Roskilde Business Academy – DMU

2nd semester - Autumn 2005

Fantasy Library

Events

12/15/2005 – Version 2.6
[image: image1.wmf]
Group 2
Lasse L. Nielsen

Tatjana Ivancova

Dennis K. Nielsen

Roskilde Business Academy

Datamatician Course – 2nd Semester
Project period:

19/09/05 - 16/12/05
Fantasy Library

Events

Supervisors:
Susanne Ruge (Software Design)

Michael Claudius (Software Construction)

We hereby give permission for this project report to be lent.
Signatures:
Date: 12/15/2005
Title: Fantasy Library Events
Search words:
Datamatician, single-user system, UPEDU, 2nd semester project, java programming, database implementation, JDBC/ODBC
Summary:
This report states the development process of a single-user software system, from finding requirements, to having a fully working software system. The program developed in this report is an administrative software system working on a database and used for registering reservations of rooms in a Library.
Table of contents
3Table of contents

51. Project Establishment

51.1 Purpose

51.2 Overview of activities

51.3 Plan project

61.4 Team building and contract

61.4.1 Introduction

61.4.2 Team Goals

71.4.3 Working hours

71.4.4 Working place

71.4.5 Roles

81.4.6 Team contract

91.5 Identify the risk list

101.6 Develop iteration plan for inception

101.7 Conclusion on project establishment

112. Inception phase

112.1 Purpose

112.2 Overview of activities

112.3 Revision on Project Establishment

112.4 Do business analysis

122.5 Elicit stakeholders requests

132.6 Find Actors and Use Cases

142.7 Structure the Use Case Diagram

152.8 Detail the Use Cases

172.9 Revision of project plan and risk list

182.10 Iteration plan for Elaboration E1

182.11 Conclusion on inception phase

203. Elaboration phase, E1

203.1 Purpose

203.2 Overview of activities

203.3 Revision on Inception phase

213.4 Develop the domain model

223.5 Architectural analysis

233.6 Use case analysis

233.7 Use case design

233.7.1 System Sequence Diagrams

253.7.2 Operation contracts

263.8 Class Design

263.8.1 Sequence Diagrams

283.8.2 Design Class Diagram

293.9 GUI Design

293.10 Plan coding

303.11 Coding of classes

303.11.1 Start up

303.11.2 Use of Array List

313.12 Unit testing

313.12.1 Connection to a Database

323.12.2 Testing of model classes

323.12.3 Testing of Catalogs

333.13 Revise project plan & risk list

343.14 Develop iteration plan for Elaboration, E2

343.15 Conclusion on Elaboration, E1

354. Elaboration phase, E2

354.1 Purpose

354.2 Overview of activities

354.3 Revision on Elaboration E1

354.4 Detail relevant use cases

374.5 Architectural analysis

384.6 Use Case Design

384.6.1 System Sequence Diagrams

394.6.2 Operation Contracts

394.7 Class Design

394.7.1 Sequence Diagrams

394.7.2 Design Class Diagram

414.8 GUI design

414.9 Plan Coding

414.10 Coding of classes

414.10.1 DB-Facade

434.11 Unit testing

434.12 Revise project plan & risk list

444.13 Develop iteration plan for Construction

444.14 Conclusion on Elaboration, E2

455. Construction phase

455.1 Purpose

455.2 Overview of activities

455.3 Revision on Elaboration, E2

455.4 Design Class Diagram

455.5 Relational Database Design

465.5.1 Categorize the classes and transform into relations

475.5.2 Transform associations and generalization structures into relations

475.5.3 Define and describe the relations, attributes, keys and domains

505.5.4 Create a Database Model Diagram

505.5.5 Normalize the tables

515.6 Plan coding

515.7 Coding of classes

535.8 Unit testing

535.9 Conclusion on Construction

546. Project Conclusion

546.1 Final Product

546.2 Future product considerations

556.3 Experience

556.3.1 Project Management

556.3.2 System development

556.3.3 Teamwork

Appendix

1. Project Establishment

1.1 Purpose

The purpose of Project Establishment is to build up a team and make a team contract, to plan the project, to identify the risk list and to develop iteration plan for inception.
1.2 Overview of activities

In Project Establishment phase we will do the following activities:

· Plan project
· Team building and contract
· Identify the risk list

· Develop iteration plan for inception

1.3 Plan project

Based upon the risk list no.1 (see later) we have made a project plan.

[image: image2.emf]20-09-2005 16-12-2005

26-09-2005

Establishment milestone

10-11-2005

Objectives milestone

25-11-2005

 GUI File milestone

16-12-2005

GUI Database milestone

Project Establishment Inception Elaboration, E1

Elaboration, E2

Establishment milestone: The establishment of the group and project is finished. We have started on the report and finished the things to be done in the project establishment phase. A project plan, a team contract, a risk list and an iteration plan for inception has been made. According to checklists the above artifacts fulfill the quality demand.
Objectives milestone: All Actors and Use cases have been found. Also a structure of the use case model is made. An iteration plan for Elaboration phase E1 is made. Documentation on inception phase is stated in the report.

GUI File milestone: The Domain Model has been developed. Analysis and design of the GUI part of the system has been made, and has been implemented. Iteration plan for Elaboration phase E2 is made. Documentation on elaboration phase E1 is stated in the report.
GUI Database milestone: Analysis, design and implementation of use cases that works from GUI to Database is finished. All documentation on the whole project is stated in a finished project report.
1.4 Team building and contract
1.4.1 Introduction

 We are 3 in our team: Lasse L. Nielsen, Dennis K. Nielsen and Tatjana Ivancova.

	Name
	E- mail
	Phone
	Address

	Lasse L. Nielsen
	 Lanie9@rhs.dk
	 28449707
	Byagervej 15, Tune – 4000 Roskilde

	Dennis K. Nielsen
	 dkn@ruc.dk
	28870053
	Roskildevænge 59, 2.tv. – 4000 Roskilde

	Tatjana Ivancova
	roza5@one.lv
	4531127715
	Margrethevej 27, Ejby – 4070 Kirke Hyllinge

Lasse - 21 year old. I like working with and exploring the world of computers. Both hardware and software has my interest and I’ve have tried both making homepages and databases earlier. Also assembling computers I sometimes do.
Dennis - 34 year young and father of 3 kids. I’m working full time at Roskilde University at the apartment for International Development Studies as IT assistant. Mostly hardware and software supporting. Further more I take care of the institute’s web page www.ruc.dk/inst3 which I take care of after working hours due to too much work in the normal working hours.

I’m attending school course all my working experience is self studied (self-made man) which does not pay much, so the institute give me time off for attending school so I can get papers and then get paid the rightfully sum for the work I’m doing.

Tatjana - I’m 31 year. I’m from Latvia. Come to Denmark around 3 years ago like agricultural trainee. Computer science is new stuff for me. Before I have been study agriculture and in 2004 finish Latvian University of Agriculture. Now I try something different.

I also attempt language courses in the evening in Roskilde Language Center.
1.4.2 Team Goals
· Finish the project on time

· Learn more about the development of a system

· Get a grade of at least 10
1.4.3 Working hours
This schedule shows the estimated time use in the weeks of the project. If it is necessary to use extra time (e.g. weekends/holidays) we will agree on this later, and update the schedule.
 Week 38, 44, 47, 48, 49, 50
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday

	
	
	
	
	

	8.20-14.00
	8.20-14.00
	8.20-14.00
	8.20-14.00
	8.20-14.00

	
	
	
	
	

In the project weeks we will have 2 weekly meetings with our supervisors to get feedback on what we have made, and also to get some new ideas or inputs for our project to become better.
1.4.4 Working place
We will work on the project at the school (Roskilde Handelsskole), and only if necessary we will do it in another place, perhaps at home at a group member.

1.4.5 Roles

Normally UPEDU-roles are distributed out among group members based on their professional skills, but because it is the first time we are doing this kind of project, we have decided that we will all participate in all roles. The roles are:

Analyst role – LTD (Lasse, Tatjana, Dennis)
Designer role – LTD
Implementer role – LTD
Integrator role – LTD
Tester role – LTD
Change Control Manager role – LTD
Configuration Manager role – LTD
Project Manager role – LTD
Reviewer role – LTD
Any other role – LTD
1.4.6 Team contract

	

1.5 Identify the risk list

The following risk list uses these conventions:

Magnitude:
Risks are ranked from 1 to 10. 1 is the lowest risk and 10 is the highest risk. Ranking is based upon the criticality of the risk and the probability of the risk occurring.

Description:

Brief description of the identified risk.

Impact:

C – Critical (Affects all projects functionalities and baselines.)

H – High (Affects stakeholders needs and major product functionalities.)

M – Medium (These risks are subject to contingency but most of the times, a mitigation plan will be established in order to avoid the risk.)

L – Low (Generally these are risks for which Risk Acceptance strategies will be held or quick mitigation plan will be implemented. Usually the team will decide to live with the risk as a contingency.)

Mitigation/Contingency:
Plan to live with or avoid/transfer the risk.

	<Risk 1> - Database Knowledge

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	5
	Lack of knowledge on architecture in databases

	M
	Focus in early iteration of Elaboration

	<Risk 2> - Member Departure

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	2
	Lack of team members in case of illness or the departure of a team member (for any reason)

	C
	Review Milestones as quick as possible and reassign work. Being able to continue the work done by another team member

	<Risk 3> - Hardware

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	2
	Computers or printers at school are non-functional. The schools computer network is not working so login is impossible.
	C
	Talk to system administration and project supervisor. If the system continues to not work, we will go home to a group member who has a computer, and continue working.

	<Risk 4> - Group member who holds documents is absent

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	2
	The group member holding all project documents is absent.
	C
	To avoid this risk, all project documentation will be uploaded to BlackBoard at the end of working hours.

1.6 Develop iteration plan for inception
Below is displayed the iteration plan for the inception phase. It shows the activities to be done, and what day the activity takes place. Working hours are estimated.

[image: image3.emf]ID

Task Name

Duration

Work

Start

1

Inception

5 days

37 hrs

Mon 10/31/05

2

Elicit stakeholders requests

1 day

2 hrs

Mon 10/31/05

3

Find actors and Use-Cases

1 day

5 hrs

Mon 10/31/05

4

Structure the Use-Case Model

1 day

8 hrs

Tue 11/1/05

5

Detail a Use-Case

1 day

8 hrs

Wed 11/2/05

6

Revise the project plan

1 day

4 hrs

Thu 11/3/05

7

Revise the risk list

1 day

2 hrs

Thu 11/3/05

8

Develop iteration plan for Elaboration It1

1 day

4 hrs

Fri 11/4/05

S

M

T

W

T

F

S

S

Oct 30, '05

Nov 6, '05

IDTask NameDurationWorkStart

1Inception5 days37 hrsMon 10/31/05

2Elicit stakeholders requests1 day2 hrsMon 10/31/05

3Find actors and Use-Cases1 day5 hrsMon 10/31/05

4Structure the Use-Case Model1 day8 hrsTue 11/1/05

5Detail a Use-Case1 day8 hrsWed 11/2/05

6Revise the project plan1 day4 hrsThu 11/3/05

7Revise the risk list1 day2 hrsThu 11/3/05

8Develop iteration plan for Elaboration It11 day4 hrsFri 11/4/05

SMTWTFSS

Oct 30, '05Nov 6, '05

1.7 Conclusion on project establishment

In the Project establishment phase we have made all the preparing for the whole project. As a team we have discussed and agreed on what to do in the project period, and worked hard to reach our common team goals. Furthermore we have structured our work by doing a lot of planning.

We have reached the goals of the establishment milestone. The artifacts of the establishment milestone we have made and the quality of these is good.
2. Inception phase
2.1 Purpose

The purpose of Inception phase is to state the system requirements and the boundary of the system, find the actors and use cases.
2.2 Overview of activities
As stated in the Iteration plan we will do the following activities in Inception phase:

· Revision on Project Establishment

· Do business analysis

· Elicit stakeholders requests

· Find actors and Use Cases

· Structure the Use Case Diagram
· Detail the Use Cases

· Revision of project plan and risk list

· Develop iteration plan for Elaboration, E1

2.3 Revision on Project Establishment

After having talked to our supervisors, we have started Inception phase correcting the report according to the advices given by our supervisors. These changes include a graphical change of our project plan plus we have now described the milestones.
We have added a team contract for all group members to sign, and our Risk list we also revised and updated with more risks found. Furthermore we corrected some small typing errors and some small graphical changes concerning the overall look of the project report.
2.4 Do business analysis

Customers and competitors

Customers

The customers of Fantasy Library Events are grouped in two segments. There are single artists and there are organizations. Single artists are i.e. painters, writers, authors, singers, performers, healer etc. Organizations can be of all kinds i.e. sports union or painters union.

The Event facility at the library is mainly used by local people or organizations, but is also available for people from out of town.

Competitors

Fantasy Library Events has no major competitors. But small competitors are banks, hotels, the city hospital and theatres and cinemas.

Offering

Fantasy Library Events offers the service of renting out room and wall space for all kinds of events i.e. exhibitions, speakers, meetings & concerts.

Customers pay a fee for the renting rooms and wall space.

Activities & Organizations

The main activity of the Fantasy Library Events (FLE) is taking care of reservations. Another main activity is the sale of goods and merchandise during exhibitions. A manager is responsible for the overall of FLE and by his side he has a secretary who is taking care of the reservations - and any other employee is in charge of the selling activity. The manager is also responsible for the communication with customers when they arrive at the Fantasy Library.

Supporting activities at the FLE is making the room ready (putting up chairs, tables etc.), the decoration of rooms when wished upon, and the cleaning of rooms afterwards. The manager is not doing these things, but he is responsible for putting it to action.

Resources and competencies

The financial situation at Fantasy Library Events is good. As Fantasy Library Events has existed for many years, they have competency and expertise in renting out room and wall space.

Factor markets & suppliers

The Fantasy Library has no “real” suppliers. But in order to get rooms decorated and cleaned, the FLE must hire cleaning personnel and decorators.

2.5 Elicit stakeholders requests
The users at Fantasy Library Events are Manager and Secretary.

We have made a business analysis, and based upon this analysis we have found the users requests.
Secretary: registration of reservations, artists, payments
Manager: registration of rooms, manage reservations, manage supporting activities

A third actor could be an Artist or a Guest at the library who wants i.e. to search for events. We know these two actors also exist, but we have decided to limit our focus to the administration part of the system.

2.6 Find Actors and Use Cases

To find actors and use cases we have used the Case Presentation in the Project charter to get inputs for possible use cases.
Primary Actors:

Manager / Secretary

Use Cases:

· UC1: Search for available room

· UC2: Register Event Reservation
· UC3: Cancel Event Reservation
· UC4: Search for Artist
· UC5: Search for Event

· UC6: Register Room
· UC7: Register employee

· UC8: Register closing of Event
· UC9: Register arrival of Artist
· UC10: Register payment of Event

· UC11: Register sale of merchandise

· UC12: List all artists

· UC13: List all rooms

· UC14: List all reservations

· UC15: List reservations on room
· UC16: Edit Artist Information

· UC17: Edit Room Information
· UC18: Delete employee

· UC19: Register Artist

· UC20: Edit employee

· UC21: Edit Event Reservation

· UC22: Search employee

There are many use cases, some of them more critical to the system than others. According to UPEDU you should only look at the most critical use cases in the inception phase. We have found that the most critical use cases are:
· UC6: Register Room
· UC7: Register Employee

· UC19: Register Artist

· UC2: Register Event Reservation

We have chosen to put our focus on the reservation part of the system. The reason why we find these use cases critical is because they create the basis for making a reservation.

The creation of a reservation we will not focus on until Elaboration phase E1.

2.7 Structure the Use Case Diagram
Here we display the use case diagram which shows the interaction between use cases and actors. There are no collapsed use cases – one use case belongs to one actor.

[image: image4.emf]UC2:Register event

 reservation

UC3: Cancel event

reservation

Fantasy Library Events

:Secretary

UC4: Search for

Artist

UC5: Search for

Event

UC6: Register Room

UC7: Register

Employee

UC8: Register

closing of Event

UC9: Register

arrival of Artist

UC10: Register

payment of Event

UC 11: Register

sale of merchandise

UC12: List all

artists

UC 13: List all

rooms

UC 14: List all

reservation

UC17:Edit Room

information

UC15: List

reservations on room

UC18: Delete

employee

UC1: Search for

aviable room

UC16: Edit artist

information

: Manager

UC19:Register

Artist

UC20:Edit employee

UC21:Edit event

information

UC22:Search

employee

To get an easier overview we have also made a table displaying the same as the above drawing.

	Use Case
	Primary Actor

	UC1: Search for available room
	Secretary

	UC2: Register Event Reservation
	Secretary

	UC3: Cancel Event Reservation
	Secretary

	UC4: Search for Artist
	Secretary

	UC5: Search for Event
	Manager

	UC6: Register Room
	Manager

	UC7: Register employee
	Manager

	UC8: Register closing of Event
	Secretary

	UC9: Register arrival of Artist
	Manager

	UC10: Register payment of Event
	Secretary

	UC11: Register sale of merchandise
	Secretary

	UC12: List all artists
	Manager

	UC13: List all rooms
	Manager

	UC14: List all reservations
	Manager

	UC15: List reservations on room
	Manager

	UC16: Edit Artist Information
	Secretary

	UC17: Edit Room Information
	Manager

	UC18: Delete employee
	Manager

	UC19: Register Artist
	Secretary

	UC20: Edit Employee
	Manager

	UC21: Edit Event Reservation
	Secretary

	UC22: Search Employee
	Manager

2.8 Detail the Use Cases

Here we detail the use cases which we have found was most critical to the system. The use cases are described fully dressed.

UC6: Register room

Scope: Fantasy Library Events

Level: user goal

Primary actor: Manager

Stakeholders and Interests:

Preconditions: None

Post conditions: Room is recorded

Main Success scenario:

1. Manager starts new room registration.

2. Manager enters a room number, a room description and a renting price.
3. System presents room information.

4. Manager confirms room information.

5. System records room information.

UC7: Register employee
Scope: Fantasy Library Events

Level: user goal

Primary actor: Manager

Stakeholders and Interests:

Preconditions: None

Post conditions: Employee is recorded

Main Success scenario:

1. Manager starts new Employee registration.

2. Manager enters employee Id, cprNo, name and address.

3. System presents employee information.

4. Manager confirms employee information.

5. System records information.

UC19: Register Artist

Scope: Fantasy Library Events

Level: user goal

Primary actor: Secretary

Stakeholders and Interests:

Preconditions: None

Post conditions: Artist is registered

Main Success scenario:

1. Artist wants to be registered.

2. Secretary starts new artist registration.

3. Secretary enters artist Id, cprNo, name, address, phone, e-mail, regYear and state.

4. System presents artist information.

5. Secretary confirms artist information.

6. System records artist information.

UC2: Register event reservation

Scope: Fantasy Library Events

Level: user goal

Primary actor: Secretary

Stakeholders and Interests:

Preconditions: None

Post conditions: Reservation is recorded

Main Success scenario:

1. Artist wants to reserve a room.

2. Secretary starts new reservation.

3. Secretary enters artist Id, room no & reservation date.

4. System presents reservation information.

5. Secretary confirms reservation information.

6. System records reservation information.

2.9 Revision of project plan and risk list
We have revised our project plan and found an error. Second Elaboration phase E2 was set to last 3 weeks. But then we only have 1 week for Elaboration phase E1. Therefore we have changed the date for our GUI File Milestone from 25th of November to 2nd of December, giving us 2 weeks for each Elaboration phase.

[image: image5.emf]20-09-2005 16-12-2005

26-09-2005

Establishment milestone

10-11-2005

Objectives milestone

02-12-2005

 GUI File milestone

16-12-2005

GUI Database milestone

Inception Elaboration, E1

21-11-2005

Revision Date

We have also found more risks to the progress of our project. These risks were found during our daily working hours, because they actually affected our working process.
	<Risk 5> - Lack of software knowledge

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	2
	Lack of knowledge in the software programs we use i.e.
MS Visio and MS Project.
	C
	Because of the more time used on problem solving, we have to expand our daily working hours.

	<Risk 6> - Not being able to speak with supervisors

	Magnitude
	Description
	Impacts
	Mitigation Strategy / Contingency Plan

	2
	Supervisors not at school, or busy doing something elsewhere.
	C
	Try to contact supervisors by e-mail and/or phone to establish a meeting as soon as possible, and then continue the project putting focus elsewhere. To limit the risk further we also have fixed appointments with our supervisors.

2.10 Iteration plan for Elaboration E1

Below we have displayed the iteration plan for Elaboration E1 as we expect it to be. Working hours are estimated.
[image: image6.emf]ID

Task Name

Duration

Work

Start

1

Elaboration E1

10 days

68 hrs

Mon 11/21/05

2

Business Modelling

1 day

5 hrs

Mon 11/21/05

3

Develop Domain Model

1 day

5 hrs

Mon 11/21/05

4

Requirements

1 day

4 hrs

Mon 11/21/05

5

Detail UC6: Register Room

1 day

1 hr

Mon 11/21/05

6

Detail UC7: Register Employee

1 day

1 hr

Mon 11/21/05

7

Detail UC19: Register Artist

1 day

1 hr

Mon 11/21/05

8

Detail UC2: Register Event Reservation

1 day

1 hr

Mon 11/21/05

9

Analysis and Design

4 days

28 hrs

Tue 11/22/05

10

Architectural analysis

1 day

8 hrs

Tue 11/22/05

11

Use Case analysis

1 day

4 hrs

Wed 11/23/05

12

Use Case Design

1 day

4 hrs

Wed 11/23/05

13

Class Design

1 day

8 hrs

Thu 11/24/05

14

GUI Design

1 day

4 hrs

Fri 11/25/05

15

Implementation

5 days

26 hrs

Fri 11/25/05

16

Plan coding

1 day

4 hrs

Fri 11/25/05

17

Coding of classes

4 days

20 hrs

Mon 11/28/05

18

Unit testing

4 days

2 hrs

Mon 11/28/05

19

Management

1 day

5 hrs

Fri 12/2/05

20

Revise the project plan

1 day

1 hr

Fri 12/2/05

21

Revise the risk list

1 day

1 hr

Fri 12/2/05

22

Develop Iterationplan for Elaboration E2

1 day

3 hrs

Fri 12/2/05

S

M

T

W

T

F

S

S

M

T

W

T

F

S

S

Nov 20, '05

Nov 27, '05

Dec 4, '05

IDTask NameDurationWorkStart

1Elaboration E110 days68 hrsMon 11/21/05

2 Business Modelling1 day5 hrsMon 11/21/05

3 Develop Domain Model1 day5 hrsMon 11/21/05

4 Requirements1 day4 hrsMon 11/21/05

5 Detail UC6: Register Room1 day1 hrMon 11/21/05

6 Detail UC7: Register Employee1 day1 hrMon 11/21/05

7 Detail UC19: Register Artist1 day1 hrMon 11/21/05

8 Detail UC2: Register Event Reservation1 day1 hrMon 11/21/05

9 Analysis and Design4 days28 hrsTue 11/22/05

10 Architectural analysis1 day8 hrsTue 11/22/05

11 Use Case analysis1 day4 hrsWed 11/23/05

12 Use Case Design1 day4 hrsWed 11/23/05

13 Class Design1 day8 hrsThu 11/24/05

14 GUI Design1 day4 hrsFri 11/25/05

15 Implementation5 days26 hrsFri 11/25/05

16 Plan coding1 day4 hrsFri 11/25/05

17 Coding of classes4 days20 hrsMon 11/28/05

18 Unit testing4 days2 hrsMon 11/28/05

19 Management1 day5 hrsFri 12/2/05

20 Revise the project plan1 day1 hrFri 12/2/05

21 Revise the risk list1 day1 hrFri 12/2/05

22 Develop Iterationplan for Elaboration E21 day3 hrsFri 12/2/05

SMTWTFSSMTWTFSS

Nov 20, '05Nov 27, '05Dec 4, '05

2.11 Conclusion on inception phase
Activities finished

In the Inception phase we have reached the Objectives Milestone. We have found most use cases, detailed the most critical, we have structured the found use cases in a use case model. We have revised and changed our project plan, added two more risks to our risk list and we have made an iteration plan for Elaboration E1.
Quality of artifacts

The quality of the artifacts produced we think is good. The artifacts i.e. our use case model – contain the necessary things that are needed to reach a quality product. All use cases have been identified and they clearly present the behavior of the system.
Problems faced

The biggest problem we faced in inception phase was the number of use cases. We started out inception phase by choosing out 5 use cases we found was critical to the system and which we therefore would put our concern on.
Problem solutions

We quickly found out that 5 use cases in our inception was too many, so after a small talk with our supervisors we downsized the number of use cases to focus on. Our focus was then set on the registration part of the system (Artist, room, employee and reservation registration). This helped a lot and actually made us less confused and gave us a better overview of what to do.
3. Elaboration phase, E1

The primary objectives of Elaboration phase is to ensure that the architecture, the requirements and the plans for the project are stable enough. Because going into elaboration phase means for many systems that it moves from being a low-risk, low cost project – to being a high-risk, high cost project. Therefore the most important objective of Elaboration phase is to ensure that all system requirements are found and that all significant risk of the architecture is found.

3.1 Purpose

The purpose of Elaboration phase E1 is to develop the domain model, analyze the architecture and the use cases, designing the use cases, the classes and the GUIs, and also plan and implement the use cases. Our GUI-File Milestone is reached when we have a system with a GUI up and running based on the critical use cases i.e. UC6, 7, 19 & 2.
3.2 Overview of activities

As stated in our Iteration plan for Elaboration, E1 we will do the following activities:

· Revision on Inception phase

· Develop the domain model

· Architectural analysis

· Use case analysis

· Use case design

· GUI Design

· Plan coding

· Coding of classes

· Unit testing

· Revise project plan & risk list

· Develop iteration plan for Elaboration, E2
3.3 Revision on Inception phase

We start out Elaboration, E1 doing some revision on our Inception phase. We have got some advices from our supervisors once again concerning the report, and these changes we have made. These changes include revision on headlines in report, adding of a business analysis to the report and revision on use cases.
3.4 Develop the domain model

[image: image7.emf]-artistId

-cprNo

-name

-address

-phone

-e-mail

-regYear

-state

Artist

-roomNo

-description

-rentingPrice

Room

-reservationDate

-eventDuration

-empNumber

-eventType

Reservation

-empId

-cprNo

-name

-Address

Employee

EmployeeCatalog ArtistCatalog

Fantasy Library

RoomCatalog

1..1

-has

1..1

-has 1..1

1..1

-has

1..1

1..1

1..*

-contains

1..1

-can make 1..1

0..*

1..1

0..*

-contains 1

0..*

-contains 1

0..*

-contains 1

0..*

ReservationCatalog

-has 1..1

1..1

-contains 1

0..*

-noOfSeats

Auditorium

-noOfSeats

Meeting Room

-size

Exhibition Room

The classes in our domain model are based on the use cases which we have found. As the system and number of use cases grow, so does the domain model.
	Name
	Description

	Artist
	A person who wants to make a reservation

	Room
	The physical room to be rented out for events

	Employee
	A person working at the Library

	Reservation
	The physical reservation made when an Artist rents a Room

	ArtistCatalog
	The catalog containing all info on Artists

	RoomCatalog
	The catalog containing all info on Rooms

	EmployeeCatalog
	The catalog containing all info on Employees

	ReservationCatalog
	The catalog containing all info on Reservations

We have chosen to limit our project to only concern Artist, Room and Reservation. The Room class is limited to only concern the super class and not the three subclasses, and instead we add an attribute called roomType to Room.

3.5 Architectural analysis

The architecture in our system consists of 3 layers. On top we have all the GUIs, below we have our collections/controllers and at the bottom the model classes.

Because of the size of our system we have chosen that the catalogs are also controllers. In a larger system you would have a controller layer between the GUIs and the catalogs, because there will be many controllers operating on many catalogs.

[image: image8.emf]Artist Employee Room Reservation

Model Classes

ArtistCatalog EmployeeCatalog RoomCatalog ReservationCatalog

Catalogs / Controllers

ReservationAdmGUI

AdministrationGUI

RoomAdmGUI EmployeeAdmGUI ArtistAdmGUI

GUIs

3.6 Use case analysis

To help make the domain model, we have made use case analysis. By looking at our use cases we have been able to make the classes, the associations and finding the attributes. Between the object catalogs and the objects there is aggregation because an object cannot exist without the catalog.
3.7 Use case design

In use case design we will do the System Sequence Diagrams (SSD) and the Operation Contracts for the use cases we have chosen.
3.7.1 System Sequence Diagrams
UC6: Register Room

[image: image9.emf]:Manager :System

startNewRoomReg()

roomInformation

confirmRoomInfo(roomNo, roomType, description, rentingPrice)

enterRoomInfo()

UC7: Register Employee

[image: image10.emf]:Manager :System

startNewEmployeeReg()

enterEmpInfo()

empInfo

confirmEmpInfo(empNo,cprNo,name,address)

UC19: Register Artist

[image: image11.emf]:Secretary :System

startArtistRegistration()

enterArtistInfo()

artistInfo

confirmArtistInfo(artistId,cprNo,name,address,phone,e-mail,regYear,state)

UC2: Register Event Reservation

[image: image12.emf]: Secretary :System

enterReservationInfo()

reservation info

confirmReservation(artistId,roomNo,date,empNo)

startNewReservation()

3.7.2 Operation contracts

Here we show the Operation Contracts for the critical use cases. The Operation contracts which have no pre- and postconditions we don’t show. We only show the ones that change the domain model.

UC6:

CO11:

confirmRoomInfo(roomNo, roomType, description, rentingPrice)
Cross Ref:

Register Room

Preconditions:

There is a room registration underway

Post conditions:

a new Room room was created

room.roomNo became roomNo

room.roomType became roomType

room.description became description

room.rentingPrice became rentingPrice

room is associated with RoomCatalog
UC7:
CO14:

confirmEmpInfo(empNo, cprNo, name, address)

Cross Ref:

Register Employee

Preconditions:

none
Post conditions:

a new Employee emp was created

emp.empNo became empNo

emp.cprNo became cprNo

emp.name became name

emp.address became address

emp is associated with EmployeeCatalog
UC19:
CO17:
confirmArtistInfo(artistId, cprNo, name, address, phone, email, regYear, state)

Cross Ref:

Register Artist

Preconditions:

none
Post conditions:

a new Artist artist was created

artist.artistId became artistId

artist.cprNo became cprNo

artist.name became name

artist.address became address

artist.phone became phone

artist.e-mail became e-mail

artist.regYear became regYear

artist.state became state

artist was associated with ArtistCatalog
UC2:

CO20:

ConfirmReservationInfo(artistId, roomNo, date, empNo)

Cross Ref:

Register Event Reservation

Preconditions:

artistId, roomNo & empNo are found

Post conditions:

A new reservation res was created

res was associated with Artist

res was associated with Room

res was associated with Employee

res was associated with ReservationCatalog

3.8 Class Design
The SSDs and operation contracts in the previous chapter show the system from a real world viewpoint. In class design we move into the world of programming.
Here we show - by doing sequence diagrams and design class diagrams - the design and the interactions between the software classes.

3.8.1 Sequence Diagrams

CO11:

[image: image13.emf]RoomCatalog

Room

Room room = new Room(roomNo,roomType,description,rentingPrice)

room

data: List<Room>

addRoom(room)

confirmRoomInfo(

roomNo, roomType,

description, rentingPrice)

CO14:

[image: image14.emf]EmployeeCatalog

Employee

Employee emp = new Employee(empNo,cprNo,name,address)

employee

data: List<Employee>

addEmployee(employee)

confirmEmpInfo(

empNo,cprNo,name,

address)

CO17:

[image: image15.emf]ArtistCatalog

Artist

Artist artist = new Artist(artistId,cprNo,name,address,phone,email,regYear,state)

artist

data: List<Artist>

addArtist(artist)

confirmArtistInfo

(artistId,cprNo,name,

address,phone,

email,regYear,state)

CO20:

[image: image16.emf]ReservationCatalog

Reservation

res

data: List<Reservations>

addReservation(res)

confirmReservationInfo(

reservationId, artistId, roomNo,

reservationDate, eventDuration,

eventType, empNo)

Reservation res = new Reservation(reservationId,

artistId, roomNo, reservationDate,

eventDuration, eventType, empNo)

3.8.2 Design Class Diagram

[image: image17.emf]+confirmArtistInfo()

+artistToString()

+toString()

ArtistCatalog

+confirmEmpInfo()

+empToString()

+toString()

EmployeeCatalog

+confirmRoomInfo()

+roomToString()

+toString()

RoomCatalog

-artistId

-cprNo

-name

-address

-phone

-email

-regYear

-state

Artist

-empId

-cprNo

-name

-address

Employee

-roomNo

-roomType

-description

-rentingPrice

Room

-reservationId

-artistId

-roomNo

-reservationDate

-empNo

-eventDuration

-eventType

Reservation

+confirmReservationInfo()

+reservationToString()

+toString()

ReservationCatalog

+createReservation()

+showAllReservations()

+resetFields()

ReservationAdmGUI

AdministrationGUI

+createRoom()

+showAll()

+resetFields()

RoomAdmGUI

+createEmployee()

+showAll()

+resetFields()

EmployeeAdmGUI

+createArtist()

+showAll()

+resetFields()

ArtistAdmGUI

-holds *

*

-holds *

*

-holds *

*

-holds *

*

{ Active, Passive,

 Illegal }

LIBRARY PRESENTATIONS/VIEWS

LIBRARY COLLECTIONS/CONTROLLERS

LIBRARY EVENTS MODEL

-can make

1..1

0..*

-consist of

1..1

1..*

-is registered by 0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

By looking at the sequence diagrams we have been able to design our software classes. The Design Class Diagram shows the classes and the relationship between them.
3.9 GUI Design

This is how we have decided that our GUIs should look like:
[image: image18.png][EILIES

He R Yew et Fomat Ik Tle wndow tep Type aquesonforhep + x
DEHRSGRTE BB 980 Bidnd - metevronn <12 o[B 7 U [E]E =S E 4
=1

\g Form [ArtistAdmGUI]

State Artist Information

Artistid
Cprio;
Name:
Addess
Phane Na
£l

Registration Year: [oogs

State: factive:

Confirm Artst Info

Shaw Al Artists

Page 1 Sect 1 A1 a1 colt REC TRK EXT OVR Danish

st 5 @@ erationplen .. | [£] Class Diagra.. | @ Wetteans ... [& Testing For

Use cases for,

Documentz -

Fantasy Libr.

This design we think is easy to use and therefore very user-friendly. The above GUI is a template which we intend to follow when designing the other GUIs. Screenshots of the rest of our GUI can be found in appendix A.
3.10 Plan coding

The classes we have designed are now ready to be programmed. Our plan is to start out by coding the lowest layer in the architecture – the model classes i.e. Artist, Room and Employee. We will work from the bottom layer and upwards. So the next layer to be coded is the catalog/controller layer i.e. ArtistCatalog, RoomCatalog and EmployeeCatalog. The last layer is the GUI layer and this layer and the classes in it are coded as the last thing.

We are going to start coding one use case at a time. First the Model class, then the Catalog/Controller and then the view or GUI class. We are going to split the three first use cases (UC 6, 7 & 19) amongst us, so every group member are coding different use cases at the same time. Then the last use case (UC2: Register Event Reservation) we will code together as it is a bit different from the others.
As this is the way we plan our coding, changes could of course occur. Perhaps after coding our GUIs we find that something is missing or wrong, so the catalog/controller classes should be changed.
3.11 Coding of classes

3.11.1 Start up
What we don’t show in our Design Class Diagram is that we actually have a small layer between the GUIs and the Catalogs. We didn’t show it because it is only used when starting up the system. All the GUIs know the Catalogs through the LibraryHandler (as shown in the drawing below). When the system is started up and the first interface AdministrationGUI is shown, the AdministrationGUI uses the LibraryHandler, which holds all the Catalogs, to initialize the data fields in the next GUIs opened i.e. ArtistAdmGUI. This means that when ArtistAdmGUI is opened, it already knows the Catalog it is using because of the LibraryHandler.

So if we add or delete an Artist in the ArtistAdmGUI and then close the GUI, if it is opened again it has not lost the information about the Catalog because the LibraryHandler holds the Catalog. And ArtistAdmGUI is opening up the Catalog via LibraryHandler again.

[image: image19.emf]ArtistAdmGUI ReservationAdmGUI RoomAdmGUI EmployeeAdmGUI

LibraryHandler

ArtistCatalog ReservationCatalog RoomCatalog EmployeeCatalog

3.11.2 Use of Array List
In our Catalogs we have decided to use Array Lists. Some would say that using Hash Maps would be better in some of our Catalogs because Hash Maps are more flexible and searching is a lot faster in Hash Maps. The reason why we have decided to use only Array Lists is our lack of knowledge on programming Hash Maps. And by looking at the size of our system we have found that for now the use of Array Lists is good enough.

3.12 Unit testing

While programming the classes in our system testing is going on all the time. In our classes we have a main method which is used for testing the class itself. In unit testing we will state something about:
· Connection to a Database
· Testing of model classes

· Testing of Catalogs

3.12.1 Connection to a Database

We decided to make an early test connection to a database to limit the risk list expanding due to lack of software knowledge. From ArtistCatalog in main we set up a short-living connecting to InterBase with an ODBC connection. Simple object lines as shown below, was created in main with the parameters for Artist and saved for later use.

[image: image20.png]=l8lx]

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[peedaxneaoc|[ad|om=bd|rvpaneesauae

[& artist* x| [Employee |8 Room x| [@ EnployeeCetaloy | LiraryHandier x| [8 RoomCetalog | [AtsiCetaboy x| B artitCetaion x| ang|
[8 artstcataog S| poe|n k| BT e @
ry (Systen. oun prantin(Cometing'l; |
con = DriverHanager . getConnection (url, Login, passud);
stut = con.createStatement ();

)

caten (sQLExeeprion ox)

{ System err print("SQLException: ")
System. err printin(ex.getilessage (] ;

srass. 5 Insart vaduas
System. out printin(’insercing’l;
ey (
Sering line, insercValues;

Line = "'1','1SOS7LLLLL', 'dkn', gadeve)', 46464646', 'eGmail.dk’, 2005, 'Active'";
insercValues = "inserc into Arcist ° + values (© + line + 1%;
stuc_executeUpdate (insercValues] ;

Line = "'2','2222222222", 'Lasse’, 'LangeudepAlander’,'12121212", ' lasse@uail k', 2005, 'Active’

insertValues

nsere into hreise * 4 "values (* + line +

stuc_executeUpdate (insercValues] ;

line = "'2',3333333333", 'Tanja’, 'LangereudepAlander’, '13131313", ‘canjauail k', 2005, 'Accive'";
insercValues = "inserc into Arcist ° + values (° + line + '1%;
stuc_executeUpdate (insercValues] ;

Systen.out printin(’closing’l;
stac close(];
con.close(];

} caton(suLException ex) {
System. err print("SQlException: "1;
System. err printin(ex.getilessage (] ;

)
e o]

Cods completion database has been created for the Flesystem 21,

Bistart| @ @ (& > B) Fentesy Librery v2.3- .. | &) 00P2 -Microsoft Inter.. | & Microsoft Development. . [NetBeans IDE 3.6 - P...) ZiFLE

i

« 118

In InterBase we created a table “Artist” with the parameters for Artist (artistId, cprNo, name, address, phone, email, state) with cprNo as the primary key. ArtistCatalog made the connection through and the objects were saved in the database without any further problems.

Later on we will make a class CMC_Connecter with a short-living connection facade which connects to the database. We don’t consider the long-living connection in our project and we will not discuss this issue any further.

3.12.2 Testing of model classes
To be able to test the model classes as they were programmed, we decided to construct them with a main method. Then we could test them in main when we finished programming the class.
As an example we have shown the Room class. In main we construct an object of the class itself and do a simple “system.out.println()”.

[image: image21.png]‘etBeans IDE
Edt

roject Default

Fie. View Project Buid Debug Versioning Tooks Window _Help

=181]

o s

#a|xesmdefas|n

TR

B artets x

Enoyee x| Roon

<[Eoyeectdog x| [Loraryriner x| B Roomcatnbg x| @ AristCataon x| [artsicatdog

[o

[*a = =2 oo|n %

e m |

return rooulio;

L

a

public void setRoomNo (String rooutio] {
this_rooulio = rooulio;

)

public String getRoomType () {
return roouType;

)

public void setRoonType (Scring roouTypel {
this_roouType = roouType;

)

putic string getbescriptiont) (
veturn descripeion:

)

public void setDescription(Sering descripriont [
thia. description - descripvions

ol

public double getRentingbrice(] {
return rentingPrice;

)
Public void setRentingbrice (double rencingPrice] {
this.rentingPrice = rentingPrice;

)

public static void main(Stringl] args) {
18%, tmesting'

Room rooul = new Room ("L

Systen.out printin(roonl toString(ll;

"hig one",

10015

Bl

Cods completion database has been created for the Flesystem 21,

Wistart| & @ (2 > 5] Fantasy Lirary v2.3- Mi...| £ 00P2 - Mirasot Intern,

& Mizosoft Development E. . || [NetBeans IDE 3.6 - pr.

i

« 1lzzam

The next screenshot shows the print out and proves that the model class is working.

[image: image22.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

B st
ArtistAdmGUI
B atstCatzog
Employes

B Employeshdmclt
B EnployesCatalog
Keyboard

[LbraryHander
B Room

B RoomadnGur
B RoomCatabg
3 FlEdatabase

[pesede|xvnemoc|jad|dam=d|[vponem@sasae
IFiesystems || Rurtie [B artt x|[8 Evployee x| [8 Room |8 EnloyeeCataboy x| [3 LibraryHandier x| [8 RoomCatalog x| [8 AstCataog x| <[) | <]
@ Fiesystems [o man St s = noo|n x| E e ||
2. Semester Project|Coding R TeoaTEE = TeonTiRe —
©@ s ot T o - v
AdministrationGUI

public String getDescription() {
return description;

)

public void setDescription(String description] {
this_description = descripvion;

)

public double getRentingbrice(] {
return rentingPrice;

)

Public void setRentingbrice (double rencingPrice] {
this_rencingPrice = rencingPrice;

—0—8 —o0—

)

public static void main(seringl] args) {
G|

| output

Conpler. Roon-1j0 |

Room mumber: 15
Type of room: mesting
Descriprion: big one
Rencing price: 100.0

Finished Room,

Bistart| & @ (5] Fankasy Lbrary v2.3- ... | &) 00R2 - Microsoft Intern... | & Micrasoft Development ... ||] NetBeans 1DE 3.6 - r.

ik

<« 11zsam

3.12.3 Testing of Catalogs

Just like the model classes our Catalogs were constructed with a main method. To test the Catalog, in main() we created an object of the class itself. Created the model object and added it to the Catalog.

[image: image23.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pem@da|jxnead2c|[adjam=b|»s

me Eomd A S

IFesystens x| urtine B At x| Enoboyee x| [Room | B EnloyeeCatdon x| [Livarytinder x| B RoomCeabg* |8, Arstcatdoa x| | <[, ||
O Fewytens [o waws =& = o oolo % & e m|e
@ Hi\2.Semester Project|Coding
56 AE E] public boolean confimmReomInfo(String rooullo, String rooulyps, String dsscription, dowsle rentingPricia)
AdminstrationaUt Room room = new Room (rocala, rooType,deseription, remtingPrice);
At dsta. aaa zoom) ;
ArstadnaUL Jr——
Arscataon return trues
Employee)
EmployeeacnaLl
EmployeeCataa © public Striny roomloStringl) (
Keyboard return aoon. toString 15
UbreryHandr)
Room
RoamadnaUl public String tostring()(
RoamCatslog Hoon roon 5
edatabase String = = “int

for {dnt 3 <07 4 < dsta.sizet) it |
room - (Kot data.gut (417
S
)
return <5
)
B plic static void maintseringl) args) {
Faoataraios rosaten - new RoorCatalog() s

Keyhoard k = new Keyboard();
Sering rooulio= k. readString(l;
k.readstring() ;
Sering descriptions k readString(l;
double rencingPrices k. readbouble();

Sering roonTyp

roouCat . confirmRoonInto (rooullo, roouType, description, remcingPricel;
Systen.out println(rooucas. tostring (1] ;

Ssi10 [mme]

Fantasy Library v2.3 - Mi..| £)00P2 - Mictosoft Intern... | & Microsoft DevelopmentE... [B NetBeans 1DE 3.6 - Pr-

Finished RoomCatalog

Wistart| 8 @ @ >

<« 1l40am

The screenshot on the next page shows the print out of the catalog.

[image: image24.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

& = #oxneudce|as|am IEXEEEEEEEER
IFesystens x| urtine B At x| Enoboyee x| Room | B EnloyeeCatdon x| [Liverytinder x| [RoomCaabg x| B Aisicatabg x| | <[, | <]
(@ Fiesystems S st | @ = = oso | % B “
5@ iz Semester Project|Coding I‘ o o == ‘ ‘ [Ealloo] 5|
=43 RE public static void main(Stringl] args) {
AdministrationGUL RoouCatalog roomCat = new RoomCatalogi);
B arist
ArtistAdmGUL Keyboard k = new Keyboard();
B ArtstCataog String rooulio= k.readString();
Employee. String roomType= k.readString!();
B EmployesAdmGUl String descriptions k.readStringi);
[EmployeeCatalog double rentingPrice= k.readBouble () ;
Keyboard - b
B ubraryHander roouCat.confirmRoonInfo [rooulio, roomTyps, description, rentingPrice); ~|
8 . o
=
S5:10 g
| Output x

Compier | Room - /0 [ReGHCaESG- 70]
g =

Room mumber: 1
Type of room: HestingRoom
pescripion: This is even bigger!
Rencing price: 250.0

0

Finished RoomCatalog

Bistart| & @ (5] Fankasy Lbrary v2.3- ... | &) 00R2 - Microsoft Intern... | & Micrasoft Development ... ||] NetBeans 1DE 3.6 - r.

Status of program: We now have all our GUIs up and running, and from the GUIs you can create objects and add them to the catalogs, and then you can show all contents of the catalogs.

3.13 Revise project plan & risk list

Because of our project going better and moving faster than we expected, we decided together with our supervisors to add a Construction phase to our project.

[image: image25.emf]Elaboration, E1 Elaboration, E2

Construction

10-11-2005 16-12-2005

02-12-2005

GUI File milestone

09-12-2005

GUI Database Design milestone

16-12-2005

GUI Database milestone

01-12-2005 Revision date

In our former project plan designing and programming of the database part was going to take part in Elaboration E2. As we have put in a Construction phase we have decided that the programming and construction will take place in Construction phase. And in Elaboration E2 we will focus on establishing connection to a database via OBDC and designing the database.
We have decided to move the GUI Database Milestone to the end of the Construction phase, and add a new one called GUI Database Design Milestone at the end of Elaboration E2.

GUI Database Design Milestone

Analysis and design of use cases from GUI to Database is finished. All use cases concerning Artist are fully functional from GUI to Database.
GUI Database Milestone

Implementation of use cases that works from GUI to Database is finished.

We don’t show Project establishment and Inception phase in this project plan as they are finished and therefore not necessary to put any focus on. In Elaboration E1 we didn’t encounter any new risks.
3.14 Develop iteration plan for Elaboration, E2

Below we show our iteration plan for Elaboration E2 as we expect it to be. Working hours are estimated. As shown in our project plan it only lasts one week.
[image: image26.emf]ID

Task Name

Duration

Work

Start

1

Elaboration E2

5 days

37 hrs

Mon 12/5/05

2

Revision on Elaboration E1

1 day

1 hr

Mon 12/5/05

3

Requirements

1 day

3 hrs

Mon 12/5/05

4

Detail UC1: Search for available Room

1 day

1 hr

Mon 12/5/05

5

Detail UC3: Cancel Event Reservation

1 day

1 hr

Mon 12/5/05

6

Detail UC14: List all reservations

1 day

1 hr

Mon 12/5/05

7

Analysis and Design

1 day

11 hrs

Tue 12/6/05

8

Architectural analysis

1 day

3 hrs

Tue 12/6/05

9

Use Case Design

1 day

3 hrs

Tue 12/6/05

10

Class Design

1 day

3 hrs

Tue 12/6/05

11

GUI Design

1 day

2 hrs

Tue 12/6/05

12

Implementation

2 days

19 hrs

Wed 12/7/05

13

Relational Database Implementation

1 day

8 hrs

Wed 12/7/05

14

Plan coding

1 day

1 hr

Wed 12/7/05

15

Coding of classes

1 day

4 hrs

Thu 12/8/05

16

Coding of persistent classes

1 day

4 hrs

Thu 12/8/05

17

Unit testing

1 day

2 hrs

Thu 12/8/05

18

Management

1 day

3 hrs

Fri 12/9/05

19

Revise the project plan

1 day

1 hr

Fri 12/9/05

20

Revise the risk list

1 day

1 hr

Fri 12/9/05

21

Develop Iterationplan for Construction

1 day

1 hr

Fri 12/9/05

S

M

T

W

T

F

S

S

Dec 4, '05

Dec 11, '05

IDTask NameDurationWorkStart

1Elaboration E25 days37 hrsMon 12/5/05

2 Revision on Elaboration E11 day1 hrMon 12/5/05

3 Requirements1 day3 hrsMon 12/5/05

4 Detail UC1: Search for available Room 1 day1 hrMon 12/5/05

5 Detail UC3: Cancel Event Reservation1 day1 hrMon 12/5/05

6 Detail UC14: List all reservations1 day1 hrMon 12/5/05

7 Analysis and Design1 day11 hrsTue 12/6/05

8 Architectural analysis1 day3 hrsTue 12/6/05

9 Use Case Design1 day3 hrsTue 12/6/05

10 Class Design1 day3 hrsTue 12/6/05

11 GUI Design1 day2 hrsTue 12/6/05

12 Implementation2 days19 hrsWed 12/7/05

13 Relational Database Implementation1 day8 hrsWed 12/7/05

14 Plan coding1 day1 hrWed 12/7/05

15 Coding of classes1 day4 hrsThu 12/8/05

16 Coding of persistent classes1 day4 hrsThu 12/8/05

17 Unit testing1 day2 hrsThu 12/8/05

18 Management1 day3 hrsFri 12/9/05

19 Revise the project plan1 day1 hrFri 12/9/05

20 Revise the risk list1 day1 hrFri 12/9/05

21 Develop Iterationplan for Construction1 day1 hrFri 12/9/05

SMTWTFSS

Dec 4, '05Dec 11, '05

3.15 Conclusion on Elaboration, E1

Activities finished

In Elaboration E1 we developed the domain model, found the architecture of our system, we designed the use cases, the classes and the GUIs, and we made the necessary coding. The goal of Elaboration E1 was to reach the GUI File Milestone and so we did.
Quality of artifacts

As we have our program with GUIs and all up and running, we think that the quality of our artifacts is good.
Problems faced

In Elaboration we faced some problems concerning our lack of previous experience with this kind of project. The problems were about when to do what and how much to do in this phase.
Problem solutions

To solve the problem we talked to both our supervisors to get a hold of where in our project we were. And according to their advices we found out what we should keep in our project and what we shouldn’t. So from talking to them about it, we actually learned a lot which we can use when we are to do another project of this kind.
4. Elaboration phase, E2
4.1 Purpose

The purpose of Elaboration phase E2 is to analyze and design more use cases to build up the system. Furthermore the purpose is to go from a non-persistent system, to a persistent system that works from GUI to Database. In Elaboration E2 we decided to put all analysis and design of the database part of the system, making everything concerning CRUD on Artist work from GUI to Database, so the GUI Database Design Milestone is reached, when this is done.
4.2 Overview of activities

In Elaboration phase E2, we are going to do the following activities:

- Revision on Elaboration phase E1

- Detail relevant use cases

- Architectural analysis

- Use Case design

- Class design

- GUI design
- Plan Coding

- Coding of classes

- Unit testing

- Revise project plan & risk list

- Develop iteration plan for Construction
4.3 Revision on Elaboration E1

As in the other phases we started out doing some revision on the previous phase. This time we did some revision on our report, and changed a few drawings where names were wrong, and some places we inserted new for example the drawing of our architecture in system.
4.4 Detail relevant use cases
To build up/extend our system we have decided to detail some more use cases to extend the functionalities of our system. The use cases are chosen based on the CRUD (Create/Read/Update/Delete) sentence. These are the four methods that are always needed in a system like ours. Only Update we will touch. The use cases chosen are:
· UC1: Search for available room

· UC3: Cancel Event Reservation

· UC14: List all Reservations

We have chosen to focus on the Use Cases concerning Reservation because this is the main focus of our system. And when the above use cases are analyzed and designed we will be able to do create, delete and find or search for a reservation.

We will not detail the CRUD use cases for Artist, Room and Employee as they are so much like the Reservation use cases.

UC1: Search for available room

Scope: Fantasy Library Events

Level: user goal

Primary actor: Secretary

Stakeholders and Interests:

Preconditions: None

Post conditions: None

Main success scenario:

1. An Artist contacts the FLE office with a wish to know if there is an available room on a specific date.

2. Secretary starts new search.

3. Secretary enters the specific date.

4. System presents a list of available rooms.

UC3: Cancel event reservation

Scope: Fantasy Library Events

Level: user goal

Primary actor: Secretary

Stakeholders and Interests:

Preconditions: Reservation is made

Post conditions: Reservation is deleted

Main Success scenario:
1. Artist wants to cancel a reservation.

2. Secretary enters reservationId.

3. System presents reservation information to cancel.

4. Secretary checks information and confirm delete.

5. System deletes reservation.

UC14: List all Reservations

Scope: Fantasy Library Events

Level: user goal

Primary actor: Manager

Stakeholders and Interests:

Preconditions: None

Post conditions: None

Main success scenario:

1. Manager wants to get a list of all reservations made.

2. Manager starts new enquiry.

3. System presents a list of all reservations.
4.5 Architectural analysis
As we are now moving into having a persistent system working from GUI to Database, we also need to make a new architectural analysis. The new architecture in our system is displayed below.

On top we still have our GUIs. New DB-GUIs working on database are created and are actually replacing the normal GUIs. Next layer is the controllers. We have decided to use DB-controllers to handle the CRUD SQL-sentences for every table in the database.

To get information out of the database we need to connect to the database. We have decided to use short-living connections, establishing this connection through a DB-Facade. The reason why we have decided to use short-living connections is that the system is future proof for multi-user purposes.

The Database facade consists of a DMC_Connector holding an instance of DMC_Library, which then again holds the JDBC/ODBC connection to the database. All DB-controllers then extend the DMC_Connector and this makes opening and closing of the database connection very easy as we then only need to call the open/close methods in DMC_Connector.

[image: image27.wmf]ArtistAdmGUI

EmployeeAdmGUI

RoomAdmGUI

ReservationAdmGUI

AdministrationGUI

GUI

DB

-

GUIs

GUI Layer

Artist

Employee

Room

Reservation

Model Classes

ArtistCatalog

EmployeeCatalog

RoomCatalog

ReservationCatalog

Catalogs

/

Controllers

DB

-

Controllers

Controller Layer

CMC

_

ArtistSQL

DMC

_

Connector

DMC

_

Library

JDBC

/

ODBC

DB

-

Facade

AdministrationGUI

ArtistAdmGUI

EmployeeAdmGUI

RoomAdmGUI

ReservationAdmGUI

DataBase

Artist

Employee

Reservation

Room

CMC

_

EmployeeSQL

CMC

_

RoomSQL

CMC

_

ReservationSQL

4.6 Use Case Design

Here we show the System Sequence Diagrams and Operation Contracts for the use cases we decided to bring to the system.

4.6.1 System Sequence Diagrams

UC1: Search for available room

[image: image28.emf]: Secretary : System

startNewSearch()

enterDate(date)

list of rooms

UC3: Cancel Event Reservation

[image: image29.emf]:Secretary :System

cancelReservation(reservationId)

reservationInfo

confirmCancelRes(reservationId)

UC14: List All Reservations

[image: image30.emf]:Manager :System

showAllReservations()

list of reservations

4.6.2 Operation Contracts

Here are the Operation Contracts for the use cases. Only the ones that change the domain model are shown.
UC3:
CO8:

confirmCancelRes(reservationId)

Cross Ref:

Cancel Event Reservation

Preconditions:

reservation is found
Post conditions:
Current Reservation is removed

4.7 Class Design
4.7.1 Sequence Diagrams
For the three use cases we decided to only show the sequence diagram for CO8, as it is the most important and the most advanced where something happens in the system.

CO8:

[image: image31.emf]:ReservationCollection

data: List<Reservation>

cancelReservation(reservationId)

res = get(reservationId)

res

Loop i [reservationId != res.getReservationId();]

4.7.2 Design Class Diagram

There are no graphical changes to our design class diagram, only the classes are now containing more methods. The new methods are the ones from the use cases touched in Elaboration phase E2. The Design Class Diagram is on next page.

[image: image32.emf]+confirmArtistInfo()

+getArtist()

+removeArtist()

+artistToString()

+toString()

+numberOfArtists()

ArtistCatalog

+confirmEmpInfo()

+empToString()

+toString()

+getEmployee()

+removeEmployee()

+numberOfEmployees()

EmployeeCatalog

+confirmRoomInfo()

+getRoom()

+removeRoom()

+roomToString()

+toString()

RoomCatalog

-artistId

-cprNo

-name

-address

-phone

-email

-regYear

-state

Artist

-empId

-cprNo

-name

-address

Employee

-roomNo

-roomType

-description

-rentingPrice

Room

-reservationId

-artistId

-roomNo

-reservationDate

-eventDuration

-eventType

-empNo

Reservation

+confirmResInfo()

+getReservation()

+removeRes()

+reservationToString()

+toString()

+numberOfReservations()

ReservationCatalog

+createReservation()

+findReservation()

+removeReservation()

+showReservation()

+showAllRes()

+resetFields()

+adjustNumbers()

ReservationAdmGUI

+EmployeeAdministration()

+ArtistAdministration()

+RoomAdministration()

+ReservationAdministration()

AdministrationGUI

+createRoom()

+findRoom()

+showAll()

+removeRoom()

+resetFields()

+showRoom()

RoomAdmGUI

+createEmployee()

+findEmployee()

+removeEmployee()

+showEmployee()

+showAll()

+resetFields()

+adjustNumbers()

EmployeeAdmGUI

+createArtist()

+findArtist()

+removeArtist()

+showArtist()

+showAll()

+resetFields()

+adjustNumbers()

ArtistAdmGUI

-holds *

*

-holds *

*

-holds *

*

-holds *

*

{ Active, Passive,

 Illegal }

LIBRARY PRESENTATIONS/VIEWS

LIBRARY COLLECTIONS/CONTROLLERS

LIBRARY EVENTS MODEL

-can make

1..1

0..*

-consist of

0..*

1..1

-is registered by 0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

4.8 GUI design

Nothing in the design of our GUI is changed. All the GUIs still look the same way. See appendix A.

4.9 Plan Coding

To reach the Milestone of Elaboration E2, we need to reach persistency of our Artist class. This means coding of all the layers from Database to GUI. We start out by creating the DB-table Artist with the parameters. Next we program the controllers and the DB-facade. As the last thing we create the GUI to handle it all. All group members participate in the programming as this is something we not programmed so much before. So it is important for all members to really learn and the experience of programming this.
4.10 Coding of classes

4.10.1 DB-Facade
The purpose of using a DB-facade is to hide all the things going on establishing the connecting to the database. The facade in our system consists of three classes, and actually you can say that it is only two. Because we are only going to program the two classes DMC_Library and DMC_Connector. The JDBC/ODBC connection as made by installing a driver on the computer establishing this connection. To show how the classes work and how they establish the connection we will show some pieces of our code.
DMC_Library

Below is shown the contructor in DMC_Library. The constructor consists of 4 datafields – login, passwd, url and driverClass. “Login” and “passwd” are used for logging into the database. “Url” shows the path of where to find the database, and the last data field “driverClass” shows the driver used for establishing connection. In this case a JDBC/ODBC driver from Sun.
[image: image33.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pe@edaxneaoc|[ad|om=d|rvpaneesasae
IFlesystems x| | Rurtine B CMC_ArtstsaL_x (@ DWC_Comector <] [6 OMC_Lbrary =] D]
O Fiesystons B(E: = s =
D et o[L Sy [*x>zlewinx[zT]e
B3 RE 3|+ past modifiea 2003.10.125, 2005.11.25 |
AdnistrationaUl P IR F e ——
At sl
ArstadnaUL © package F1E;
Aniscataon -
ArtDBAdnGU S Ramort Jeva se1.
ae_aissal s
QM porrowersalL 10 public class DHC_Library (
CalendarCaleltor n rivate Comection con - mills
OHC_Conector 1 private Scavement stac - mils
oM Lbrary 1 private Soring login, passvd, wrl, driverClasss
Emplyee 14
B EmployesadnGL 15 /pezanit construotor
[EmployesCatalog 16 DUC_Library ()
Keyboard 18 ¢ Login = "evsEAs
B LibraryHandir 18 passvd = "masterkey';
[E NumberCalculator 13 el = *jdbe:odbe: FLEadM ;
B Reservation 20 ariverClass = "sun.jdbe.odbe. JdbeOdbeDriver®;
B Reservationadnall 2)
[ReservationCatalog 22
B Room 23 /s Customized construsctor
B RoomadmaUL 20 DMC_Library(String wrl, String login, String passwd, String driverClass)
B RoomCatsiog 258 f this.url = wrl;
Fledstabese 2 thio. Login - Logins
B anistadmGUr 27 this.passwd = passwd;
 EmployesAdmGUT 28 this.driverClass = driverClass;
EmployeeCatsion 2)
& H:\SW-Construction|Solutions 30
o 2w 31/ Setablish comestion ami statenent
2@ blic void connect {1 (
3 by
o Class. forNane (ariverciass) s
a con = Driverlianager. getConnectionfurl, Login,passud) ;
o “tut~ con.createstatement (15
a7)
2 cateh (java. Lang. Classllot FoundBsceprion ox)
s0:1 [

Bistart] & @ (@ ») H\2Semester Project Fantasy Library v2.4 - ... [NetBeans IDE 3.6 - Pr.

[

<« 10270

To establish the connection and creating the statement we make a method called connect() with a try/catch sentence. In this connect() method we get the connection based on the url, login and password, and then we create the Statement based on the connection.
If there are any exceptions they are caught and printed on screen.
[image: image34.png]X|
=18] x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[peseda|xnea2c|[adjam=b|[»s

IFiesystems > || Rurtine [CHC_AiSOL x| [DNC_Comnector x| [8 DMC_Lioary x| Ao
(O Fiesystems [omc torary a2 oo|n x|
£ HiSemester ProjectiCodng |
= e 23 // Customized comstructor
AdminiatrationGUL 24 DUC_Library (String url, Sering login, String passvd, String driverclass)
artist 258 [thisourl = url;
ArtistAdnGLL 26 this login = Logins
ArtistCatalog 27 this. passvd = pazsvd;
ArtistDBAIGLL 28 this.ariverClass = driverClass;
MC_artistsL 5 y
MC_Bonomersal o
ColendarCalculaor 31/ Establich commection and statement
DMC _Connector azg public void comnect () (
DMC Library ® by 1
Enployee as Class. forNane (driverClazs) s
B EmployeeAdnaut 35 con = DriverManager.getConmection(url, login,passvd);
B EnployesCataiog as stut= con.createStatenent) ;
Keyboerd =)
B, LibraryHandier a8 catch(java. Lang. Classliot FoundException sx)
(B MmberCalulator e "
B Reservation 40 System. err.print('ClasslotFowndException: "1;
B ReservationadmaLl @ Systen. err println(er. gettiessage ! 15
[B ReservationCatalog ® y
B Room a3 caton(saiExceprion ex)
B Roomadnall o f
B _RoomCatalog a5 Systam. srr print(*Comestion refusad: ')
3 FLEdatabase 46 Systeu. err.printlniex.getMessage());
B artistacmaur ® Closer;
EnployeeadnGUl ®)
EnployeeCatalog ® y
S HisW-Constructonlalutons o
o 2 E
52 public Statement getStatement ()
52 (return stac;)
o
55
56 public Connection getConnection()
og (xeturn con;)

se1 o]

<« 10298M

Bistart] & @ (@ ») H\2Semester Project Fantasy Library v2.4 -Mi...| 8] Document1 - Microsoft ... [NetBeans IDE 3.6 - pr..

[

The methods getStatement() and getConnection() returns the statement and the connection so we can get it from other classes.
[image: image35.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pesede|xnemodcfad|fas=d|[vspaoneesasae
IFiesystems x| | Rurtine [CMC_AMSISGL x| @ DWC_Comectar x| [6 DN Ltrary | Ao
@ Fiesystems o oo e p om = L =
2 & ot ooty |1 [Far2[ex(zx|2a]e
2 e = o con erestestaterant (17 =
Jr— B)
e o Catch(3ava. L. Slassor ot scepsion o)
vt s l
ArtistCatalog 40 System.err.print {"ClassNotFoundException: "};
ArtistDBAdMGUL 4L System.err.printlniex.getdessage ()} ;
Qv sl «z)
v pormes, |43 IR ———
Ceniucaiiaer |34 ¢
oM Cornctr i ersten. r print "Commacrion refuzed: s
oM vy M erten. ar printin{os. getiaseage 11
Erviyee e clomatt;
B EnployesadnGul 8 y
B EnployesCatslog 49)
etnd o
B, LbraryHandier 51
| Chishinty « R —
B Reservation =0 (return stacs)
B Reservationadmaul 4
B ReservationCatabog 55
& hom w pubtic Commacrion getComactiont)
B RoomadmaUL 28 { return con)
B RoomCataby 58
FlLEdatabase 59
B rtstadmut 60 // Close comnection and statement
 EmployesAdmGUT 61 public void close(} {
Enpleyeecata a e
‘@ H:SW-Construction|Solutions. &9 { if (stat != null) stut.close();
o 7 “ it teom 15wl comctosarts
«)
« [T ——
o (Syetan. axs printinies. getlessage 11/)
“)
M
%0 /) o sibrary
n
11:27 |1mg|

il

Wistart| & @ (& > [0z semester Project

Fantasy Libary v2.4- Mi...|] pocument1 - Microsoft ... _|[B NetBeans 1DE 3.6 - Pr..

<« 1044

The last method is the close() method. If the connection and the statement are both null they are closed, otherwise an exception is thrown, and printed.

[image: image36.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pesede|xnemodcfad|fas=d|[vspaoneesasae
IFiesystems x| | Rurtine [CMC_AMSISGL x| @ DWC_Comectar x| [6 DN Ltrary | Ao
@ Fiesystems — . L =
i | N Y [xa=a[en|nx|aale
2 e = o con erestestaterant (17 =
Jr— B)
e o Catch(3ava. L. Slassor ot scepsion o)
vt s l
ArtistCatalog 40 System.err.print {"ClassNotFoundException: "};
ArtistDBAdMGUL 4L System.err.printlniex.getdessage ()} ;
Qv sl «z)
v pormes, |43 IR ———
Ceniucaiiaer |34 ¢
oM Cornctr i ersten. r print "Commacrion refuzed: s
oM vy M erten. ar printin{os. getiaseage 11
Erviyee e clomatt;
B EnployesadnGul 8 y
B EnployesCatslog 49)
etnd o
B, LbraryHandier 51
| Chishinty « R —
B Reservation =0 (return stacs)
B Reservationadmaul 4
B ReservationCatabog 55
& hom w pubtic Commacrion getComactiont)
B RoomadmaUL 28 { return con)
B RoomCataby 58
FlLEdatabase 59
B rtstadmut 60 // Close comnection and statement
 EmployesAdmGUT 61 public void close(} {
Enpleyeecata a e
‘@ H:SW-Construction|Solutions. &9 { if (stat != null) stut.close();
o 7 “ it teom 15wl comctosarts
«)
« [T ——
o (Syetan. axs printinies. getlessage 11/)
“)
M
%0 /) o sibrary
n
s8:1 [

il

Bistart] & @ (@ ») H\2Semester Project Fantasy Library v2.4 -Mi...| 8] Document1 - icrosoft ... |[{E] NetBeans IDE 3.6 - pr..

<« 1052 M

DMC_Connector

The other class in our DB-Facade is DMC_Connector. This class consist of two methods – Connector() and Closing().
[image: image37.png]EEIES
Mo Gt Uew e Ould bebug Vesonng ook Wndow e
[pesede|xnemodcfad|fas=d|[vspaoneesasae
sy x B onstsaL x| B owe_cormactr x| DI
(@ Fiesystems pree—— ST 2
5 i Semestr ot To_cmes [Eersiele vl ol
56 RE T/ DM Commastor Version 1.6
adnat 4|+ 231 sighte rasarved
ArtistCatalog -
ArtistDBAdMGUL € package FLE;
CMIC_ArtistSQL 7
[¢ Gamport 3ava. a1 s
CalendarCalculator 2
v 10 pubtic class DnC_Comasror (
=i u pratacted Comartion con - mils
B e 2 Drotacted DIE Linrary duss
B Employeecatalog 1
Keyboard 18
B trommiier 16 /) Sstabiioh comection s stetensnt
B rtonsor o protected roid commacter (
B ron 1 e < o DU g 015
B ReservationadnGUl 12 anc.connect (1 ;
B romamee e Con <G getComnactiont]
g o o i - dae_gettatenant (17
B RoomadmaUL 22
B RoomCataby 23 y
FlLEdatabase 24
B e = protected weid closingl)
¥ EmployesAdmGUT 28 {4 duc.closeli;
EmployeeCatalog 2
@ Hi\sW-ConstructioniSolutions 28 i
@ zikd 2
w0 /7 e comastor
S
10:23 |Img|

Bistart| @ @ (& > L) H2 Semester Project

Fantasy Library v2.4 -Mi...| 8] Documentt

T [

[

<« 1056 M

Connector() is creating an instance of DMC_Library, and from DMC_Library it gets the statement and the connection. Closing() is closing the connection also based on the instance of DMC_Library.

The controller classes on top of the DB-Facade in our architecture then extend the DMC_Connector class and to then when opening and closing the connection it is easy to just call connector() and close().
4.11 Unit testing

As we have not yet learned any real unit testing methods we cannot perform any. The only way we can test our program is to open it and test if all is functional. We tested out our new DB-GUI and we found that everything works fine. All is functional.
4.12 Revise project plan & risk list

[image: image38.emf]Elaboration, E1 Elaboration, E2

Construction

10-11-2005 16-12-2005

02-12-2005

GUI File milestone

09-12-2005

GUI Database Design milestone

16-12-2005

GUI Database milestone

At this point of time we don’t have any changes to our project plan. As stated in the project plan next phase will be construction phase ending our project. We have not encountered any new risk in Elaboration E2.

4.13 Develop iteration plan for Construction

Below is shown the iteration plan for Construction as we expect it to look like. Working hours are estimated.
[image: image39.emf]ID

Task Name

Duration

Work

Start

1

Construction

4 days

25 hrs

Mon 12/12/05

2

Revision on Elaboration E2

1 day

1 hr

Mon 12/12/05

3

Analysis and Design

1 day

2 hrs

Mon 12/12/05

4

Class Design

1 day

2 hrs

Mon 12/12/05

5

Implementation

4 days

20 hrs

Mon 12/12/05

6

Relational Database Implementation

1 day

5 hrs

Mon 12/12/05

7

Plan coding

1 day

1 hr

Mon 12/12/05

8

Coding of persistent classes

4 days

12 hrs

Mon 12/12/05

9

Unit testing

4 days

2 hrs

Mon 12/12/05

10

Management

1 day

2 hrs

Thu 12/15/05

11

Revise the project plan

1 day

1 hr

Thu 12/15/05

12

Revise the risk list

1 day

1 hr

Thu 12/15/05

S

M

T

W

T

F

S

Dec 11, '05

IDTask NameDurationWorkStart

1Construction4 days25 hrsMon 12/12/05

2 Revision on Elaboration E21 day1 hrMon 12/12/05

3 Analysis and Design1 day2 hrsMon 12/12/05

4 Class Design1 day2 hrsMon 12/12/05

5 Implementation4 days20 hrsMon 12/12/05

6 Relational Database Implementation1 day5 hrsMon 12/12/05

7 Plan coding1 day1 hrMon 12/12/05

8 Coding of persistent classes4 days12 hrsMon 12/12/05

9 Unit testing4 days2 hrsMon 12/12/05

10 Management1 day2 hrsThu 12/15/05

11 Revise the project plan1 day1 hrThu 12/15/05

12 Revise the risk list1 day1 hrThu 12/15/05

SMTWTFS

Dec 11, '05

4.14 Conclusion on Elaboration, E2

Activities finished

In Elaboration E2 we detailed, designed and implemented more relevant use cases to the system. We did an architectural analysis and found the architecture we wanted to use for creating persistency – GUI to DB – in our system. GUI Database Design Milestone was reached, as we now have our system up and running on all use cases concerning Artist.
Quality of artifacts

We think we have reached a satisfying quality of our artifacts as we now have a system up and running from GUI to Database.
Problems faced

In this phase of Elaboration we didn’t really face any big problems. Only some very small problems concerning the architecture of our persistent system were faced.
Problem solutions

The small problems faced were in a quick manner solved on-the-fly.
5. Construction phase

5.1 Purpose
The purpose of construction phase is to add persistency to the rest of our use cases. The GUI Database Milestone is reached when all implementation of use cases that works from GUI to Database in finished.
5.2 Overview of activities

In Construction phase, we will do the following activities:
· Revision on Elaboration, E2

· Design Class Diagram
· Relational Database Implementation

· Plan coding

· Coding of classes

· Unit testing
5.3 Revision on Elaboration, E2

We have not found anything in Elaboration E2 that needs a change. Therefore no revision was done.

5.4 Design Class Diagram
We have designed a new design class diagram with the new classes for handling persistency and establishing connection to database. The new diagram can be found in appendix B.
5.5 Relational Database Design

The purpose of this activity is to implement our design in a Relational Database (RDB).

We are going to describe and do the following activities:

- Categorize the classes and transform into relations

- Transform associations and generalization structures into relations

- Define and describe the relations, attributes, keys and domains

- Create a Database Model Diagram

- Normalize the tables

5.5.1 Categorize the classes and transform into relations
According to their responsibility we have categorized to classes the following way:

Presentation classes, i.e. GUIs:

AdministrationGUI, ArtistAdmGUI, RoomAdmGUI, EmployeeAdmGUI, ReservationAdmGUI

Interface classes to technical devices and/or other systems:

None

Controller classes:

CMC_ArtistSQL, CMC_EmployeeSQL, CMC_RoomSQL, CMC_ReservationSQL

Catalogs/Collection classes with responsibility of holding other classes:

ArtistCatalog, EmployeeCatalog, RoomCatalog, ReservationCatalog

Data classes holding persistent data/information:

Artist, Employee, Room, Reservation

The CMC-classes are the classes that have been transformed from the Catalogs/Collections category, which are handling the access and sql-queries to the Database.
The classes in the data class category are holding the information that is to be put into the RDB and they will be transformed directly into relations/tables.

All the classes in the data class category with persistent data are taken directly as candidates to relations, giving the following preliminary list of relations:

Relation List
	Fantasy Library Events
	No.1

	Version 1.0

	Date
12.12.2005
	Initials
<LTD>

	Relation name
	Definition/Description
	Aliases
	Remarks/

Occurrences

	Artist
	Person who can rent rooms at the FLE
	Customer
	Many

	Employee
	Person who works at the FLE
	
	Many

	Reservation
	Reservation of Room by an Artist
	
	Many

	Room
	Item for renting/reserving from FLE
	
	Many

Based on this relation list we will now discuss the different possibilities of relationships/associations and possible changes in the interpretations of our design diagram.

5.5.2 Transform associations and generalization structures into relations
One-one (1-1) structures
There are no 1-1 structures.

One-many (1-*) structures

Here we have Artist-Reservation, Room-Reservation and Employee-Reservation. These one-may associations are transformed into relations. During this phase we insert foreign keys to the weaker part of the relation, also known as the many part in the association. This means that the connection is now represented by the foreign keys.
Many-many (*-*) structures

There are no *-* structures.

As we don’t have any classes with inheritance, we will not do any transformation of generalization structures into relations.

During this transformation nothing has been changed in our design diagram.
5.5.3 Define and describe the relations, attributes, keys and domains

Database relations:

From the above discussion we have clarified the relationships/associations giving the following list of relations:

Relation List
	Fantasy Library Events
	No.1

	Version 1.0
	Date
13.12.2005
	Initials
<LTD>

	Relation name
	Definition/Description
	Aliases
	Remarks/

Occurrences

	Artist
	Person who can rent rooms at the FLE
	Customer
	Many

	Employee
	Person who works at the FLE
	
	Many

	Reservation
	Reservation of Room by an Artist
	
	Many

	Room
	Item for renting/reserving from FLE
	
	Many

Relationship List
	Fantasy Library

Event System
	No. 1
	Version
1.0
	Date
13.12.2005
	Initials
<LTD>

	Relation
	Association
	Relation
	Multiplicity
	Participation

	Artist
	Can make
	Reservation
	1..1 to 0..*
	O:M

	Reservation
	Consist of
	Room
	0..* to 1..1
	M:O

	Reservation
	Is registered by
	Employee
	0..* to 1..1
	M:O

Shorts used as follows:
	Participation

	M: Mandatory

	O: Optional

The table is to be read like this:
Reservation has mandatory participation in this association – means that Reservation cannot be created without an Artist.

Artist has optional participation in this association – means that Artist can be created and exist without any Reservation.

Attributes and keys

We have the following relations/tables and attributes:

Relation Attribute List
	Fantasy Library

	No.1

	Version 1.0

	Date
13.12.2005
	Initials
<LTD>

	Relation name
	Attributes

	Artist
	artistId, cprNo, name, address, phone, email, regYear, state

	Employee
	empNo, cprNo, name, address

	Room
	roomNo, roomType, description, rentingPrice

	Reservation
	reservationId, artistId(FK), roomNo(FK), reservationDate, eventDuration, eventType, empNo(FK)

The primary keys are marked as underlined and most like artistId, empNo and roomNo are evident. In Reservation we decided to use an attribute reservationId as primary key to uniquely identify the row, and therefore ensure proper normalization. Normalization will be described later. artistId, roomNo and empNo are put into Reservation as foreign keys, because they refer to the primary keys in the other relations.
Specification of attributes and domains
Relation Attribute Description List
	Fantasy Library

Event System
	No. 1

	Version 1.0

	Date
13.12.2005
	Initials
<LTD>

	Relation
	Attribute
	Key
	Description
	Default Value
	Allowed

NULL
	Composite

	Artist
	artistId
cprNo

name

address
phone

email
regYear

state
	PK

	Uniquely identifies
	2005

Active
	No
No

No

No

No

Yes

No

No
	No

Yes (critical)

No

No

No

	Employee
	empNo
cprNo
name
address
	PK

	Uniquely identifies
	
	No
No

No

No
	No

No

No

Yes

	Room
	roomNo
roomType
description
rentingPrice
	PK

	Uniquely identifies
	
	No
No

No

No
	No

No

No

No

No

	Reservation
	reservationId
artistId

roomNo

reservationDate

eventDuration

eventType

empNo
	PK

FK

FK

FK
	Uniquely identifies

Refers to Artist
Refers to Room
Refers to Employee
	
	No
No

No

No

No

No

No
	No

No

No

Attribute Domains
	Fantasy Library

Event System
	No.

1
	Version

1.0
	Date
13.12.2005
	Initials
<LTD>

	Relation
	Attribute
	Data Type
	Set of Value
	Format

	Artist
	artistId

cprNo

name

address

phone

email

regYear

state
	VarChar(5)

VarChar(10)

VarChar(30)

VarChar(50)

VarChar(8)

VarChar(30)

Numeric(4)

VarChar(7)
	0-9 digits

0-9 digits and cpr-rules

Any

Any

0-9 digits

Any

0-9 digits

Active, Passive, Illegal
	None

xxxxxxxxxx

None

None

xxxxxxxx

None

xxxx

	Employee
	empNo

cprNo

name

address
	VarChar(2)
VarChar(10)

VarChar(30)

VarChar(50)
	0-9 digits
0-9 digits and cpr-rules

Any

Any
	None
xxxxxxxxxx

None

None

	Room
	roomNo

roomType

description

rentingPrice
	VarChar(2)
VarChar(15)

VarChar(30)

VarChar(7)
	0-9 digits
Auditorium, Meeting Room, Exhibition Room

Any

0-9 digits
	None
None

None

	Reservation
	reservationId

artistId

roomNo

reservationDate

eventDuration

eventType

empNo
	VarChar(5)
VarChar(5)

VarChar(2)

VarChar(8)

VarChar(7)
VarChar(10)

VarChar(2)
	0-9 digits
0-9 digits

0-9 digits

0-9 digits

4 hours, 1 day, 1 week, 1 month

Meeting, Exhibition, Lecture

0-9 digits
	None
None

None

xxxxxxxx

None

5.5.4 Create a Database Model Diagram
Our class diagram was used as a starting point and based on the relations/relationships we have found, we can now draw the database model diagram.

	
[image: image40.emf]Artist

PK artistId

cprNo

name

address

phone

email

regYear

state

Employee

PK empNo

cprNo

name

address

Room

PK roomNo

roomType

description

rentingPrice

Reservation

PK reservationId

FK2 artistId

FK1 roomNo

reservationDate

eventDuration

eventType

FK3 empNo

DataBase Model Diagram v1.0

5.5.5 Normalize the tables
To avoid redundancy of data in our database we will normalize the tables based on the rules of normalization.
To start out a table is always on 1st Normal Form (NF), perhaps consisting of more than one primary key. Then when the primary key is just one attribute and this attribute uniquely identifies the row it is automatically on 2nd NF, and then if no attributes determines other attributes the table will be on 3rd NF.
Our supervisor Michael had a little jingle to use when normalizing, sounding a lot like a very famous sentence used when the American president is sworn in:

1NF:

The key

2NF:

The whole key

3NF:

And nothing but the key
Our four tables are all on 3rd NF, because there is only one primary key in the tables and all attributes are uniquely identified by the primary key.
5.6 Plan coding

To reach the GUI Database Milestone means that we have to code the rest of our use cases – because we need to get full persistency in our program.

We start out by creating the 4 database tables. This is done with SQL-sentences in the Database program InterBase. All the SQL-sentences used for creating the tables are to be found in appendix C.
Next thing to do is to code the classes so they are able to handle persistency. These classes are the CMC classes (CMC_ArtistSQL, CMC_RoomSQL etc.). And as the last thing we program the GUIs that are now working on the CMC classes.
We decided to all participate in coding these classes as we can all learn a lot from programming something we have not done before.

5.7 Coding of classes

In this chapter we will explain some of the code from our new CMC classes handling the SQL-sentences for getting information out of our database. We decided to use CMC_Artist for this purpose.

To start out we created a new method, toDBString(), in the model class Artist. This method holds the SQL-sentence for showing all information about Artist.

[image: image41.png]=181 x|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pomeec|[xeensec|as|n B EErEEREEr TR
Iriesysons e e, o [;g|
O Flesystems <o selecton> fxa =2 w|nx|ET|e
5@ H:\2.Semester Project|Coding This naue = nauwe;
= e 25 this address = address;
AdniigzationLL = =
e = thisenail = enatl;
ArtistAdmGUI 26 this.regvear = ragtear;
ArtistCatalog 27 this.state = stave;
aniDBAdmGUL |-
anc_aamsoL b
CMC_Borrowersql. Py public String toString () {
ColendarCacator o “reise 4 0+ arciscia +
OMC Conestor @ “Cprtio: * 4 e +
OMC Lbrary ® “Wane: " + name +
Enployee = “hadrass: * + addrass +
B EmployesadnGU e “Phons mo: * + phone +
[EmployeeCatalog 26 “E-mail: * + email +
Keyboard E “Year of Ragistravion: © + regTasr +
B LibraryHandir s “State: * + stave);
B NumberCalcuator o y
B Reservation o
B Reservabionadncut L8 pwite sering tomsteing 0 (
B reservatonCataog ® etun (e aedeeTa b
B Room P VAT cprlio +
B RoomadmGLI P AT+ name +
[B RoomCatalog a5 VA addrass +
FiEdtabase p VA4 poms +
B artistacmaUr 47 VAT email +
¥ EmployeshdmGUL 4 V4 regtear +
EnployesCatson 4 Al e seare t :
@ Hisw-ConstructionSolutions @)
© i &
520 public sering gethrtistIal) (
s return arciseas
sl
s
S public void sethrtistTa(sering arciseIa) (
L1 e

Bistart| & @ (@ » 5] Fantasy Library v2.4-Mi... | 5] Document2 - icrosoft ... | [£] DataBase Model Disgram.. ||] NetBeans IDE 3.6 - r..

H

« 1zzem

Next we created the CMC_ArtistSQL handling the CRUD SQL-sentences on Artist. As mentioned earlier on we use a short living connection to our database, by calling the connector() method inherited from DMC_Connector we open up the database connection.

Next thing we do is that we make a try/catch sentence. Here we have the SQL-sentence that is used when inserting into a table in the database. The artist object is turned into a string with the method .toDBString() just mentioned. And then with our statement we execute and insert the Artist information into the Database.
[image: image42.png]=181 x|
Fie Edt Vew Project Bukd Debug Versoning Tods window Hep
[pe@daxnsaoc|[aalame |
IFiesystens__ [IFurfie & ovc_ansisal | K|
(@ Fiesystems [o ancatisao S * e == e oae |
5@ H2.Semester ProjectiCoding 7 = = - =
5a e i
dministrationGLI 13@ /0 Crestes s new imstance of CMC ArtistSQL /.
At 140 pwiic cuc_metistseLt) (
ArtadnGul - [
Arstcatabg 1s
ArtistDBAIMGUT 17 public void addArtistDB(Artist airtist)
e _pnitsoL o i
Qe porrowersaL s connectox (15
ColsndarCacitor @ P
oMC,Comnector P ¢
o Lbrary 2 String arcisinsere = “insers inco Arcise values (© 4 abreise. toDdStingl) +
Employee 23 stut. executeUpdate (artistInsert);
B Employesadnaur e)
[EmployeeCatalog 28 catch (SQLException ex)
Keyboard 2 «
B, LbraryHandier o= Systen. err.println(ex.gettessage (117
B NumberCalulstor 20 closing();
B Reservation e)
B ReservationadmGul 20 closing();
B ReservationCatslog P)
B_Room a2
B RoomadneUr 530 public Arcist getRrtistDB(Sering akreiseId) {
B RoomCatalog 34 String arcistId, cprlo, name, addrass, phone, suail, state;
() FlEdatabase S int regYear;
B artistadmel ol hreise arcisc = mals
 EmployesAdmGUL .
Encloyescatag o connectox (1
@ HisW-Constructonoltons o
@ zi © String arciseSelec = “select * frou Artisc vhere arviscid +anreisena s
Py
@ ey (
Y ResulcSer s - scuc.executeluery (arciseSalecc) s
& SECrementil 1 (
P arcaseIa = rs.getstring(l)s
el
Tazr o)

Bistert| & @ @

Fantasy Library v2.4 - Mi...| [£] DatsBase Model Disgran. .|| NetBeans 10F 3.6 - pr.

ik

« n7em

In the ArtistDBAdmGUI we then have an instance of CMC_ArtistSQL, and from the GUI we then call the methods used for inserting.
[image: image43.png]=18 x|
2|

Fle Edt Vew Projct Buld Debug Versoning Tooks Window Help

[pe@edaxneaoc|[ad|om=d|rvpaneesasae

IFiesystems > || Rurtine [OHC_AISOL x| B AMistDBAGGUI | 5 AMEIDBAGNGLIForm) | Ao
(O Fiesystems [0 artatopadnur Fl=a =2 o|n x|
5@ H2.Semester ProjectiCoding T STETTmETETT T =
B8 RE 23]

AdnistrationaUl a0

At 916 pblic void createmrtistil (

ArtistAdmGLL 32 artistInfokrea.setText ("'} ;

Artscataon 3

ArtistDBAMGLI a4 String arcistId = arcistIdTF.getTest();

CMIC_ArtistSQL S String cprilo = artiscCprNoTF.getText () ;

HC BorramersaL 26 String nane = arcistlansTF.getTest () ;
CalendarCaluator a7 String adaress = arvistAdiressTF.getTest();
DM Conector 2 String phone - arvistPhoneTF. getText (15

OHC Lrary 3 Sering ensil = artistEnailT¥.getText(l;
Employes 40 String reg¥earStr = artistRegYearTF.getText();
EmployeeadnaLl a int regtesr = Integer.parselnt(regvaarscr);
EmployeeCatalog a2 String state = artistStaceTF.getTexti);
Keyboard ®

Lbrarytandier 4 4 = chchriist.getRrtistDE(areistia);

NumberCallator -

el e

it fa == mal) (
Reservation e 4 = cuchreist. getRrtistCprNoDB (cprlio) ;
ReservationadnGL w I
ReservationCatalog a8 2 = new Rrtist (arciseld, cprlio, name, address, phons, email, regiear, stacel;
Room a5 cuchreist addRrtisthbial;
RoomAdmGUL 50 artistInfokrea. setText (a.toString()];
RoonCatalog s resetrielas(i;
) Fledatabose . y
B artistacmaur % eloe
¥ EmployeednGUL 54 artistInfohrea setText ("Artist with cprlio: ' + cprlo + already exist!");
EnployeeCatalog 55)
S Hisw-Constructonisolutions = y
= zid 57 elee (
e arciscinfoirea sebText("Arcist vith areistld: * + arciseld + ° already exise!®);
55)
&0 adsustimbers) ;
a1
e)
B
z5:6 ||

ik

Bistart| & @ (@ » 5] Fantasy Library v2.4-Mi... | 5] Document2 - icrosoft ... | [£] DataBase Model Disgram.. ||] NetBeans IDE 3.6 - r..

« nzPm

5.8 Unit testing
As we have not learned any real testing methods the only way we can test our program is to do different scenarios for finding errors in the program. These small tests we do by entering wrong information in the program and then see how the program reacts, and if it allows errors. And by doing it this way we can find errors and correct the errors in our code.
5.9 Conclusion on Construction
Activities finished

The activities we finished were design of the new classes and relational database design which included transformation of associations into relations, defining and describing the relations, attributes, keys and domains. Finally we created the Database Model Diagram.
In Construction we reached the GUI Database Milestone. The objective of the milestone was to have a fully working system from GUI to Database. This objective we have fulfilled.

Quality of artifacts

We think the quality of the artifacts finished in construction is good. All database tables have been normalized to 3rd Normal Form which is good, and all parts of our program work.
Problems faced

In Construction we didn’t face any really big problems. Possible problems we removed in end of Elaboration E2 when we made the Artist work all the way from GUI to DB. This we have found was a good way to minimize the risk of possible problems in construction.
6. Project Conclusion
This project was the first real project we, as a group, have made. Until finishing this project we had never tried to develop a software system all the way from design to having a final software product. The purpose of this project was of course to develop a software system, but on the other hand it was just as much about learning and getting experience as a group.
This project has given us a lot more experience in:

· Project Management

· System Development

· Teamwork

In this conclusion we will describe our final product, some future product considerations and finally we will go further into details on the different aspects in which we have gotten more experience.

6.1 Final Product

Our final product is a single-user system used for administrating reservations of rooms rented out at the Fantasy Library Events. With our system, the FLE is able to administrate renting out of rooms and all information about customers, employees and rooms at the FLE.
Different user interfaces ease the understanding of the system and makes it very user friendly. The boundary of the system goes to creating a reservation on a room.
Our system is missing an edit function – due to lack of time and we also considered it not so important. Automated numbering of artists and reservations we also discussed having in our system, but this idea was also dropped due to lack of time and downsized importance to the system.
Of course an administrative system like ours should be able to be used for doing more advanced stuff. These future product considerations we will now describe.
6.2 Future product considerations

In future it is possible to integrate many more advanced things to our system. For the reservation part of the system these more advanced functionalities could be; a billing system for renting, an advanced calendar function for a total overview of room reservations and automated numbering of artistIds and reservationIds.
Other future functionalities to system could be; integrate our system into existing library system, a homepage where customers can search for events and available rooms and then do the booking online. The opportunity of reserving rooms online we think is almost a “must-have”, as it will ease reservation administration a lot and also because it is so common now-a-days to have it.
6.3 Experience
During this project period we have learned a lot of things and gotten a lot of experience in developing a software system single-handed. Below we will go more thoroughly into the categories in which we have gained experience.
6.3.1 Project Management

This project was the first project where we have done project management. This of course means that we gained a lot of useful experience in this subject. At the start of the project we developed a project plan with milestones. Having this project plan and all the time knowing what to do in each phase and iteration made it a lot easier for us to reach the milestones.
However, due to lack of experience in project management, we found that design and implementation, we did a lot faster than expected, so at the end of our project we had to alter our project plan. This made it possible to add one more phase to the project; namely Construction phase.
Before going into this project we found that project management and planning was not the most important subject. We have now learned that planning is a very significant activity in the software development process, and good management is a key activity to ensure a good process quality and a good final product.
6.3.2 System development
Developing this system has giving us a lot of experience in using Unified Process as our development methodology. Unified Process has taught us to work iteratively i.e. step by step. We have learned how to specify requirements and design software from the bottom.
We also learned that it is important to do implementation along with design, because having one use case fully working makes implementation and design of the rest much easier and minimizes the risk of errors.

6.3.3 Teamwork

Doing a project of this scale and with many relatively new things we have found that team work is absolutely necessary to achieve a good quality product.
During the project period we have had many group discussions in order to clarify what, when and how to handle obstacle occurring underway. Discussions helped us determine the best solution to the problem faced. By letting all group members act as all the different UPEDU-roles, problems are looked at with different point of views and therefore different solutions to the problems are found and then discussed. Discussions help finding the best solution to a problem.
In a group people will always has different levels of skills in the subjects. Teamwork we think has helped us improve our personal skills and also helped improving our skills as a group.
[image: image44.png]

Group 2: Lasse L. Nielsen, Tatjana Ivancova, Dennis K. Nielsen
Page 5 of 55

_1195281311.vsd
:Secretary

:System

startArtistRegistration()

enterArtistInfo()

artistInfo

confirmArtistInfo(artistId,cprNo,name,address,phone,e-mail,regYear,state)

Static Structure

_1195384566.vsd
+confirmArtistInfo()
+artistToString()
+toString()

ArtistCatalog

Static Structure

+confirmEmpInfo()
+empToString()
+toString()

EmployeeCatalog

+confirmRoomInfo()
+roomToString()
+toString()

RoomCatalog

-artistId
-cprNo
-name
-address
-phone
-email
-regYear
-state

Artist

-empId
-cprNo
-name
-address

Employee

-roomNo
-roomType
-description
-rentingPrice

Room

-reservationId
-artistId
-roomNo
-reservationDate
-empNo
-eventDuration
-eventType

Reservation

+confirmReservationInfo()
+reservationToString()
+toString()

ReservationCatalog

+createReservation()
+showAllReservations()
+resetFields()

ReservationAdmGUI

AdministrationGUI

+createRoom()
+showAll()
+resetFields()

RoomAdmGUI

+createEmployee()
+showAll()
+resetFields()

EmployeeAdmGUI

+createArtist()
+showAll()
+resetFields()

ArtistAdmGUI

-holds

*

*

-holds

*

*

-holds

*

*

-holds

*

*

LIBRARY PRESENTATIONS/VIEWS

LIBRARY COLLECTIONS/CONTROLLERS

LIBRARY EVENTS MODEL

-can make

1..1

0..*

{ Active, Passive,

 Illegal }

-consist of

1..1

1..*

-is registered by

0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

_1195893720.vsd
:ReservationCollection

data: List<Reservation>

cancelReservation(reservationId)

res = get(reservationId)

Loop i [reservationId != res.getReservationId();]

res

_1195970712.vsd
+confirmArtistInfo()
+getArtist()
+removeArtist()
+artistToString()
+toString()
+numberOfArtists()

ArtistCatalog

Static Structure

+confirmEmpInfo()
+empToString()
+toString()
+getEmployee()
+removeEmployee()
+numberOfEmployees()

EmployeeCatalog

+confirmRoomInfo()
+getRoom()
+removeRoom()
+roomToString()
+toString()

RoomCatalog

-artistId
-cprNo
-name
-address
-phone
-email
-regYear
-state

Artist

-empId
-cprNo
-name
-address

Employee

-roomNo
-roomType
-description
-rentingPrice

Room

-reservationId
-artistId
-roomNo
-reservationDate
-eventDuration
-eventType
-empNo

Reservation

+confirmResInfo()
+getReservation()
+removeRes()
+reservationToString()
+toString()
+numberOfReservations()

ReservationCatalog

+createReservation()
+findReservation()
+removeReservation()
+showReservation()
+showAllRes()
+resetFields()
+adjustNumbers()

ReservationAdmGUI

+EmployeeAdministration()
+ArtistAdministration()
+RoomAdministration()
+ReservationAdministration()

AdministrationGUI

+createRoom()
+findRoom()
+showAll()
+removeRoom()
+resetFields()
+showRoom()

RoomAdmGUI

+createEmployee()
+findEmployee()
+removeEmployee()
+showEmployee()
+showAll()
+resetFields()
+adjustNumbers()

EmployeeAdmGUI

+createArtist()
+findArtist()
+removeArtist()
+showArtist()
+showAll()
+resetFields()
+adjustNumbers()

ArtistAdmGUI

-holds

*

*

-holds

*

*

-holds

*

*

-holds

*

*

LIBRARY PRESENTATIONS/VIEWS

LIBRARY COLLECTIONS/CONTROLLERS

LIBRARY EVENTS MODEL

-can make

1..1

0..*

{ Active, Passive,

 Illegal }

-consist of

0..*

1..1

-is registered by

0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

_1195979910.vsd
Table

_1195895405.vsd
￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

�

�

Today�

�

�

�

�

�

￼ - ￼�

Interval Description�

_1195466277.vsd
ReservationCatalog

Reservation

res

data: List<Reservations>

addReservation(res)

confirmReservationInfo(
reservationId, artistId, roomNo, reservationDate, eventDuration, eventType, empNo)

Reservation res = new Reservation(reservationId, artistId, roomNo, reservationDate, eventDuration, eventType, empNo)

_1195283585.vsd
Sequence

ArtistCatalog

Artist

Artist artist = new Artist(artistId,cprNo,name,address,phone,email,regYear,state)

artist

data: List<Artist>

addArtist(artist)

confirmArtistInfo
(artistId,cprNo,name,
address,phone,
email,regYear,state)

_1195367586.vsd
:Secretary

:System

cancelReservation(reservationId)

reservationInfo

confirmCancelRes(reservationId)

_1195367800.vsd
:Manager

:System

showAllReservations()

list of reservations

_1195288158.vsd
￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

�

�

Today�

�

�

�

�

�

￼ - ￼�

Interval Description�

_1195282158.vsd
: Secretary

:System

enterReservationInfo()

reservation info

confirmReservation(artistId,roomNo,date,empNo)

startNewReservation()

_1194938249.vsd
-artistId
-cprNo
-name
-address
-phone
-e-mail
-regYear
-state

Artist

Static Structure

-roomNo
-description
-rentingPrice

Room

-reservationDate
-eventDuration
-empNumber
-eventType

Reservation

-can make

1..1

0..*

1..*

-contains

1..1

-empId
-cprNo
-name
-Address

Employee

1..1

0..*

EmployeeCatalog

ArtistCatalog

Fantasy Library

1..1

-has

1..1

-has

1..1

1..1

-has

1..1

1..1

-contains

1

0..*

RoomCatalog

-contains

1

0..*

-contains

1

0..*

ReservationCatalog

-has

1..1

1..1

-contains

1

0..*

-noOfSeats

Auditorium

-noOfSeats

Meeting Room

-size

Exhibition Room

_1195281109.vsd
:Manager

Sequence

:System

startNewRoomReg()

roomInformation

confirmRoomInfo(roomNo, roomType, description, rentingPrice)

enterRoomInfo()

_1195281159.vsd
:Manager

Sequence

:System

startNewEmployeeReg()

enterEmpInfo()

empInfo

confirmEmpInfo(empNo,cprNo,name,address)

_1195281035.vsd
Artist

Employee

Room

Reservation

Static Structure

Model Classes

ArtistCatalog

EmployeeCatalog

RoomCatalog

ReservationCatalog

Catalogs / Controllers

ReservationAdmGUI

AdministrationGUI

RoomAdmGUI

EmployeeAdmGUI

ArtistAdmGUI

GUIs

Static Structure

_1195021711.vsd
ArtistAdmGUI

ReservationAdmGUI

RoomAdmGUI

EmployeeAdmGUI

LibraryHandler

ArtistCatalog

ReservationCatalog

RoomCatalog

EmployeeCatalog

_1194420287.vsd
System

: Manager

Use Case

UC2:Register event
 reservation

UC3: Cancel event
reservation

UC16: Edit artist
information

Fantasy Library Events

:Secretary

UC4: Search for
Artist

UC5: Search for
Event

UC6: Register Room

UC7: Register
Employee

UC8: Register
closing of Event

UC9: Register
arrival of Artist

UC10: Register
payment of Event

UC 11: Register
sale of merchandise

UC12: List all
artists

UC 13: List all
rooms

UC 14: List all
reservation

UC17:Edit Room
information

UC15: List
reservations on room

UC18: Delete
employee

UC1: Search for
aviable room

UC19:Register
Artist

UC20:Edit employee

UC21:Edit event
information

UC22:Search
employee

_1194766412.vsd
Sequence

EmployeeCatalog

Employee

Employee emp = new Employee(empNo,cprNo,name,address)

employee

data: List<Employee>

addEmployee(employee)

confirmEmpInfo(
empNo,cprNo,name, address)

_1194766635.vsd
Sequence

RoomCatalog

Room

Room room = new Room(roomNo,roomType,description,rentingPrice)

room

data: List<Room>

addRoom(room)

confirmRoomInfo(
roomNo, roomType, description, rentingPrice)

_1194421112.vsd
￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

_1192949604.vsd
￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

_1194167212.vsd
: Secretary

Sequence

: System

startNewSearch()

enterDate(date)

list of rooms

