System checks which guests are meant to be leaving the hotel on that day.
· System adds them to a list.
· Receptionist logs into the system and starts new send Notification.
· Receptionist requests the system for the list of guests.
· System presents the list of guest.

[bookmark: _Toc231013682][bookmark: _Toc231315154]Architectural Analysis
We are not doing data base in this iteration so there is also no change in our architectural analysis. It is same as the one in elaboration 1st iteration. That’s why we have decided not to illustrate it here.

[bookmark: _Toc231013683][bookmark: _Toc231315155]Use case Analysis
Use Case Diagram
No changes were made in the use cases that we have done in inception and elaboration 1st Iteration. But we just work on the 4 use cases: UC7 Transfer Guest, UC9 Process Departure, UC10 Update Invoice Information and UC11 Send Notification.
See Appendix.
System Sequence Diagram
We had already done the SSD for the UC1-UC6 and UC8 in elaboration 1st Iteration. So, in this iteration we will only draw the SSD for UC7 and UC9-UC11.
UC7: Transfer Guest

UC9: Process Departure

UC10: Update Invoice Information

UC11: Send Notification

Operations Contracts
Here we only show the operations contracts that change the state of domain model and we show the pre &post conditions only.
For detail Operation Contracts see Appendix.
UC7: Transfer Guest
Contract OC2: updateInvoiceInfo
Operation: updateInvoiceInformation(roomNo:RoomNo,name:Name….)
Cross References: Use Case: Transfer Guest
Precondition: There is a transfer underway.
Postconditions:
· All the information of guest was updated.

Contract OC3: changeRoomStatus
Operation: changeRoomStatus()
Cross References: Use Case: Transfer Guest
Precondition: There is a transfer underway.
Postconditions:
· Status of the room was changed.

UC9: Process Departure

Contract OC2: enterPayment
Operation: enterPayment(amount:Money)
Cross References: Use Case: Process Departure
Precondition: There is a departure underway.
Postconditions:
· Payment was recorded.

UC10: Update Invoice Information
Contract OC2: enterProductInfo
Operation: enterProductInformation(itemId:ItemId,…)
Cross References: Use Case: Update Invoice information
Precondition: There is an updateInvoice underway.

Postconditions:
· All the informations were updated
In this operation contract and SSD, although we are using item we are not working with it because we have decided to handle only the room payment, not payment of items. We also decided to do the payment of items in our program if we get time later.

UC11: Send Notification:
We did not find any tangible OC’s for this use case because we argued that to qualify for an OC the actions should cause a change in the system. And send notification has nothing to do with the system; it just notifies the guest about his departure.

[bookmark: _Toc231013684][bookmark: _Toc231315156]Use case Design
Sequence Diagram

[bookmark: _Toc231013685][bookmark: _Toc231315157]Class Design

[bookmark: _Toc231013686][bookmark: _Toc231315158]GUI Design
There is no change in the GUI design. It is same as in elaboration 1st iteration. So, we didn’t illustrate it here.
[bookmark: _Toc231013687][bookmark: _Toc231315159]Plan Coding
In this iteration we only have to do the coding for payment. So we didn’t have to plan much for our programming. Simply we made plans for where to put the payment method and from where to operate it.
And in this iteration we also didn’t have persistent class so we tested our codes for java class only. And here we are not storing the values of the data so it’s fake, only for our testing purpose.
[bookmark: _Toc231013688][bookmark: _Toc231315160]Coding of Classes
We have extended our domain model by adding the classes of payment handling the payment of rooms. So, in our programming part we also have just added the codes for the payment of rooms. For that we have method “calculateBill()” in RoomCatalog but we are calling it from GuestGUI.

The instance of GuestGUI is as shown:

public class GuestGUI extends javax.swing.JFrame {
 GuestAdministration guestHandler;
 RoomAdministration roomHandler;

Here “RoomAdministration roomHandler” is the instance used by GuestGUI class to get an access to the RoomAdministration class.

private void processDeparture(){
 dataArea.append(" ");

 String guestNoStr = JOptionPane.showInputDialog("State Guest Number: ");
 int guestNo = Integer.parseInt(guestNoStr);
 g=guestHandler.getGuest(guestNo);
 dataArea.append(g.guestData());
 String lengthStr = JOptionPane.showInputDialog("State the number of days the guest has stayed ");
 int length = Integer.parseInt(lengthStr);

dataArea.append("total amount owed"+roomHandler.calculateBill(guestNo, length));
 }

And this is the method for payment used in the GuestGUI class. Here in the last line we are calling the method “calculateBill(guestNo, length)” of RoomAdministration.

public double calculateBill(int guestNo,int length){
 return roomCat.calculateBill(guestNo, length);
}
This is the required method in RoomAdministration calling the method “calculateBill(guestNo,length)” of
GuestCatalog class.

public class RoomCatalog {
 private ArrayList<Room> rooms;
 GuestAdministration guestHandler;
 ReservationAdministration resHandler;

The RoomCatalog class is using two instances of Guest and Reservation because we need to get the guestName and roomNo from Guest and Reservation classes respectively which we see in this method.

public double calculateBill(int guestNo,int length){
 Reservation r=new Reservation();
 double total=0;
 Guest g=guestHandler.getGuest(guestNo);
 int roomNo=g.getRoomNo();
 if(r.getGuestName().equals(g.getName())&&r.getRoomNo()==roomNo){
 Room room=this.getRoom(roomNo);
 double price=room.getPrice();
 room.setStatus("available");
 total=price*length;
 }
 return total;
 }

Here at first we declare an object of Reservation r and assign total to “0”. Then we get Guest g calling a method getGuest using guestNo as parameter. We again get roomNo using the same Guest g and method getRoomNo().After that we compare guestName of reservation with guestName of guest and roomNo of reservation with roomNo of Guest. If it is true we return the room with that roomNo. We get the price from method getPrice() and calculate the total by multiplying price with length of stay. After that roomStatus is set to available.

Again as per GRASP patterns, an information expert is the class that has the information necessary to fulfill the responsibility. So we have put the payment method in the room class because it has the necessary information such as roomNo, type, price, etc. to fulfill the requirements that are needed for the calculation of bill in the payment method.
[bookmark: _Toc231013689][bookmark: _Toc231315161]Risk List, Revised
	 Risk
	Probability
	Consequence
	 Total

	Problems with the design.
	 3
	 4
	 12

	How to make the report.
	 3
	 3
	 9

	Absence of the group member.
	 3
	 2
	 6

We experienced a problem in the sequence diagram because we have payment method in the RoomCatalog class but we need to call it from GuestGUI. So we discussed it in our group and finally prepared the sequence diagram.
Since we were preparing the report from the project establishment, we got more experience for making the report. So the risk of making the report in this iteration was more or less minimized.
Since we have no persistent class in this iteration so we didn’t have to do coding for it . And we did the coding for only the methods that we added in this iteration.
[bookmark: _Toc231013690][bookmark: _Toc231315162]Conclusion

Problems
The problems were less this time round because we now knew what we were doing.
· We had given specific tasks to specific members so one member who did something did not really understand what was going on elsewhere in the project.
What we have learnt
We are slowly learning how to integrate UP and expand our system slowly and slowly through each iteration so that it can handle more functions.

Next Step
Now we move into the Construction phase where we will create our database tables for the guest, reservation, etc. and finally connect our database to our java programming.

[bookmark: _Toc231315163]Construction 1st iteration
[bookmark: _Toc122413240][bookmark: _Toc231315164]Purpose
 Before going into details we already done java program of our Hotel Deep Sleep project. This part is to implement the design in a Relational Data Base (RDB). We have chosen to use a directly transformation from design class diagrams to data base tables as the design is very detailed. And we have to design how many table should we have in our DB and connection between java program and SQL.
[bookmark: _Toc231315165]Review activities
· Architectural Analysis
· Choice of RDB
· Review of OOD model
· Categories the and transform into relations
· Transform associations and generalization into relations
· Create a Database Model Diagram
· Define and describe the relations, attributes, keys and domains
· Normalize the table
· Code persistent class
· Design coding
· Code DMC façade class
· Code CMC control class

[bookmark: _Toc122413242][bookmark: _Toc231315166] Choice of RDB
There are two ways to get the design for the relational database.
OOR 			E/ER		 RDB
OOD			RDB
Key:
OOD-Object Oriented Design
E/ER-Enhanced Entity Relation
RDB-Relational Database Diagram.
We decided to go with the 2nd option which is deducing the RDB from the OOD as already described above because we already have a detailed OOD.
[bookmark: _Toc231315167]Review of OOD model
Class diagram see chapter 4.2.6
We have reservation and room relations, reservation and guest relations.
Reservation and room is one to one as association
Reservation and guest is one to many as association
[bookmark: _Toc122413244]Upon investigation we found out that the relationship between the super classes (room and guest) and subclasses was mandatory and the relationship between the subclasses was disjoint. The correct way to design our database was to have tables for each subclass but we decided not to do it at this point because it would make our searching difficult and our purpose at this stage was testing and confirming that the database and java connection are working properly.
[bookmark: _Toc231315168]Categories and transformation into relations
[bookmark: _Toc231315169]We categorized the class into 4 categories: view layer, handler layer, collection layer, model layer.
View layer contains the GUI classes.
Controller layer has the administration classes:RoomAdministration ,ReservationAdministration, GuestAdministration.
Collection layer has 3 catalog classes : RoomCatalog ,ReservationCatalog . GuestCatalog .
Model layer has 3 java class : room class , reservation class, guest class.
We transformed the handler class and collection class into DMC-class handing the access and SQL-queries the database. We didn’t change any thing from GUI and controller into date base relation, Model classes will be changed into tables.

Relation List
	Fantasy Hotel

	No.1

	Version 1.0

	Date
02.11.2005
	Initials
<MCG 3>

	Relation name
	Definition/Description
	Aliases
	Remarks/
Occurences

	Guest
	Object of person class who uses hotel processes

	many

	Room
	 An entity of hotel used by the guest

	many

	Reservation
	A booking of room by a guest with date to and date from.
	Booking
	many

[bookmark: _Toc122413245][bookmark: _Toc231315170]Transform associations and generalization into relations
One to one: Reservation with room there is one to one association we transform them into table, we put roomNo to be a FK(foreign Key) in : Reservation class. Then the connections will be implemented by foreign key.
One to many: Guest and Reservation this one to many association we transform them into table. We put a foreign key into weak part: Reservation class. So the connections will be implemented by foreign key.

Relationship List
	<System>
	No. X

	Version 1.X

	Date
yyyy-mm-dd
	Initials
<NN>

	Relation
	Multiplicity
	Association
	Multiplicity
	Relation
	Participation

	Names in
Alphabetic order
Primary order
	
	A Name
	
	Names in
Alphabetic order
Primary order
	Mandatory
Optional

	Guest
	1
	Makes
	1..*
	Reservation
	O : M

	Reservation
	1
	Done-for
	1
	Room
	

Shorts used as follows:
	Participation

	M: Mandatory
O: Optional

[bookmark: _Toc231315171]Architectural Analysis

[bookmark: _Toc122413246][bookmark: _Toc231315172] Create a Database Model Diagram

Relation Attribute List
	<System>

	No.X

	Version 1.X

	Date
2009.may.25
	Initials
<NN>

	Relation name
	Attributes

	Hotel
	reservationNo(FK), guestNo(FK), roomNo(FK)

	Guest
	guestNo, idNo, name, address, zip code, city, country, passportNo, phoneNo, e-mail

	Reservation
	reservationNo, guestName(FK), roomNo(FK), dateFrom, dateTo, reservationDate

	Room
	roomNo, category, status, price, view

.

[bookmark: _Toc122413247][bookmark: _Toc231315173]Define and describe the relations, attributes, keys and domains
We have described and specified the attributes, keys and domains as:
Relation Attribute Description
	<System>

	No.X

	Version 1.X

	Date
xxxx-xx-xx
	Initials
<NN>

	Relation
	Attribute
	Key
	Description
	Default Value
	Allowed
NULL
	Composite

	Names Alphabetic order
Primary order
	Names Alphabetic order
Second order
	Mark
PK
FK
	
	
	Yes/No
	

	Hotel
	reservationNo
guestNo
roomNo

	PK,FK
FK
FK

	
	

	 No
 No
 No

	No
Yes (critical)
No

	Guest
	guestNo
idNo
name
address
zipcode
city
country
passportNo
phoneNo
e-mail
	PK
	
	
	 No
 No
 No
 No
 No
 No
 No
 No
 No
 Yes
	

	Room
	roomNo
category
status
price
view
	PK FK
	

	
	 No
 No
 No
 No
 No
	

	Reservation
	reservationNo
guestNo
roomNo
dateFrom
dateTo
reservationDate
	PK
FK
FK
	
	
	No
No
No
No
No
No
	

Attribute Domains
	<System>

	No.

	Version

	Date
xxxx-xx-xx
	Initials
<NN>

	Relation
	Attribute
	Data Type
	Set of Value
	Format

	Hotel
	reservationNo
guestNo
roomNo
	Int
int
int

	Any
Any
0-9 digits
	xxxxxxxxxxxx
 None
xxxxxxxxxxx

	Guest
	guestNo
idNo

name
address
zipcode
city
country
passportNo
phoneNo
e-mail
	Int
VarChar(30)

VarChar(35)
VarChar(150)
int
VarChar(20)
VarChar(20)
VarChar(30)
VarChar(25)
VarChar(50)
	Any
0-9 digits and cpr-rules
Any
Any
Any
Any
Any
Any
Any
Any
	

	Room
	roomNo
category
status
price
view
	Int
VarChar(50)
VarChar(50)
Double
VarChar(15)
	0-9 digits
Any
Any
Any
Any

	

	Reservation
	reservationNo
guestNo
roomNo
dateFrom
dateTo
reservationDate
	Int
Int
Int
Datetime
Datetime
Datetime
	Any
Any
0-9 digits
yyyy-mm-dd
yyyy-mm-dd
yyyy-mm-dd
	

[bookmark: _Toc122413248][bookmark: _Toc231315174]
Normalize the table
1 NF: Has a PK and no multiple attribute in one column.
2 NF: All attribute can be related or depend on PK.
3 NF: All attribute depend on P.K. alone and no other non-PK attributes.

Room Table
Our room table has achieved the all three normal forms because it has one primary key ,no multiple value attributes and all attributes depend on the primary key.

Guest Table
But our guest table is in only 1st and 2nd normal form not in 3rd normal form. Because “zip code” can derived from city and “guestInfo” can be from idNo or passportNo. We decided to leave it in 2nd normal form because at the moment our purpose is just for testing.

Reservation Table
The reservation is also in all three normal forms because it has one primary key, no multiple value attributes and all attributes depend on the primary key.

[bookmark: _Toc122413249][bookmark: _Toc231315175] Code persistent class
We made the guest class into a table and did the same for the remaining classes.
The code and screen shots for room and reservation classes are in appendix.
Plan coding
We decided to have DMC classes to create the connection to the database.
DMC_HotelDeepSleep has the actual code for the connection and it is controlled by the DMC_Controller.
The functionality of the original collection classes’ methods will also be changed to handle sql statements that will work on the database. This will be done in the RoomSQL, GuestSQL and ReservationSQL classes.
The SQL classes will then be controlled by administrationDB classes that will connect them to the original GUI classes that we already have.

Code for DMC classes.
DMC_HotelDeepSleep
public class DMC_HotelDeepSleep {
	private Connection con = null;
	private Statement stmt = null;
	private String login, passwd, url, driverClass;
 DMC_HotelDeepSleep dmc;

We have stated here our connect () and close () method.When they are called they will setup connection to database and close the connection to the database
public void connect() {
	try	{
		 Class.forName(driverClass);
		 con = DriverManager.getConnection(url, login,passwd);
		 stmt= con.createStatement();
		}
		catch(java.lang.ClassNotFoundException ex)
			{
			 System.err.print("ClassNotFoundException: ");
			 System.err.println(ex.getMessage());
			}
		catch(SQLException ex)
			{
			 System.err.print("Connection refused: ");
			 System.err.println(ex.getMessage());
			 close();
			}
	}

 	public void close() {
try {	
 if (stmt != null) stmt.close();
	if (con != null) con.close();
	}
	catch(SQLException ex)
 { System.err.println(ex.getMessage()); }
	}
 public static void main(String[] args) {
 DMC_HotelDeepSleep dmcT=new DMC_HotelDeepSleep();
 dmcT.connect();
 dmcT.close();
 }
}
The DMC_connector class has an object of the above class and it class the methods connector() and closing().
Code for SQL classes
The sql classes extend the DMC_connector class so it can call the connector() and closing() methods that will be used to connect to and close the database respectively.
They also have the methods as in the collection class as shown in the class diagram. The methods have been modified to handle sql statements. We used prepared statements although they are slow but we had the option of using a prepared string which we would have created in the model class.
In GuestSQL we will show the code, test and output for registerGuest() method. We also change the guestNo retrieval method. Instead of having it a random processed number we created a method lastGuestNo which finds the maximum guestNo in the database and used it in the nextGuestNumber methods which generates the actual guestNo by adding one to the maximum number from the database.
public boolean registerGuest(String idNo, String name, String address, int zipcode,
 String city, String country, String passportNo, String phoneNo,
 String email) throws SQLException {
 Guest g = new Guest(idNo, name, address, zipcode, city, country, passportNo,
 phoneNo, email);
 g.setGuestNo(this.nextGuestNo());
 connector();
 String insert = "insert into guest values(?,?,?,?,?,?,?,?,?,?)";
 PreparedStatement prep = con.prepareStatement(insert);
 prep.setInt(1, g.getGuestNo());
 prep.setString(2, g.getIdNo());
 prep.setString(3, g.getName());
 prep.setString(4, g.getAddress());
 prep.setInt(5, g.getZipcode());
 prep.setString(6, g.getCity());
 prep.setString(7, g.getCountry());
 prep.setString(8, g.getPassportNo());
 prep.setString(9, phoneNo);
 prep.setString(10, g.getEmail());

 prep.executeUpdate();
 closing();
 return true;
 }

And, the method which generates the guestNo for the guest by adding 1 after the maximum number of the guest is stated here.

public int lastGuestNo(){
 int i = 0;
 connector();
 try {
 String insert = "select max (guestNo) from guest";
 ResultSet rs = stmt.executeQuery(insert);
 if (rs.next()) {
 i = rs.getInt(1);
 }
 } catch (SQLException ex) {
 Logger.getLogger(GuestSQL.class.getName()).log(Level.SEVERE, null, ex);
 }
 closing();
 return i;
}

public int nextGuestNo(){
 int nextNo=this.lastGuestNo()+1;
 return nextNo;
}

These methods are called by the GuestADministrationDB which is then called in the registerGuest method in the GUI.
g=new ForeignGuest(name, address, zipcode, city, country, passportNo, phoneNo, email);
 g.setGuestNo(guestHandlerDB.nextGuestNo());
 guestHandlerDB.registerGuest(idNo, name, address, zipcode,
 city, country, passportNo, phoneNo,
 email);

[bookmark: _Toc231315176]Conclusion for this iteration

Problems in this iteration
· Because we took too much time programming and constructing the database we had no time to continue to construction iteration 2 where we were meant to normalize and extend the RDB and have to conclude this project.
· We had so many errors in the jdbc connection and it wasted so much time because the errors were hard to find.
· We could not find the solution to the reservations without overlapping them because of the dateTo and dateFrom.

What we have learnt
· We have gained experience in database design and jdbc connection and can now do it easier than before.
[bookmark: _Toc231315177]Conclusion
The purpose of the project was to learn and we feel we have learnt because we did try to do everything by ourselves and where we made mistakes we have learnt from them. We have put a lot of effort into the project and most of things we know now we would not have known if it was not for this project.
Evaluation of Methodology
Although we didn’t understand how to minimize the work load in each iteration, we have learnt how to do OOD step by step then move on to java programming and connect this with databases.
We would also like to register the reservation without them overlapping each other.

UP Process: We followed the UP process to do the different works in our project. It was very useful because it gave us nice ideas about the different activities to be completed in different iterations. UP gave us nice overview of the activities that we have to do and it made us easy to manage our work schedules. We had difficulty in the size of the tasks in the iterations and we ended up doing too much in one iteration.

Use-cases: The use cases were also very useful for our project and it was easy enough to the use cases. But we did too many use cases and it made for our group a little bit difficult. And we have to delete some of them. They helped a lot in creating SSD’s, SD’s,the domain diagram and also in programming.

System Sequence Diagram: The SSD helped us a lot in doing the programming and create the methods .It also helped us in creating class diagram.

Operation Contracts: It was also easy to write the operation contracts but not so useful as compared to Use-cases and SSD. We used the SSD’s to create them.

Programming: The programming part was the hardest but we did as much as could. It was made easier by the fact that we already had usecases, SSD’s and the class diagram so figuring out what to put wher an d it works was made simpler.

Persistent Classes:. It was easy to create the database tables and SQL automatically created the database diagram nicely. But we had so many errors in the jdbc connection and it wasted so much time because the errors were hard to find. It became easier to test as now we had a persistent medium to store the data entered.
Evaluation of Process
Management
Since all the group members have no much experience in group work, so it was really challenging to manage the different activities. For that near the elaboration 1st iteration, we also tried to assign the role of manager to all member of group turn by turn so that we can do the things systematically. Every time a group member became a manager and decide what the other member are going to do. And it really helped a lot in the management of our activities.
Group Work Evaluation
We got good experience to work in a group but it was not so easy to work in a group. Because some member were good in programming and some were good in designing so when we did the things we have spent our times making it understand to all the members. But it has one advantage because our group was almost balanced group and it made us to carry our work easily. How ever overall it was good to work in a group, fun sometimes and challenging too.
Individual Evaluation
[bookmark: _Toc231315182]Wanling Feng
What I Learnt From the Project
I learned a lot of knowledge from the project. Such as the connecting between SW_Design and SW_Constrotion are more important. And what real means is Unified Process and UML.And how exactly to create them. From now on I know how to implement the UML to the Program and the Data Base.
Problem with the Project
I’m not good enough on programming, so we spend a lot of times on it. And I m not good to written report by English, so I need more help when I did the Construction part of our project. That’s way we lost a lot of times.

Problem with my Team
We had some one who are really good on design and someone who are really good on program, So we spend a lot of times to make sure everyone are understood everything we did on project. We had group meeting seems like more than 30 hours a week even on holiday, So all group members are getting tired.

Advantages of my Team
We had a good communication and we did pair work , for example Wanling and Seendeep doing more things on program cause we are not good enough on program, As jack and Grace did on the Design. And we did the things like really team work. Of cause we all felt happy on it.

[bookmark: _Toc231315183]Sandeep Chaudhary
What I Learnt From the Project
In the first semester we were taught a lot of things about Unified Process and UML but we didn’t get enough time to practice it so, we didn’t get enough ideas. But after doing this project I learnt a lot of things about how to implement UP and UML in project as we did our project following the UP and exercised a lot.

Problem with the Project
As we didn’t have much experience, at the beginning of our project we spent a lot of times. So we should not have done that because if we had not done that we would have saved a lot of time and we would got time to add more things in our project later on.

Problem with my Team
It was a bit difficult to meet in the holidays because our group members have work at different times otherwise we had almost no problems working in a group.

Advantages of my Team
Working in a group was really fruitful because we got the experience of team work. And some of the members of our group were good in design and some were good in programming so it was almost balanced group. Due to that it was easy for us to discuss the problems and carry out our work. And all my group members were hardworking and co-operative.
[bookmark: _Toc231315184]Xiaolong Tang
What I Learnt From the Project
After this school project, I find I get what the teamwork is. And I know more things about UP. I get deep impression on UML diagrams. I get more experience on SSD, SD, class diagram.

Problem with the Project
At the start of the project, I wasted lots of time on project. Because we have no enough experiences. And I find out the diagrams on design is very hard to do in the real project. But anyway I try to finger out the design. I find I have big progress.

Problem with my Team
As I said, I wasted lots of time. Actually not only me, but also the whole group. Because this is really hard to do this project in our first time. Especially at the beginning of project.

Advantages of my Team
We all work very hard. So this is why we are the first one to finish the project and we have the details of the whole project.
[bookmark: _Toc231315185]Grace Mureithi
What I Learnt From the Project
I learnt how to apply the disciplines of system development together and how to be professional about it. I also learnt how to use the Unified Process and do processes iteratively.

Problem with the Project
We really wasted a lot of time because we did not really understand how to do some things. As I look back, if we had more knowledge about some things we would have saved a lot of time.

Problem with my Team
We had a few absences because meeting time was a little difficult as we have different work times. Also we kept on loosing some data as a result of carelessness and ignorance but we were able to recover well.

Advantages of my Team
We are hardworking, understanding and fun, also my team was very dedicated.

Final Remark
[bookmark: _Toc231315178]Final product
We have a system that can register and store data on reservations, guests and rooms. It can also search them. These functions are learning properly through the GUI and the data is correctly stored in the database.
We have not done everything we hoped to do but we are confident that we have done the important functions and have learnt the most possible.
[bookmark: _Toc231315179]Product for further consideration
We would like the system to handle billing via the database and also try an online reservation system. We would also like our GUI’s to be more user-friendly where instead of using jOptionPanes to enter information maybe we can use radio buttons.
We also would like to register reservations without the dates overlapping each other and normalize all tables into 3rd normal form.

 Page 2 of 67 5/29/2009

image3.png

image4.png

image5.png

image6.jpeg

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image1.jpeg

image2.png

image42.png

