[image: image75.png] Group number: 01 Project name: Hotel DeepSleep Project

 Members: Wanling Feng, Sandeep Chaudhary, Xiaolong Tang, Grace Mureithi

21
Business Model

21.1
Context

31.2
Business Analysis

31.2.1
SWOT-Analysis

41.2.2
Five Forces Analysis

51.2.3
Porter’s Generic Strategies.

61.2.4
Value Chain Analysis

81.2.5
Boston Matrix

91.3
Basic Business Model

101.3.1
Market/Industry

101.3.2
Offerings

111.3.3
Activities And Organization

111.3.4
Resources

111.3.5
Suppliers

122
Organization Chart

123
IT-Strategy

134
Inception Phase

134.1
Context

134.2
Vision

13A Day in the life of Jack, the Receptionist.

144.3
Use Cases

144.3.1
Use-Case Diagram

154.3.2
Use-Case Text

215
System Sequence Diagrams

215.1
Add Room (UC1 Add Room)

215.2
Search Room (UC2 Search Room)

225.3
Register Reservation (UC3 Register Reservation)

225.4
Cancel Reservation (UC4 Cancel Reservation)

235.5
Register Guest (UC5 Register Reservation)

235.6
Search Guest (UC6 Search Guest)

245.7
Transfer Guest (UC7 Transfer Guest)

245.8
Delete Guest (UC8 Delete Guest)

255.9
Process Departure (UC9 Process Departure)

255.10
Update InvoiceInfo (UC10 Update Invoice Information)

265.11
Send Notification

266
Domain Model

277
Sequence Diagrams

277.1
Register Guest

287.2
Register Reservation

297.3
Register Room

298
Operation Contracts

298.1
UC1Add Room

308.2
UC2: Search Room:

308.3
UC3: Register Reservation

318.4
UC4: Cancel Reservation

318.5
UC5: Register Guest

328.6
UC6: Search Guest:

328.7
UC7: Transfer Guest

338.8
UC8: Delete Guest

339
Design Class Diagram

3410
GUI Designs

3510.1
Reservation GUI

3610.2
Guest GUI

3910.3
Room GUI

4211
Unit Testing

4211.1
Testing of Model Classes

4311.2
Testing of Collection Classes

4412
Coding of Classes

6313
SQL Sentences for creating Database tables

1 Business Model
1.1 Context

Hotel Deep Sleep is a Hotel in the outskirts of Copenhagen. It is an old fashioned hotel built during the 2nd world war and esteems or distinguishes itself from other hotels with its old European style.

It is located in a commercial town and most of its clients are local and foreign business men.

It has four departments: The video shop, the restaurant, fitness centre and room services.

1.2 Business Analysis
1.2.1 SWOT-Analysis
It is used to analyze the organization and its environment. SWOT stands for strengths, weaknesses, opportunities and threats where strength and weaknesses are internal factors and the rest are external.
 [image: image1.png]
· STRENGTHS
· Quality food in the restaurant

· Wide variety of rooms.

· Still uses the traditional European style of furnishing

· Loyal customers since the early days

· Service bundling

· Located at place with different views(scenery)

· Moderately expensive(slightly affordable)

· WEAKNESSES

· It has no IT-system
· No wide variety of food in the restaurant
· It is outside the city and far from the airport.
· Poor quality services
· It is not popular.
· Poor marketing skills.
· OPPORTUNITIES

· It is trying to form strategic alliances with other chains of hotels and cruise companies.
· It is currently developing an IT-system to ease its activities and administration.
· It is making plans to start marketing through the internet.
· THREATS

· Hotels with modern style of furnishing and service
· Restaurants with wide variety of food
· Global economic crisis.
1.2.2 Five Forces Analysis

 [image: image2.png]
Five Forces Analysis helps to contrast a competitive environment. Five forces analysis looks at five key areas namely the threat of entry, the power of buyers, the power of suppliers, the threat of substitutes, and competitive rivalry.
Threat of entry:

Threat of entry is low because:

· Government restrictions and laws.

· High cost of entry into the hotel industry.

· Loyalty of customers to the hotel

· Hotel DeepSleep offers traditional European furniture and service which any recent or upcoming hotels cannot access.

Power of buyers:

The power of customers is high because they can easily switch to using other hotels.

This is because they are not satisfied with the current hotel services, the hotel is relatively

inaccessible and also it is not popular.

Power of suppliers:

Hotel DeepSleep’s power of supply is low because there are a lot in the market and it offers no major differentiation in the product (traditional European style is not a big deal to the customers).

Threat of substitutes:

The threat of substitutes for the hotel is high because:

· It is easy to find cheaper and better hotels in the area.

· Some customers prefer hotels in the city.

· Customers can do without the hotel, i.e. they do not depend on the hotel so much.

Competitive rivalry:

The competitive rivalry is high because the threat of substitutes is high as explained above. Also, because the buyers and suppliers in the market attempt to control the business.

1.2.3 Porter’s Generic Strategies.
This strategy is used to determine the source of competitive advantage for a business. The generic strategies are: 1) Cost leadership, 2) Differentiation, and 3) Focus.

 [image: image3.png]
The source of competitive advantage for hotel DeepSleep is differentiation. It offers an traditional European atmosphere for its customers which is hard to get in other hotels. It achieves this through its furniture and style of service.
1.2.4 Value Chain Analysis

The value chain is a systematic approach to examining the development of competitive advantage. The chain consists of a series of activities that create and build value. They culminate in the total value delivered by an organization. The 'margin' depicted in the diagram is the same as added value. The organization is split into 'primary activities' and 'support activities.'
 [image: image4.png]
Primary Activities
· Inbound logistics

The hotel purchases unprepared food every morning for the days use from Copenhagen catering services. The fitness machines and furniture are upgraded once every year when need be from phoenix machines and furniture. The video orders for videos from Fox Cinemas when need arises or when there is a demand for particular videos.

· Operations

The restaurant prepares the food accordingly in its kitchen. Hotel housekeepers prepare and arrange the rooms for the customers of the hotel every morning when the guests vacate the room or when need be. Møllen cleaning services are responsible for cleaning the rest of the hotel.

There is a general employee responsible for repairing broken furniture and utilities in the hotel. The manager for the fitness center and his employees are responsible for maintenance of the fitness machines.

The video shop employees tag and record received and rented videos.

· Outbound logistics

The customer is given a room key once he pays for the desired room. Food is served in the restaurant 3 times a day i.e. breakfast, lunch and dinner. If the desires to have in his room he can call the reception and ask and a waiter will take the food to his room.

The fitness open throughout and there is always one instructor to assist the customers.

The customers can borrow maximum 2 videos at one time for 2 days and if he leaves the hotel before he has to return before checking out. Some videos can also be bought.

· Marketing and sales
It offers its services in bundles and offers discounts for frequent visitors and special service for VIP guests though it is not strong in advertising its products.

· Service
It provides reservation services, travel planning, transport services, room service and complaint handling.

Support Activities
· Firm infrastructure
There are four different mangers, each controlling one of the four departments in the hotel. There is one general manager in charge of the four managers and the founder (CEO) of the hotel.
· Human resource management

Most of the hotel employees are gotten from Braff Job Agency and have to be qualified.

· Technology development
The hotel has no defined IT-system/structure.
· Procurement
Each department is responsible for its own outsourcing and procurement.

1.2.5 Boston Matrix

 [image: image5.jpg]
Boston Matrix is valuable tools which helps or assists in formulation of plan of the business market share and market growth for the upcoming feature or running present.

According to the market share and market growth Boston Matrix is divided into 4 parts as star, cash cow, dog and question mark (problem child).

Hotel DeepSleep is a dog because it has relatively low market share and low growth rate
1.3 Basic Business Model

[image: image6]
1.3.1 Market/Industry

· CUSTOMERS

The customers of Hotel DeepSleep are travelers and businessmen. The travelers usually come in plenty during the summer but the businessmen can come anytime of the year.

The Businessmen are mostly sent from foreign cities by specific companies that have used hotel DeepSleep for a long time.

The travelers can either stay in hotel DeepSleep as a family unit, a couple or individually.

The customers who use hotel DeepSleep have known it from the early years so they don’t mind the old fashioned style of Hotel DeepSleep but actually like it.

· COMPETITORS

The main competitors of the hotel are hotels inside the city, modern hotels, international hotels and restaurants and the variety of restaurants that surround the hotel and provide different types of food.

This is because the hotel is not so technologically advanced in terms of IT, also it is in the outskirts of the city. It also provides a low range of variety of foods although they are of high quality.

The Porters five forces analysis is used at this level to contrast the competitive environment.

1.3.2 Offerings

The hotel offers it products in bundles. A customer who chooses to stay at hotel DeepSleep gets accommodation, restaurant services, video shop and fitness.

Hotel DeepSleep offers different kinds of rooms. It offers luxury rooms for VIP guests, family rooms, single rooms and honeymoon suites. Apart from that the hotel also provides special rooms with different views of the city, the sea, the forest etc. It also offers conference halls and reservation services.

The fitness centre offers indoor exercise facilities for customers and also trainers. The restaurant provides different kinds of meals and is open throughout; the video shop provides rental services for videos to the customers.

The porter’s generic strategies are used to analyze the offerings level in the business model.
1.3.3 Activities And Organization

The hotel is organized into four different departments: rooms, restaurant, fitness centre and video shop each with its own manager all controlled by the owner or founder of Hotel DeepSleep. Each department has its own employees.

Reservation of rooms is done by the receptionist and the customer is given the choices of rooms he can reserve. The hotel also plans for the high number of travelers expected in the high season, usually the summer. For VIP guests the hotel arranges special services and arrangements like transport to the airport and the surrounding areas and discounts for some services.

The value chain is used to analyze this level of the business model.
1.3.4 Resources

Human resources for the hotel are mainly skilled manpower usually gotten from job agencies.

Physical resources in the hotel are like the building, furniture, fitness machines etc

Financial resources are from Peter’s (founder) personal finances, loans from local banks and the local chamber of commerce
The SWOT analysis tool is used to analyze the resources level n the business model.
1.3.5 Suppliers

The suppliers who provide Hotel DepSleep with its factors of production, i.e. capital and labour include: Møllen cleaning services, Braff job agency, Danske Bank etc

The ones who provide production input are: Copenhagen catering, Crawford furniture, phoenix machines, Fox video center, etc.
The Porters five forces analysis is used at this level in the business model
.

2 Organization Chart
I
[image: image7]
3 IT-Strategy

Our IT strategy is divided into two. The services which should be provided to the customers and what the IT system should include.

The services include internet access in every room, computers in VIP rooms and the hotel cyber café, a public address system in the hotel conference room and a website so they can get information about the hotel and book rooms before hand.

The system includes:

· Guest Administration System: This system involves handling reservation for guests, registering guests upon arrival, transferring guests into new rooms when needed and if possible, recording guest departure and handling general billing.
· Employee Administration System: Managers have more right than the normal staff to this system. They can search the information and register the user name and passwords for staff. Manager also can see the more private information of the hotel. It also handles employee registration.
· Hotel Registration System: This system handles the registration of hotel items that come from suppliers e.g. furniture, machinery, videos etc. they are saved in the system for stock taking and are tagged indicating that they belong to Hotel Deep Sleep.
We have chosen to do the Guest Administration System because at the moment it is the biggest priority as the customers/guests are important. This is shown in the business model where we concluded that the power of buyers is high.
4 Inception Phase
4.1 Context

At this point, we have done the business analysis and from the IT-Strategy have come to the decision to work on the Guest Administration System that reservation because it weigh more in terms of business value.
4.2 Vision

Actors: Manager, Receptionist, Staffs.

 The Guest Administration System we envision handles the reservation of rooms for guests in Hotel Deep Sleep. After completion we expect that the system should be able to handle reservations, i.e. register new reservations, record guest arrival, register guest information,cancel reservations, record guest activities and record guest departure.

 The software system is also managing interaction between the four departments i.e. rooms, fitness, video shop and restaurant. There should be a tool which the staff, after logging into the system can use to view guest information which includes whether the guest has used the hotel before and goods and services that the guest has purchased from the hotel during his current stay in the hotel.

A Day in the life of Jack, the Receptionist.

He sits at the reception and a customer arrives. The customer says that he has a reservation. Jack asks for his name and checks for it in the computer. The system shows the details of his reservation and the room number for the customer. He asks the customer if he has visited the hotel before. The customer says he has but his son who is taking a separate room is a first time guest. The son gives him his general information as it his first time and Jack fills the information into the system. He the records the arrival of the guests, changes the room status as occupied, gives them their room cards and welcome pack and wishes them a good stay.

The next day the guest asks how much money he has spent so far. Jack enters the room card requests the system for the guest’s bill. The system shows a list of activities in the fitness centre and the restaurant and how much they cost him. Jack then prints it out for the guest.

Two days later Jack comes to work and as usual first logs into the system and requests to system for the rooms meant to be evacuated on that day. He then contacts the guests in the respective rooms and reminds them they are supposed to check out.

During check out he uses the room card to get the total bill and prints out the invoice and hands it to the guest who pays accordingly.

The system handles the payment and Jack records the departure.

4.3 Use Cases

4.3.1 Use-Case Diagram

[image: image8.png]
4.3.2 Use-Case Text

Use Case UC1: Add Room

Scope: Room Administration System

Level: User Goal

Primary Actor: Manager

Stakeholder and interests:

Manager: To add new room to the hotel.

Pre Condition: Manager is logged into the system. System is running properly. Hotel has new room.

Post Condition: A room of the correct description is added.

Main Success Scenario:
1. Manager starts a new add room.

2. Manager enters new room information (room number, type, price…) into system.

3. System adds the all room information.

4. System saves room information.

Alternative Scenario:

a. At any time system fails:

1) Receptionist restarts the system, logs in and starts a new register guest

Use Case UC2: Search Room

Scope: Guest Administration System

Level: User Goal

Primary Actor: Receptionist and Manager

Stakeholder and interests:

Receptionist: To find the room as per the guest’s need.

Pre Condition: Receptionist or Manager is logged into the system. System is running properly.
Post Condition: A room of the correct description is found.

Main Success Scenario:
1. Receptionist starts a new search room.

2. Receptionist enters room information(type, category, date to, date from)
3. Receptionist enters the date that the guest wants to occupy the room.

4. System presents available rooms.
Use Case 3: Register Reservation

Scope: Guest Administration System

Level: User Goal
Primary Actor: Receptionist

Stakeholder and interests:

Receptionist: To logged in the system. And register reservation.

Guest: To book room in the date they want.

Pre Conditions: Receptionist is logged into the system. System is running successfully. Guest has arrived or phoned and receptionist has searched the room.

Post Conditions: Reservations are saved into the system and room status is changed to reserved.

Main Success Scenario:

1. Receptionist starts new register reservation.

2. Receptionist searches for rooms using type, category, dateFrom and dateTo and the guest picks according to his desire.
3. System presents the room numbers of available rooms.

4. Receptionist registers reservation information.
5. System saves the reservation and presents the reservation number.

Alternative Scenario:

a. At any time system fails:

2) Receptionist restarts the system, logs in and starts a new register guest
Use Case UC3: Cancel Reservation

Scope: Guest Administration System

Level: User Goal

Primary Actor: Receptionist

Stakeholder and interests:

Receptionist: To cancel the room reservation.

Pre Condition: Receptionist is logged into the system. System is running properly. The guest wants to cancel the reservation or the guest has not arrived on time.

Post Condition: A room reservation has been cancelled successfully.

Main Success Scenario:
1. Receptionist starts a new cancel reservation.

2. Receptionist enters the reservation number.

3. System presents reservation information.

4. Receptionist to requests the system to delete the reservation.

5. System changes the room status.
Use Case UC4: Register guest

Scope: Guest Administration System
Level: User Goal
Primary Actor: Receptionist
Stakeholder and interests:

Guest: To be registered in the hotel as a guest and have access to hotel services.

Receptionist: To register customer as a hotel guest successfully.

Pre Conditions: Staff is logged into the system. System is running successfully. Guest has arrived at the reception.

Post Conditions: The guest information has been saved into the system, system running in succeed.

Main Success Scenario:

1. Reception starts a new register guest.

2. Receptionist enters the reservation number into the system.

3. System searches for and presents the reservation details (room number and length of stay).

4. Receptionist enters guest information into the system.

5. Receptionist confirms to the system that the guest can now occupy the room he had reserved.

6. System changes the room status from reserved to occupied.

Alternative Scenario:

a. At any time system fails:

1) Receptionist restarts the system, logs in and starts a new register guest.

2a. Guest has no reservation

1) Receptionist starts process reservation.

2) If the room that the guest desires is available, Receptionist starts register guest.

2b. Guest has lost his reservation number.

1) Receptionist enters the date of the reservation and name of the guest.

2) System searches for the reservation using this information.

3) Continue use case.

4a. The guest has visited the hotel before

1) The receptionist requests the system to gets his information(name, cpr/passport number, etc)

2) System presents guest information.

Use Case UC6: Search Guest
Scope: Guest Administration System

Level: User Goal

Primary Actor: Receptionist

Stakeholder and interests:

Receptionist: To find the guest information.

Pre Condition: Receptionist is logged into the system. System is running properly. A guest comes with new information.

Post Condition: A guest of the correct description is found.

Main Success Scenario:
1. Receptionist starts a new search guest.

2. Receptionist enters guest number.

3. System presents guest information.

4. Receptionist confirms that the guest information is in the system.

Alternative Scenario:

 a. At any time system fails:
1) Receptionist restarts the system, logs in and starts a new register guest

2a.There is no guest information in the system.
1) End of case.
Use Case UC7: Transfer guest

Scope: Guest Administration System
Level: User Goal

Primary Actor: Receptionist

Stakeholder and Interests:

Receptionist: To transfer the guest to new room, or be able to change date for the guest if he wants to stay longer.

Guest: To have his transfer handled by the system.
Pre Conditions: Receptionist is logged into the system. And guest information is in the system. System is running successfully.

Post Conditions: Receptionist transfer guest information in succeed. System is saved new information of guest and transfer to the room card.

Main Success Scenario:

1. Receptionist starts a new transfer guest.

2. Receptionist requests system to search for guest information.

3. System presents guest information.

4. Receptionist request system to search for available rooms.

5. System presents available rooms.

6. Receptionist confirms transfer.

7. System transfers bill information and guest information to new room’s card

8. Receptionist requests the system to change the status for both rooms to available and occupied respectively.

Alternative Scenario:

a. At any time system fails:

1) Receptionist restarts the system, logs in and starts a new register guest

4a. There are no available rooms:

1) End of use case.

Technology and data variations list:

Card identification is EAN coding scheme.

Special requirements:

Keyboard should have a slot for swiping the room card.
Use Case UC8: Delete Guest

Scope: Guest Administration System

Level: User Goal

Primary Actor: Receptionist

Stakeholder and interests:

Manager: To delete the guest information.

Pre Condition: Receptionist is logged into the system. System is running properly. The guest’s information is already into the system.

Post Condition: Guest information has been deleted successfully.

Main Success Scenario:

a. Receptionist starts a new delete guest.
b. Receptionist enters guest number.
c. System presents guest information (name, address, country…).
d. Receptionist requests the system to delete the guest.
e. System successfully deletes the guest.
Alternative Scenario:

 a. At any time system fails:
2) Receptionist restarts the system, logs in and starts a new register guest

2a.There is no guest information in the system.
2) End of case.
Use case UC9: Process Departure.

Scope: Guest Administration System
Level: User Goal

Primary Actor: Receptionist

Stakeholder and interests:

Guest: wants to leave the hotel and get his total bill.

Receptionist:

1) Get the total bill of the amount spent by the guest in the hotel.

2) Change the room status to available.

3) Remove the guest from the current guest list but save him so he can retrieve the information when the guest visits again.

Pre Conditions: Receptionist is logged into the system. System is running successfully. Guest arrives and announces the wish to depart. And guest returns the room card.

Post Conditions: Guest has successfully paid for the services, payment has been recorded and the room is reset to available.

Main Success Scenario:

1. Receptionist starts new process departure.

2. Receptionist enters room card.

3. System presents guest information.

4. System presents guest’s bill.

5. Receptionist enters payment.

6. System handles payment.

7. System changes the room status to available.

8. System records guest as having departed.

Alternative Scenario:

a. At any time system fails:

1) Receptionist restarts the system, logs in and copy all the information from other computer into the system.

Special requirements:

Credit authorization within 40 seconds 90% of the time. Keyboard should have a slot for
swiping the room card.

Technology and data variations list:

2a.Card identification is EAN (Effective Atomic Number) coding scheme.
5a.Credit account information for payment may be entered by a card reader or keyboard.

5b.Credit payment captured on paper receipt. Within two to three years we predict there will be a demand for digital signature capturing.
Use Case UC10: Update Invoice Information

Scope: Guest Administration System

Level: User Goal
Primary Actor: Staff

Stakeholder and interests:

Staff: To record sales and add them to the guests’ bill

Preconditions: Staff is logged into the system. System is running successfully. Guest has purchased an item(s).

Post Conditions: Sale is saved correctly and registered into the room card and into the system.

Main Success Scenario:

1. Staff starts new update invoice information.

2. Staff enters the product number.

3. System presents the product information.

Repeat steps 2-3 until indicates done.

4. System calculates and presents the total price.

5. Staff enters room card ID into the system.

6. System puts total bill to the room card and presents message when done.

Technology and data variations list:

 5a).Card identification is EAN (Effective Atomic Number) coding scheme

Use Case UC11: Send Notification.

Scope: Guest Administration System

Level: User Goal

Primary Actor: Receptionist

Stakeholder and interests:

Time: Calculates when guests are due to leave the hotel.

Receptionist: Find out when guests are meant to leave and notify them.

Preconditions: System is running successfully and the date that the guest(s) are supposed to leave has approached.
Post Conditions: Guest is notified that he is due to leave the hotel on that day.

Main Success Scenario:

1. System checks which guests are meant to be leaving the hotel on that day.

2. System adds them to a list.

3. Receptionist logs into the system and starts new send Notification.

4. Receptionist requests the system for the list of guests.

5. System presents the list of guest.

5 System Sequence Diagrams
5.1 Add Room (UC1 Add Room)

[image: image9.png]
5.2 Search Room (UC2 Search Room)

[image: image10.png]
5.3 Register Reservation (UC3 Register Reservation)

[image: image11.png]
5.4 Cancel Reservation (UC4 Cancel Reservation)

[image: image12.png]
5.5 Register Guest (UC5 Register Reservation)

[image: image13.png]
5.6 Search Guest (UC6 Search Guest)

[image: image14.png]
5.7 Transfer Guest (UC7 Transfer Guest)

[image: image15.png]
5.8 Delete Guest (UC8 Delete Guest)

[image: image16.png]
5.9 Process Departure (UC9 Process Departure)

[image: image17.png]
5.10 Update InvoiceInfo (UC10 Update Invoice Information)

[image: image18.png]
5.11 Send Notification

[image: image19.png]
6 Domain Model

[image: image75.png][image: image20.png]
7 Sequence Diagrams
7.1 Register Guest
[image: image21.png]
7.2 Register Reservation
[image: image22.png]
7.3 Register Room
[image: image23.png]
8 Operation Contracts
8.1 UC1Add Room
Contract OC1:makeNewAddRoom

Operation: makeNewAddRoom

Cross References: Use Case: Add room

Precondition: None

Postconditions:

· A Room instance r was created.

· r was associated with RoomCatalog.
· Attributes of r were initialized.

Contract OC2: enterRoomInformation

Operation: enterRoomInfo(roomNo: RoomNo, type: Type, price: Price…)
Cross References: Use Case: Add Room

Precondition: There is an addRoom underway.

Postconditions:

· Attributes of r were set to information entered.
Contract OC3: endAddRoom

Operation: endAddRoom()
Cross References: Use Case: Add Room

Precondition: There is an addRoom underway.

Postconditions:

· Room.isComplete became true.

8.2 UC2: Search Room:

We did not find any tangible OC’s for this use case because we argued that to qualify for an OC the actions should cause a change in the system.

8.3 UC3: Register Reservation
Contract OC1: makeNewReservation

Operation: makeNewReservation()

Precondition: None

Postconditions:

· A reservation instance r was created.

· r was associated to Room and ReservationCatalog.

· Attributes of r were initialized.

Contract OC2: enterReservationInformation

Operation: enterReservationInfo (guestName, roomNo, dateTo, dateFrom,

 reservationDate)

Precondition: There is a reservation underway.

Postconditions:

· Attributes of r were set to information entered.

Contract OC3: endReservation

Operation: endReservation()

Precondition: There is a reservation underway.

Postconditions:

· Reservation.isComplete became true.

8.4 UC4: Cancel Reservation
Contract OC1: makeNewCancelReservation

Operation: makeNewCancelReservation()

Precondition: None

Postconditions:

· A CancelReservation instance r was created.
· r was associated with Room and ReservationCatalog.
· Attributes of r were initialized.
Contract OC2: deleteReservation

Operation: deleteReservation()
Cross References: Use Case: Cancel Reservation

Precondition: There is a cancelReservation underway.

Postconditions:
· All attributes of r were deleted.

· All associations of r were removed.

Contract OC3: endCancelReservation

Operation: endDeleteReservation()
Cross References: Use Case: Cancel Reservation

Precondition: There is a cancelReservation underway.

Postconditions:

· CancelReservation.isComplete became true.

8.5 UC5: Register Guest

Contract OC2: makeNewRegisterGuest

Operation: makeNewRegisterGuest
Cross References: Use Case: Register Guest

Precondition: None

Postconditions:

· A Guest instance g was created.
· g was associated with GuestCatalog.

· Attributes of g were initialized.

Contract OC2: enterGuestInformation

Operation: enterGuestInfo(name: Name, id: Id…)
Cross References: Use Case: Register Guest

Precondition: There is a registration underway.

Postconditions:

· Attributes of g were set to information entered.

Contract OC4: endRegisterGuest

Operation: endRegisterGuest()
Cross References: Use Case: Register guest

Precondition: There is a registration underway.

Postconditions:

· Registration.isComplete become true.

8.6 UC6: Search Guest:

We did not find any tangible OC’s for this use case because we argued that to qualify for an OC the actions should cause a change in the system.

8.7 UC7: Transfer Guest
Contract OC1: makeNewTransferGuest

Operation: transferGuest()
Cross References: Use Case: Transfer Guest

Precondition: None

Postconditions:

· A Transfer instance t was created.

· t was associated with Guest and Room.

· Attributes of t were initialized.

Contract OC2: updateInvoiceInfo

Operation: updateInvoiceInformation(RoomNo:roomNo,name:Name….)
Cross References: Use Case: Transfer Guest

Precondition: There is a transfer underway.

Postconditions:
- Attributes of t were set to information entered.

Contract OC3: changeRoomStatus

Operation: changeRoomStatus()
Cross References: Use Case: Transfer Guest

Precondition: There is a transfer underway.

Postconditions:
· Status of the room was changed from available to occupied.

Contract OC4: endTransferGuest

Operation: transferGuest()
Cross References: Use Case: Transfer Guest

Precondition: There is a transfer underway.

Postconditions:
 -Transfer.isComplete became true.

8.8 UC8: Delete Guest
Contract OC1: makeNewDeleteGuest

Operation: deleteGuest()
Cross References: Use Case: Delete Guest

Precondition: None

Postconditions:

· A Delete instance d was created.

· d was associated with GuestCatalog.

· Attributes of d were initialized.

Contract OC2: deleteGuest

Operation: deleteGuest()
Cross References: Use Case: Delete Guest

Precondition: There is a delete underway.

Postconditions:
· Attributes of d were deleted.

· All associations of d were removed.

Contract OC2: endDeleteGuest

Operation: endDeleteGuest()
Cross References: Use Case: Delete Guest

Precondition: There is a delete underway.

Postconditions:

· Delete.isComplete became true.

9 Design Class Diagram
[image: image24.png]
10 GUI Designs

We had used the - proto type - to design the GUI these are some result we had done below.

Fist is the main interface

HDS-Main menu

 [image: image25.png]

[image: image26.png] [image: image27.png] [image: image28.png]

10.1 Reservation GUI

· The receptionist will open the reservationGUI from the HotelGUI by clicking Reservation Administration option.

[image: image29.png]
Register reservation

· He then chooses the register reservation option.

[image: image30.png]
· He enters the required information.

[image: image31.png][image: image32.png][image: image33.png][image: image34.png][image: image35.png]
· Upon completion the text area displays that the registration was successful and displays the reservation information.

[image: image36.png]
10.2 Guest GUI

The receptionist will open the GuestGUI from the HotelGUI by clicking Guest Administration option.

[image: image37.png]
Register Guest

· The GuestGUI opens and he chooses the create option.

 [image: image38.png]
· He enters required information.

[image: image39.png] [image: image40.png] [image: image41.png]
[image: image42.png] [image: image43.png] [image: image44.png]
[image: image45.png] [image: image46.png]
· The system adds the guest and presents the information.

[image: image47.png]
Upon completion the text area displays the reservation information.

Search Guest

[image: image48.png]
Delete Guest

[image: image49.png][image: image50.png]
10.3 Room GUI

· The receptionist will open the RoomGUI from the HotelGUI by clicking Room Administration option.

[image: image51.png]
Add Room
[image: image52.png]
· Add room information.

[image: image53.png][image: image54.png][image: image55.png] [image: image56.png] [image: image57.png] [image: image58.png]
· Upon completion the text area displays that the registration was successful and displays the room information

[image: image59.png]
Search Room
· The RoomGUI opens and he chooses the search option.

[image: image60.png]

· He then picks the type of room she wants.

[image: image61.png]
· Then he picks the category of the room i.e. VIP or Normal.

[image: image62.png]
· He then chooses what kind of rooms he’s searching for (available, reserved or occupied).

[image: image63.png]
· The room information is then displayed in the jTextArea.

[image: image64.png]
Remove Room

[image: image65.png] [image: image66.png]
[image: image67.png]
11 Unit Testing

11.1 Testing of Model Classes

Room

[image: image68.png]
Guest

[image: image69.png]
Reservation

[image: image70.png]
11.2 Testing of Collection Classes

Room Catalog
[image: image71.png]
[image: image72.png]
Guest Catalog

[image: image73.png]
Reservation Catalog

[image: image74.png]
12 Coding of Classes

Room Catalog
public class RoomCatalog {

// Declaration of data fields

 private ArrayList<Room> rooms;

// Declaration of constructors

public RoomCatalog() {
// Initialization of data fields
 rooms = new ArrayList<Room>();

 }

// Create a room, add to List; always return true

 public boolean registerRoom(int roomNo, String type, String category,

 String status, double price, String view) {

 Room aRoom = new Room(roomNo, type, category, status, price, view);

 rooms.add(aRoom);

 if (aRoom.getCategory().equalsIgnoreCase("vip")) {

 this.handleVipRooms(price, view);

 }

 else {

 if (aRoom.getCategory().equalsIgnoreCase("normal")) {

 this.handleNormalRooms(price);

 }

 }

 return true;

 }

// Add a room, always return true

 public boolean addRoom(Room aRoom) {

 rooms.add(aRoom);

 return true;

 }

// Traverse collection. Search and delete aRoom

 public Room removeRoom(int RoomNo) {

 for (Room aRoom : rooms) {

 if ((aRoom.getRoomNo()) == (RoomNo)) {

 rooms.remove(aRoom);

 return aRoom;

 }

 }

 return null;

}

 // Traverse collection. Search and return aRoom

 public Room getRoom(int roomNo) {

 Room aRoom = null;

 for (Room r : rooms) {

 if (r.getRoomNo() == (roomNo)) {

 aRoom = r;

 }

 }

 return aRoom;

 }

 public Room getRoom(String type, String category) {

 Room aRoom = null;

 for (Room r : rooms) {

 if (r.getType().equals(type) && r.getCategory().equals(category)) {

 aRoom = r;

 }

 }

 return aRoom;

 }

// Return total no of rooms

 public int numberOfRooms() {

 return rooms.size();

 }

// Building up a string of borrowers data

 public String allRoomsData() {

 String s = null;

 for (Room r : rooms) {

 s = s + r.roomData();

 }

 return s;

 }

// Method for vipRooms:Traverse collection. Search and return aVipRoom

 public boolean handleVipRooms(double price, String view) {

 VipRoom vRoom = null;

 for (Room r : rooms) {

 if (r.getCategory().equalsIgnoreCase("vip")) {

 vRoom = new VipRoom(r.getRoomNo(), r.getType(), r.getCategory(),

 r.getStatus(), price, view);

 }

 r = (VipRoom) vRoom;

 }

 return true;

 }

// Method for normalRooms:Traverse collection. Search and return aNormalRoom

 public boolean handleNormalRooms(double price) {

 NormalRoom nRoom = null;

 for (Room r : rooms) {

 if (r.getCategory().equalsIgnoreCase("normal")) {

 nRoom = new NormalRoom(r.getRoomNo(), r.getType(), r.getCategory(),

 r.getStatus(), price);

 }

 r = (NormalRoom) nRoom;

 }

 return true;

 }

 public static void main(String[] args) {

 // TODO code application logic here

 RoomCatalog roomCat = new RoomCatalog();

 roomCat.registerRoom(100, "Vip", "Single", "Available", 1000, "city");

 roomCat.registerRoom(101, "Normal", "Double","Reserved", 600, "none");

 roomCat.registerRoom(102, "Vip", "Double","Occupied", 2000, "sea");

 roomCat.registerRoom(104, "Normal", "Family","Available", 1000, "none");

 roomCat.registerRoom(123, "Vip", "Family", "Available", 900, "sea");

 roomCat.registerRoom(500, "Normal", "Single", "Occupied", 500, "");

 System.out.println(roomCat.allRoomsData());

 }

}
Room GUI

public class RoomGUI extends javax.swing.JFrame {

// Declaration of data fields

 Room r;

RoomAdministration roomHandler;

 /** Creates new form RoomGUI */

public RoomGUI() {

// Initialization of data fields.

 initComponents();

 roomHandler = new RoomAdministration();

 }

 public RoomGUI(RoomCatalog roomCat) {

 initComponents();

 roomHandler = new RoomAdministration(roomCat);

 }

 public RoomGUI(RoomAdministration roomHandler) {

 initComponents();

 this.roomHandler = roomHandler;

 }

 private void showNumbers() {

 int num = roomHandler.getNumbers();

 String numStr = new Integer(num).toString();

 numberTextField.setText(numStr);

 }

// Creates a room using jOptionPanes

 private void createRoom() {

 jTextArea1.setText("");

 String roomNoStr = JOptionPane.showInputDialog("State roomNo");

 int roomNo = Integer.parseInt(roomNoStr);

 Object[] possibleValues = {"Single", "Double", "Family"};

 String type = (String) JOptionPane.showInputDialog(null, "Choose Type of Room single/double/family", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValues, possibleValues[1]);

 Object[] possibleValuess = {"VIP", "Normal"};

 String category = (String) JOptionPane.showInputDialog(null, "Choose Category of Room VIP/Normal", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValuess, possibleValuess[1]);

 Object[] possibleValuesss = {"Available", "Reserved", "Occupied"};

 String status = (String) JOptionPane.showInputDialog(null, "Choose Status of room ", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValuesss, possibleValuesss[1]);

 String vPriceStr = JOptionPane.showInputDialog("State price of room");

 double price = Double.parseDouble(vPriceStr);

 Object[] possibleValues1 = {"None", "City", "Sea", "Forest"};

 String view = (String) JOptionPane.showInputDialog(null, "Choose view of room you are searching for", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValues1, possibleValuesss[1]);

 roomHandler.registerRoom(roomNo, type, category, status, price, view);

 r = new Room(roomNo, type, category, status, price, view);

 this.showRoom();

 }

// Shows a room data

 private void showRoom() {

 jTextArea1.append(r.roomData());

 jTextArea1.append(printEmptyLines(2));

 }

// Shows all rooms data

 private void showAllRooms() {

 jTextArea1.setText(roomHandler.allRoomsData());

 }

// Searches room using roomNo from roomHandler

 private void searchRoom() {

 jTextArea1.setText("");

 String roomNoStr = JOptionPane.showInputDialog("State Room Number");

 int roomNo = Integer.parseInt(roomNoStr);

 r = roomHandler.getRoom(roomNo);

 if (r != null) {

 jTextArea1.setText(r.roomData());

 } else {

 jTextArea1.setText("Room not Found");

 }

 }

// Searches a room ,Deletes it.

 private void deleteRoom() {

 searchRoom();

 int check = JOptionPane.showConfirmDialog(null, "Delete Room ?", "Choose one", JOptionPane.YES_NO_OPTION);

 if (check == 0) {

 roomHandler.removeRoom(r.getRoomNo());

 jTextArea1.setText("Room Deleted ");

 } else {

 jTextArea1.setText("Room not deleted");

 }

 showNumbers();

 }

 private String printEmptyLines(int noLines) {

 String s = "";

 for (int i = 0; i < noLines; i++) {

 s = s + "\n";

 }

 return s;

 }

// Closes the java window

 public void close() {

 this.dispose();

 }

 Room r;

 RoomAdministration roomHandler;

 /** Creates new form RoomGUI */

 public RoomGUI() {

 initComponents();

 roomHandler = new RoomAdministration();

 }

 public RoomGUI(RoomCatalog roomCat) {

 initComponents();

 roomHandler = new RoomAdministration(roomCat);

 }

 public RoomGUI(RoomAdministration roomHandler) {

 initComponents();

 this.roomHandler = roomHandler;

 }

 private void showNumbers() {

 int num = roomHandler.getNumbers();

 String numStr = new Integer(num).toString();

 numberTextField.setText(numStr);

 }

// Creates a room using jOptionPanes

 private void createRoom() {

 jTextArea1.setText("");

 String roomNoStr = JOptionPane.showInputDialog("State roomNo");

 int roomNo = Integer.parseInt(roomNoStr);

 Object[] possibleValues = {"Single", "Double", "Family"};

 String type = (String) JOptionPane.showInputDialog(null, "Choose Type of Room single/double/family", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValues, possibleValues[1]);

 Object[] possibleValuess = {"VIP", "Normal"};

 String category = (String) JOptionPane.showInputDialog(null, "Choose Category of Room VIP/Normal", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValuess, possibleValuess[1]);

 Object[] possibleValuesss = {"Available", "Reserved", "Occupied"};

 String status = (String) JOptionPane.showInputDialog(null, "Choose Status of room ", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValuesss, possibleValuesss[1]);

 String vPriceStr = JOptionPane.showInputDialog("State price of room");

 double price = Double.parseDouble(vPriceStr);

 Object[] possibleValues1 = {"None", "City", "Sea", "Forest"};

 String view = (String) JOptionPane.showInputDialog(null, "Choose view of room you are searching for", "Input",

 JOptionPane.QUESTION_MESSAGE, null, possibleValues1, possibleValuesss[1]);

 roomHandler.registerRoom(roomNo, type, category, status, price, view);

 r = new Room(roomNo, type, category, status, price, view);

 this.showRoom();

 }

// Shows a room data

 private void showRoom() {

 jTextArea1.append(r.roomData());

 jTextArea1.append(printEmptyLines(2));

 }

// Shows all rooms data

 private void showAllRooms() {

 jTextArea1.setText(roomHandler.allRoomsData());

 }

// Searches room using roomNo from roomHandler

 private void searchRoom() {

 jTextArea1.setText("");

 String roomNoStr = JOptionPane.showInputDialog("State Room Number");

 int roomNo = Integer.parseInt(roomNoStr);

 r = roomHandler.getRoom(roomNo);

 if (r != null) {

 jTextArea1.setText(r.roomData());

 } else {

 jTextArea1.setText("Room not Found");

 }

 }

// Searches a room ,Deletes it.

 private void deleteRoom() {

 searchRoom();

 int check = JOptionPane.showConfirmDialog(null, "Delete Room ?", "Choose one", JOptionPane.YES_NO_OPTION);

 if (check == 0) {

 roomHandler.removeRoom(r.getRoomNo());

 jTextArea1.setText("Room Deleted ");

 } else {

 jTextArea1.setText("Room not deleted");

 }

 showNumbers();

 }

 private String printEmptyLines(int noLines) {

 String s = "";

 for (int i = 0; i < noLines; i++) {

 s = s + "\n";

 }

 return s;

}

// Closes the java window

 public void close() {

 this.dispose();

 }
Reservation Catalog

public class ReservationCatalog extends Random {

// Declaration of data fields

 private LinkedList<Reservation> reservations;

 CalendarCalculator cc;

 Random rand;

// Declaration of constructors

public ReservationCatalog() {

// Initialization of data fields

 reservations = new LinkedList<Reservation>();

 cc=new CalendarCalculator();

 rand=new Random();

 }

// Create a reservation, add to List, always return true

 public boolean registerReservation(String guestName, int roomNo,

 java.sql.Date dateFrom,java.sql.Date dateTo) {

 java.sql.Date reservationDate=cc.getResDate();

 int reservationNo=rand.nextInt(9001);

 Reservation aReservation = new Reservation(guestName, roomNo,

 reservationNo, reservationDate,

 dateFrom, dateTo);

 reservations.add(aReservation);

 return true;

 }

// Add a reservaiton, always return true

 public boolean addReservation(Reservation aReservation) {

 reservations.add(aReservation);

 return true;

}

// Traverse collection. Search and delete a Reservation

 public Reservation removeReservation(int reservationNo) {

 Iterator i = reservations.listIterator();

 Reservation res = null;

 while (i.hasNext()) {

 res = (Reservation) i.next();

 if ((res.getReservationNo()) == (reservationNo)) {

 i.remove();

 }

 }

 return res;

 }

// Traverse collection. Search and return aRoom

 public Reservation getReservation(int reservationNo) {

 Iterator i = reservations.listIterator();

 Reservation res = null;

 while (i.hasNext()) {

 res = (Reservation) i.next();

 if ((res.getReservationNo()) == (reservationNo)) {

 System.out.println(reservations.toString());

 }

 }

 return res;

 }

 public Reservation getReservation(String guestName, java.sql.Date reservationDate) {

 Iterator i = reservations.listIterator();

 Reservation res = null;

 while (i.hasNext()) {

 res = (Reservation) i.next();

 if ((res.getReservationDate().equals(reservationDate))&&

 (res.getGuestName().equals(guestName))) {

 System.out.println(reservations.toString());

 }

 }

 return res;

 }

// Building up a string of Reservation data

 public String allReservationsData() {

 String s = "";

 Reservation res = null;

 Iterator i = reservations.listIterator();

 while (i.hasNext()) {

 res =(Reservation)i.next();

 s = s + res.reservationData();

 }

 return s;

 }

// Return total no of reservaitons

 public int numberOfReservations(){

 return reservations.size();

 }

 public static void main(String[] args) {

 // TODO code application logic here

 ReservationCatalog reservationCat = new ReservationCatalog();

 reservationCat.registerReservation("Sandeep", 101,

 java.sql.Date.valueOf ("2009-05-02"),

 java.sql.Date.valueOf("2009-05-05"));

 reservationCat.registerReservation("Wanling", 104,

 java.sql.Date.valueOf("2009-05-03"),

 java.sql.Date.valueOf("2009-05-06"));

 System.out.println(reservationCat.allReservationsData());

 }

}

Reservation GUI

public class ReservationGUI extends javax.swing.JFrame {

// Declaration of data fields

 Reservation r;

 ReservationAdministration reservationHandler;

 CalendarCalculator cc;

 /** Creates new form ReservationGUI */

 public ReservationGUI() {

 // Initialization of data fields.

 initComponents();

 reservationHandler = new ReservationAdministration();

 }

 public ReservationGUI(ReservationCatalog reservationCat) {

 initComponents();

 reservationHandler = new ReservationAdministration(reservationCat);

 }

 public ReservationGUI(ReservationAdministration reservationHandler) {

 initComponents();

 this.reservationHandler = reservationHandler;

}

// Creates a reservation using jOptionPanes

 public void registerReservation() {

 String guestName = JOptionPane.showInputDialog("enter name of guest");

 String roomNostr = JOptionPane.showInputDialog("enter roomNo");

 int roomNo = Integer.parseInt(roomNostr);

 String dateFromStr = JOptionPane.showInputDialog("enter dateFrom");

 java.sql.Date dateFrom = java.sql.Date.valueOf(dateFromStr);

 String dateToStr = JOptionPane.showInputDialog("enter date to");

 java.sql.Date dateTo = java.sql.Date.valueOf(dateToStr);

 reservationHandler.registerReservation(guestName,roomNo,dateFrom,dateTo);

 showAllReservation();

 }

// Shows a reservation data

 private void showReservation() {

 jTextArea1.append(r.reservationData());

 }

// Shows all reservations data

 private void showAllReservation() {

 jTextArea1.append(reservationHandler.allReservationsData());

 }

// Searches reservation using roomNo from reservaitonHandler

 private void searchReservation() {

 String reservationNostr = JOptionPane.showInputDialog("enter reservationNo");

 int reservationNo = Integer.parseInt(reservationNostr);

 r = reservationHandler.getReservation(reservationNo);

 if (r != null) {

 jTextArea1.append(r.reservationData());

 } else {

 jTextArea1.append("reservation not found");

 }

 }

// Searches reservation using guestName and resDate

 private void searchReservation1() {

 String guestName = JOptionPane.showInputDialog("Enter name of guest");

 String resDateStr = JOptionPane.showInputDialog("Enter reservation date:");

 java.sql.Date resDate = java.sql.Date.valueOf(resDateStr);

 r = reservationHandler.getReservation(guestName, resDate);

 if (r != null) {

 jTextArea1.append(r.reservationData());

 } else {

 jTextArea1.append("reservation not found");

 }

}

// Searches a reservation ,Deletes it.

 public void deleteReservation() {

 String reservationNostr = JOptionPane.showInputDialog("Enter reservationNo");

 int reservationNo = Integer.parseInt(reservationNostr);

 searchReservation();

 if (r != null) {

 reservationHandler.removeReservation(reservationNo);

 jTextArea1.append(r.reservationData());

 jTextArea1.append("reservation deleted");

 } else {

 jTextArea1.append("reservation not found");

 }

 }

// Closes the java window

 public void close() {

 this.dispose();

 }

Guest Catalog

public class GuestCatalog {

// Declaration of data fields

 LinkedList<Guest> guests;

 ReservationAdministration resHandler;

// Declaration of constructors

 public GuestCatalog() {

// Initialization of data fields

 guests = new LinkedList<Guest>();

 resHandler = new ReservationAdministration();

 }

// Create a guest, add to List; always return true

 public boolean registerGuest(int resNo, String idNo, String address, int zipcode,

 String city, String country, String passportNo, int phoneNo,

 String email) {

 Reservation r = resHandler.getReservation(resNo);

 String name = r.getGuestName();

 Guest g = new Guest(idNo, name, address, zipcode, city, country, passportNo, phoneNo,

 email);

 guests.add(g);

 if (g.getIdNo() != null) {

 this.handleLocalGuests(idNo);

 } else {

 if (idNo == null) {

 this.handleForeignGuests(country, passportNo);

 }

 }

 return true;

 }

// Traverse collection. Search and return aGuest

 public Guest getGuest(int guestNo) {

 Iterator i = guests.listIterator();

 Guest g = null;

 Guest g1 = null;

 while (i.hasNext()) {

 g = (Guest) i.next();

 int compStr = g.getGuestNo();

 String comp = String.valueOf(compStr);

 String gNumber = String.valueOf(guestNo);

 if (comp.equals(gNumber)) {

 g = g1;

 }

 }

 return g1;

 }

// Traverse collection. Search and delete aGuest

 public boolean removeGuest(int guestNo) {

 Iterator i = guests.listIterator();

 Guest g = null;

 while (i.hasNext()) {

 g = (Guest) i.next();

 int compStr = g.getGuestNo();

 String comp = String.valueOf(compStr);

 String gNumber = String.valueOf(guestNo);

 if (comp.equals(gNumber)) {

 guests.remove(g);

 }

 }

 return true;

 }

// Method for foreignGuests:Traverse collection. Search and return aForeignGuest

 public boolean handleForeignGuests(String country, String passportNo) {

 Iterator i = guests.listIterator();

 Guest g = null;

 ForeignGuest fg = null;

 while (i.hasNext()) {

 g = (Guest) i.next();

 if (g.getPassportNo() != null) {

 g = new Guest(g.getName(), g.getAddress(), g.getZipcode(),

 g.getCity(), country, passportNo,

 g.getPhoneNo(), g.getEmail());

 }

 g = (ForeignGuest) fg;

 }

 return true;

 }

// Method for localGuests:Traverse collection. Search and return aLocalGuest

 public boolean handleLocalGuests(String idNo) {

 Iterator i = guests.listIterator();

 Guest g = null;

 LocalGuest lg = null;

 while (i.hasNext()) {

 g = (Guest) i.next();

 if (g.getIdNo() != null) {

 g = new Guest(idNo, g.getName(), g.getAddress(), g.getZipcode(),

 g.getCity(),

 g.getPhoneNo(), g.getEmail());

 }

 g = (LocalGuest) lg;

 }

 return true;

 }

// Building up a string of Guests data

 public String allGuestsData() {

 String s = "";

 Guest g = null;

 Iterator i = guests.listIterator();

 while (i.hasNext()) {

 g = (Guest) i.next();

 s = s + g.guestData();

 }

 return s;

 }

// Return total no of guests

 public int numberOfGuests() {

 return guests.size();

 }

 public static void main(String[] args) {

 // TODO code application logic here

 GuestCatalog guestCat = new GuestCatalog();

 Reservation res1 = new Reservation("Sandeep", 101, java.sql.Date.valueOf("2009-05-02"),

 java.sql.Date.valueOf("2009-05-02"),

 java.sql.Date.valueOf("2009-05-05"));

 Reservation res2 = new Reservation("Jack", 102, 65);

 Reservation res3 = new Reservation("Grace", 103, 66, java.sql.Date.valueOf("2009-05-03"));

 guestCat.registerGuest(res1.getReservationNo(), "7777-3132",

 "44købensvej", 4000, "Roskilde", "Denmark",
 null, 28967546, "Sandeep_gyan@yahoo.com");

 guestCat.registerGuest(res2.getReservationNo(), null, "46464g hyhy", 3223,
 "Oslo", "Norway", "45553223", 2355334,

 "Dave@hotmail.com");

 guestCat.registerGuest(res3.getReservationNo(), null, "shiyou street",

 116031, "Dalian", "China", "1", 51167489,
 "don1239987@163.com");

 System.out.println(guestCat.allGuestsData());

 }

}

Guest GUI

public class GuestGUI extends javax.swing.JFrame {

// Declaration of data fields

 Guest g;

 GuestAdministration guestHandler;

 /** Creates new form GuestGUI */

 public GuestGUI() {

 // Initialization of data fields.

 initComponents();

 guestHandler = new GuestAdministration();

 }

 public GuestGUI(GuestCatalog guestCat) {

 initComponents();

 guestHandler = new GuestAdministration(guestCat);

 }

 public GuestGUI(GuestAdministration guestHandler) {

 initComponents();

 this.guestHandler = guestHandler;

 }

 private void showNumbers() {

 int num = guestHandler.getNumbers();

 String numStr = new Integer(num).toString();

 dataArea.setText(numStr);

 }

// Creates a guest using jOptionPanes

 private void createGuest() {

 dataArea.setText("");

 String resNoStr = JOptionPane.showInputDialog("State reservation No: ");

 int resNo = Integer.parseInt(resNoStr);

 Object[] possibleValuess = {"Foreign", "Local"};

 String type = (String) JOptionPane.showInputDialog(null, "Choose Guest

 Nationality", "Input",JOptionPane.QUESTION_MESSAGE,

 null, possibleValuess, possibleValuess[1]);

 if (type.equalsIgnoreCase("foreign")) {

 String idNo = null;

 String name = JOptionPane.showInputDialog("State Guest's Name: ");

 String address = JOptionPane.showInputDialog("State Guest's Address: ");

 String zipcodeStr = JOptionPane.showInputDialog("State Zip Code: ");

 int zipcode = Integer.parseInt(zipcodeStr);

 String city = JOptionPane.showInputDialog("State City: ");

 String country = JOptionPane.showInputDialog("State Country: ");

 String passportNo = JOptionPane.showInputDialog("State Passport

 Number: ");

 String phoneNoStr = JOptionPane.showInputDialog("State Phone Number: ");

 int phoneNo = Integer.parseInt(phoneNoStr);

 String email = JOptionPane.showInputDialog("State E-mail Address: ");

 guestHandler.registerGuest(resNo, idNo, address, zipcode, city, country, passportNo, phoneNo, email);

 g = new ForeignGuest(name, address, zipcode, city, country, passportNo, phoneNo, email);

 } else if (type.equalsIgnoreCase("local")) {

 String idNo = JOptionPane.showInputDialog("State idNo Of Guest: ");

 String name = JOptionPane.showInputDialog("State Guest's Name: ");

 String address = JOptionPane.showInputDialog("State Guest's Address: ");

 String zipcodeStr = JOptionPane.showInputDialog("State Zip Code: ");

 int zipcode = Integer.parseInt(zipcodeStr);

 String city = JOptionPane.showInputDialog("State City: ");

 String country = null;

 String passportNo = null;

 String phoneNoStr = JOptionPane.showInputDialog("State Phone Number: ");

 int phoneNo = Integer.parseInt(phoneNoStr);

 String email = JOptionPane.showInputDialog("State E-mail Address: ");

 guestHandler.registerGuest(resNo, idNo, address, zipcode, city, country,

 passportNo, phoneNo, email);

 g = new LocalGuest(idNo, name, address, zipcode, city, phoneNo, email);

 }

 showNumbers();

 showGuest();

 }

// Shows a guest data

 private void showGuest() {

 dataArea.append(g.guestData());

 }

// Shows all rooms data

 private void showAllGuests() {

 dataArea.append(guestHandler.allGuestsData());

 }

// Searches guest using guestNo from roomHandler

 private void searchGuest() {

 dataArea.append(" ");

 String guestNoStr = JOptionPane.showInputDialog("State Phone Number: ");

 int guestNo = Integer.parseInt(guestNoStr);

 g = guestHandler.getGuest(guestNo);

 if (g != null) {

 dataArea.setText(g.guestData());

 } else {

 dataArea.setText("no guest found");

 }

 }

// Searches a guest ,Deletes it.

 private void deleteGuest() {

 searchGuest();

 int check = JOptionPane.showConfirmDialog(null, "Delete guest?", "Choose

 one", JOptionPane.YES_NO_OPTION);

 if (check == 0) {

 if (g.getIdNo() != null) {

 guestHandler.removeGuest(g.getGuestNo());

 } else {

 guestHandler.removeGuest(g.getGuestNo());

 }

 dataArea.setText("Guest deleted");

 } else {

 dataArea.setText("Guest not deleted");

 }

 showNumbers();

 }

// Closes the java window

 private void closeWindow() {

 this.dispose();

 }
13 SQL Sentences for creating Database tables

CREATE TABLE room(

 roomNo INT NOT NULL,

 types VARCHAR(6) NOT NULL,

 category VARCHAR(6) NOT NULL,

 status VARCHAR(9) NOT NULL,

 price DOUBLE PRECISION NOT NULL,

 views VARCHAR(6),

 PRIMARY KEY (roomNo)

);

CREATE TABLE guest(

 guestNo INT NOT NULL,

 idNo VARCHAR(30),

 guestName VARCHAR (35) NOT NULL,

 address VARCHAR(150)NOT NULL,

 zipcode INT NOT NULL,

 city VARCHAR(20)NOT NULL,

 country VARCHAR(20)NOT NULL,

 passportNo VARCHAR (30),

 phoneNo VARCHAR(25)NOT NULL,

 email VARCHAR(50),

 PRIMARY KEY (guestNo)

);

create TABLE reservation(

 reservationNo INT NOT NULL,

 guestNo INT NOT NULL,

 roomNo INT NOT NULL,

 dateFrom DATETIME NOT NULL,

 dateTo DATETIME NOT NULL,

 reservationDate DATETIME NOT NULL,

 PRIMARY KEY (reservationNo),

 constraint fk1 FOREIGN KEY (roomNo)

 REFERENCES room,

 constraint fk2 FOREIGN KEY (guestNo)

 REFERENCES guest

);

Website

Hotel Registration System

Guest Administration System

Employee Administration System

Computers

Public Address system

Internet

SYSTEM

SERVICES

IT-STRATEGY

		SUPPLIERS

Factor Market: Møllen cleaning services, Braff

 job agency, Danske Bank.

Production input: Copenhagen catering, Crawford

 Furniture, phoenix machines, Fox

 Cinemas.

				RESOURCES

Human: Skilled manpower.

Physical: Furniture, fitness machines, etc.

Financial: Personal capital, local banks and chamber of commerce

		ACTIVITIES AND ORGANISATION

Planning for travelers during different seasons.

Reservation of rooms for guests.

VIP service and arrangements for special guests.

Organizing all the processes.

Organization of employees and management.

Administration.

MARKET/INDUSTRY

Customers: Business men, travelers

Competitors: Modern hotels, hotels inside the city and

	 other restaurants.

	

 OFFERING

Physical component: rooms and videos.

Price/cost: moderately expensive

Service component: fitness, room service, quality food, transport, restaurant.

PAGE
 Page 14 of 64 5/29/2009

