[image: image75.png]HANDELSSKOLE

 Group name: AHAH

Roskilde Business Academy Fantasy Library Events Supervisors: Michael Claudius
Members: Roy, Selina, Shane Susana Ruge

Project of Library Event
[image: image1.wmf]
Group: 3
Members: Roy, Shane, Selina
Class: Generelt d05-2q
11/9/2005
Content
61.0 Establishment

61.1 Purpose

61.2 Resources

61.2.1 Methodology

61.2.2 Time

61.2.3 Software

61.2.4 Hardware

71.2.5 Human resource

81.3 Project plan

91.4 Iteration plan

91.5 Team building

10Team contract

131.6 Risk list

141.7 Conclusion on this iteration

152.0 Inception 1st iteration

152.1Purpose

152.2 Vision

152.3 Business Model

152.4 Review actives

162.4.1 Elicit Stakeholders requests

162.4.2 Find actors and Use case

172.4.3 Structure the use case model

182.4.4 Detail a use case

182.4.5 Project plan

192.5 Supplementary Specification

192.6 Risk List

202.7 Iteration Plan

202.8 Conclusion on this iteration

223.0 Elaboration 1st Iteration

223.1 Purpose

223.2 Review Activity

223.2.1 Develop the domain model

233.2.2 Detail use cases

283.2.3 Architectural analysis

293.2.4 Use case analysis

293.2.4.1 Use case Diagram

293.2.4.2 System Sequence Diagrams

303.2.4.3Operation Contract

303.2.5 Use case design

323.2.6 Class design

323.2.6.1 Design class diagram

323.2.7 GUI design

333.2.8 Plan coding

333.2.9 Coding of classes

343.2.9.1 Start up

343.2.9.1.1 Model layer

343.2.9.1.2 Catalog layer

343.2.9.1.3 Control layer

353.2.10 Unit testing

353.2.10.1 Testing of model classes

363.2.11.2 Testing of catalog classes

373.2.11 Project plan, revised

373.2.12 Risk list, revised

373.2.13 Iteration plan for Elaboration 2nd iteration

383.3
Conclusion on this iteration

383.4 Glossary

394.0 Elaboration 2nd Iteration

394.1 Purpose

394.2 Review Activity

394.2.1 Extend the domain model

404.2.2 Detail relevant use case

434.2.3 Architectural analysis

444.2.4 Use case analysis

444.2.4.1 Use case diagram

444.2.4.2 System Sequence Diagrams

454.2.4.3 Operation Contract

454.2.5 Use case design

454.2.5.1 Sequence Diagram

474.2.6 Class design

484.2.7 GUI design

494.2.8 Plan coding

4942.9 Coding of classes

494.2.10 coding of persistent classes

504.2.11 Unit testing

504.2.11.1 Testing of persistent classes

514.2.12 Project plan, revised

514.2.13 Risk list, revised

524.3 Iteration plan for construction 1st iteration

524.4 Conclusion on this iteration

535.0 1st iteration of construction

535.1 Purpose

535.2 Review activities

535.2.1 Choice of RDB

535.2.2 Review of OOD model

545.2.3 Categories the and transform into relations

545.2.4 Transform associations and generalization into relations

555.2.5 Create a Database Model Diagram

565.2.5 Define and describe the relations, attributes, keys and domains

575.2.6 Normalize the table

575.2.7 Code persistent class

605.3 Conclusion of this iteration

616.0 Project Conclusion

616.1 Final product

616.2 Product for further thinking

616.3 System develop

626.4 Team working

626.5 Writing skill

We hereby give permission for this project report to be lent.

Signatures (by all group members): Selina, Roy, Shane, Jack
Date: 12.10.2005

Title:

Cue/Search words (max. 5 words.):
Summary (5-10 lines):

[image: image75.png]
1.0 Establishment

1.1 Purpose

 We try to understand problem definition; the problem is we are going to define a process of UP, Java and Database applying in the Fantasy Library Events. We are featuring team member’s qualification (professional, personal) and setting up Roles; we will gather team member’s information and time schedule to make team contract. Then we make plan for whole project. We will find some risks for inception phase.

1.2 Resources

1.2.1 Methodology
UML: This is the part of project will use Unified Modeling Language; we will use it to analysis and design. It is relation to program; it is an assurance for the program to be correct.
Programming Language: This part contains Java and SQL. There are languages bring the analysis and design events to be true with the cording.

UPEDU: This part is assistant us to consummate our project.
 Those are methodology we will apply in project. We will explain these principles by doing.

1.2.2 Time

 From week 39th to week 50th: We have 6 weeks openly time to do our jobs, rest of time lessons is on. We can work after class either.
1.2.3 Software

Net Beans—the most familiar soft ware we have had. developed by Sun Microsystems. Main tool for coding.

Easy Soft—bridge connects between Net Beans and Inter Base.
Inter Base –-which is we are applying SQL base on.
Microsoft Word –fantastic tool for producing documentation;
Microsoft Visio –software for drawing diagrams with wild range;

Microsoft Project – for project planning;
1.2.4 Hardware
The school provides us computers installed some system softwares: Net Beans, Database, and Microsoft Project.

The school also provides us use printers, scanners and copy machines.

At home we will use our own computer.
1.2.5 Human resource

Internal
Group members：Roy, Shane, Jack, Salina
Roy
Through this project I would like learn more knowledge, and learn more from our group members, I hope our group will be the best in our class, of cause I must work hard; He want to get 9.

I had been a department supervisor for four years. I have lots of experience of management, and he is very interesting in coding, I am good at typing. I am happy to work with our group.

Shane

No pains no gains this is what I believe in. I will put more effort on this project, no matter how hard it is. To achieve 9 is my purpose, but I want to be better. I will cooperate with my group member well. Mainly I am interested in coding. I enjoy running my program. I am familiar with computer hardware combination, and software operating.
Selina

I want to attain 7 or 8, that isn’t my mainly purpose, I want to review knowledge from 1st semester and learn how to cooperate with group members. Careful is my character.

My feature is good at typing and ms-office, and my personality is cogitation.

Jack

In this project, I want to pass project and get 8 point. From this project, I want to learn how to teamwork and increase experience. I like programming and good at GUL design, hardcopy. I worked in IBM about six months. I know about basic computer software and hard ware knowledge.

External
We have 2 external consultants.

Our two super Guiders: Teacher Michael Claudius Software Construct Supporter and System development;

 Teacher Susana Ruge will support us in Pre-analysis and design part.
Michael Claudius
E-mail: Claudius@rhs.dk
Phone number: +4540829344

Contact address: Roskilde Computer Science College. Barkkesvinget 67, 4000 Roskilde

 He is kind person with rich Software Construct experience. He enlightens us on different way to find solution. He got skill on leading such a project, and amazing idea in certain situation. We got feedback rapidly and we can get support from him anytime. He helps us to be on right track. He brings us to a high level.
Susanna Ruge

E-mail: susruge@rhs.dk
Phone number: +4588523344, mobile +4522672080

Contact address: Roskilde Computer Science College. Barkkesvinget 67, 4000 Roskilde

She is patient with wealthy Software Design experience. She has a pairs of motherly eyes, she is kindly. And she is also very serious in teaching. She is always take pains to students. In our project and study process she gives us great help and useful comment. We got feedback rapidly. She always takes us to catch a high level.
We have learned UML, JAVA for last semester, and we are learning Project Management, Database for organizing vast data this semester, so basically we solve problems according these methodologies. For we are novices, there are risks for implementing methodology, especially for Database. If some problems cannot be solved within group, we will consult from our supervisors. We will use equipments in school including computers, scanner, and printer and so on. MS-office, Net Beans, is general tools for documenting, coding and drawing diagrams. We can get support on every working day from our project advisors.
 In our group every one has different goals, so this is a risk; driven by different goals every one put different effort. So we have to make an identical goal for our team.

1.3 Project plan

[image: image2.emf]19-09-2005 16-12-2005

26-09-200503-10-200510-10-200517-10-200524-10-200531-10-200507-11-200514-11-200521-11-200528-11-200505-12-200512-12-2005

19-09-2005

Start project

16-12-2005

Finalize project

19-09-2005-26-09-2005

Project Establishment

26-09-2005-03-10-2005

Inception Phase

03-10-2005-24-10-2005

1st Iteration of Elaboration

24-10-2005-14-11-2005

2nd Iteration Elaboration

14-11-2005-28-11-2005

Evaluation and Conclusion

24-10-2005

Build

03-10-2005

Lifecycle objective milstone

14-11-2005

Lifecycle Architectural Milestone

Note: lifecycle Architectural Building Milestone means building radical Architectural.
This is the first version. We will spend one week (39) in project establishment iteration. We are to signup team contract; make plan for whole project; specify iterations: 1 week (40) for inception, 3 iterations (week 41,42,43) for first elaboration, and 3 iterations (week 44,45,46) for second elaboration, 2 weeks (47,48) for conclusion and evaluation. We planed above depended on bottom up. If we are delayed by some reason we will change plan on current iteration or do some overtime job.
 At the end of project establishment we have proper team contract, detailed schedule for next iteration, weekly project plan.
At Lifecycle objective milestone we will figure system’s boundary, find out stick holders, users, and their goals. We will find out some use cases in brief.

At build milestone we would define system’s architecture by related use case. So we will have some detailed use cases, domain model, system sequence diagram, operation contract, sequence diagram, class diagram and system works.

At lifecycle architecture milestone, we will extend the domain model, and develop coding, then complete connect between the system and database.
We try to compact job for saving time to deal with emergence that is why we have several weeks empty before project finalized. Definitely there are risks. For example for lack of skill, we are delayed, or conflicts between group members. We will adjust this plan immediately if any risk appears.

1.4 Iteration plan
[image: image3.png]= ‘ E= ‘ D s Sep 25,05 Oct 2,105 Ot 8,05 et 16,05 Gl
S [M [T WIT[F[S S M [T WIT[F[S[S MIT WITIF[S[S M| T WITIF[S[S]
E Inception Mon 92605 Fri 93005 120 hrs. P—
E Requirments. Mon 972605 Thu 92005 34 hrs —
it Stekeholders Reuests " Mon 92605 Man 926105 15 s [Sefina,Jack
Find octors andUse Case | Tue 27105 Wed 928105 24 s [Selina,ack
Structure the use case model | Wed 92605 Thu 92905 24 s [Selina,tack
Detal a use case " wed 82805 Thu2305 20 hrs [Selina,ack
 Project management Thu92005 Fri 930105 36 hrs. —
Revise the priect plan ThuS230S Fri90NS 10 s = Roy
Revise the rsk st FiSAODS FriSAONS 10hs [RSHSES
Develop feration plen for lsb ThuS/29005 Fri 93005 16 s = Roy

——=

According UPEDU, different activities should be done by different roles. We have setup roles; most of activities in this iteration belong to Jack and Selina. Rest of team members will support them. Roy is a project manager in this iteration; he is going to do project management. Shane will help around.
It looks strange. But on UPEDU, the duties belong to different roles. Actually every one will try every role.
1.5 Team building
	Name
	E-mail
	Phone

	HanJie (Roy)
	Hanjie_roy1@hotmail.com
	60702624

	YangChangHui (Shane)
	bscych@yahoo.com
	27433945

	AnNa (Selina)
	An0707345@hotmail.com
	31126554

	LiYanMing (Jack)
	Li23242614@hotmail.com
	50547448

Setup roles
We will rotate project manager very iteration through team members. And every one will try to do different roles.because we are studying, then we can learn from each other, But Roy will pay more attention on Analyst, designer, and Shane will pay more attention about Integrator, tester, Implementer, Selina will pay more attention on designer and hold document. We will try every role, and then we can know the role’s activity.
Team contract

1. Participation
a) Be honest and open.

b) Give everyone the opportunity for equal participation.

c) Be open to new ways and listen to new ideas.

d) Avoid blaming to each other when thing goes wrong. We will discuss the process and explore how it can be improved.

2. Communication
a) Be clear to the point.

b) Keep discussions on track.
c) Mutually support within team.
3. Problem Solving
a) Encourage everyone to participate.

b) Encourage all ideas.

c) Build solution on discussion.

d) Document the process down when problem is solved.
4. Decision Making
a) Find the needed information or data.

b) Discuss criteria for making a decision.

c) Encourage and explore different interpretations.

d) Get command from supervisor before a critical decision is made.

e) Ask all team members if they can support a decision before the decision is made.

5. Handling Conflict
a) Regard conflict as normal and as an opportunity for growth.

b) Seek to understand the interests and desires of each party involved before arriving at answers or solutions.

c) Listen openly to the other point of view.

d) Be aware of valid points that the other person has made.

e) Get command from supervisor.

6. Meeting Guidelines:
a) Meetings will be held at 10:00 every working day.

b) We will invite supervisor to join every week.

7. Meeting Procedures:
a) Meetings will begin and end on time.

b) Team members will come to the meetings prepared.

c) Tasks for the day will be made at the end of each meeting.

d) Unresolved issues will be recorded for asking supervisor.

8. Routine
a) Every 2 hours we would optionally have break for 15 minutes.

b) Time for Lunch will count as break.
9. Schedule
	
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday

	10:00
	Meeting
	Meeting
	Meeting
	Meeting
	Meeting
	
	

	10:30
	Working
	Working
	Working
	Working
	Working
	
	

	12:00
	Working
	Working
	Working
	Working
	Working
	
	

	13:00
	Working
	Working
	Working
	Working
	Working
	
	

	14:00
	Working
	Working
	Working
	Working
	Working
	
	

	15:00
	Working
	Working
	Working
	Working
	Working
	
	

	16:00
	Working
	Working
	Working
	Working
	Working
	
	

For week 39,40, 45,46,47,48, these are project weeks so we made a working schedule, but during teaching weeks we would do some teamwork as well. Normally we will work a little bit after lessons.

10. Place
a) School

b) home

 School is right place for us to work. If there were accident that we can’t work in school, in stead we would go to one of group members home. We wouldn’t consider this any risk from working place, if there is it would be rear.

11. Extensions

a) Inform manager for being absent.

b) Call absence for being late.

12. Penalty
a) Anyone is late for meeting without reason should buy cakes for whole group.

b) Cannot hand in works he (she) should buy coke for group.

c) Any one tempts to take long break would be called back by manager.

d) Delay job will treat as cannot hand in works.

e) Conflicts first will be solved within group member, it doesn’t work supervisor will make final decision.

Our Commitment:

We, the undersigned, have read and understood all of the above terms and conditions and agree fully to abide by them or accept the consequences set out above.

Signature

Date

Signature

Date

Signature

Date

Signature

Date

Interpreting
In Every project week we will have 30 minutes meeting before working for each day. We are going to evaluate work; collect individual homework in previous day, it is necessary to invite our supervisor to present this meeting for some advice. At end of meeting project manager will justify job for the day. This is a good manner to meet up every day. We can learn each other’s situation, experience.

Illness and accidents are going to be possible risk for our team, for reducing effect from risk members should send their work to blackboard.
1.6 Risk list
	Version
	Date
	Description
	Author

	1.0
	20.09.2005
	Risk list
	Group 3

The following risk list uses these conventions:

Magnitude: Risks are ranked from 1 to 10. 1 is the lowest risk and 10 is the highest

 Risk, ranking is based upon the criticality of the risk and the probability

 Of the risk occurring

Description: Brief description of the identified risk

Impact: C – Critical (Affects all project functionalities and baselines.)

 H – High (Affects stakeholders needs and major product functionalities)

 M – Medium (These risks are subject to contingency but most of the times, a mitigation plan will be established in order to avoid the risk.)

 L – Low (Generally these are risks for which Risk Acceptance strategies will be held or quick mitigation plan will be implemented. Usually the team will decide to live with the risk as a contingency)

Indicator: Metrics concerned.

Mitigation/Contingency: Plan to live with or avoid / transfer the risk
	<Risk 01> - Accident

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	2
	Member ill
	L
	Absent
	Project manager delegate absentee’s duty

	<Risk 02> - Project Delay

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	2
	Project falls behind schedule
	L
	Project postpone
	Reduce the quality or overtime.

	<Risk 03> - Member leaving

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	1
	Person leaving team
	M
	Effort Application
	Review Baselines and major milestones as quickly as possible. Review Functional Requirements Classification and Reassign work.

	<Risk 04> - Hostility

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	1
	Conflict within team
	H
	Fighting
	Compromise

Teacher attempter

1.7 Conclusion on this iteration
What we have done
· We had built the team, make the team contract.

· Member had settle own goal and converge on the team goal.
· We reviewed knowledge of project management for planning. We have had the project plan.
· We have found some risk for our process the project.

Problems in this iteration

· We haven’t worked in team before so we don’t know how to make the contract for team.

· We haven’t done this kind of project before; it is hard to image the risks.
What we have learned:

We had practiced on making contract.

We had draw the project plan
We had found some risks; we learn it from some one’s experience. And the teacher also gave us some clew.

Fun from work:
· We have made some silly rule for team contract. For example when the people are late, we will charge fine from him or her. But it is hard to execute this rule, so we didn’t write in the contract.

2.0 Inception 1st iteration

2.1Purpose

In this part we will have business model, vision and supplementary specification. Vision is introduction of the FLS. Supplementary specification is none functional requirement. In this iteration we will give a brief definition to the system, limit the system’s boundary. Within the boundary we analyze system depend on Port’s five, as artifact business Modeling will be presented. We will start documenting vision, supplementary specification. We will elicit stake holder, and their interests, fine out related use case, structure use case model.
Risk will be revised. We will adjust project plan, revise risk list, we will discuss and record any risk happens in this iteration or will happens in next iteration.

Plan for next iteration will be done at the end of the period.
2.2 Vision
Introduction
Group members: Roy, Shane, Jack, Selina.

We envision a Fantasy Library Event application. Our group’s goal is carry out the library’s system to be perfect. People can rent place to do they own thing, the system will come true every thing they will do. In our project we need some requirements: glossary, supplementary specification and so on. They will be done in our project, we also meet some risk, accident, Skill and experience, and Project falls behind schedule, Conflict within team, Person leaving team. Therein to the risk list, skill and experience risk is the high risk.
See more in appendix 1.0
2.3 Business Model
We use the port’s five to analysis the Library.
See more in appendix 1.1
2.4 Review actives
· Elicit stockholders requests: find out person who is interested in this system and request from the system.

· Find actors and use case: specify actors for the system, and relevant use case.
· Structure the use case model: picture domain model.
· Detail a use case: find out a important use case and analyze finally document it in full dress format.
· Do project management: do conclusion, make plan for next iteration, adjust schedule if necessary.
2.4.1 Elicit Stakeholders requests
Events Manager: directly user of the system. An employ of this Library, Events Manager deals all kinds of problem relevant with Event.

Artist: any one wants to rent a room for showing his artifact. Of course he can get relevant information via the system.
2.4.2 Find actors and Use case

Primary Actor
 Events Manager is the primary user of this system.
We found 12 use cases shows in table next.
Use Cases
	No. of Use case
	Name
	Description

	UC1
	Register Artist
	EM Register Artist with Artist information

	UC2
	Delete Artist
	EM Delete Artist by ArtistNo

	UC3
	Search Artist
	EM search Artist by ArtistNo

	UC4
	Edit Artist
	EM edit Artist with new information

	UC5
	Register Room
	EM Register Room with Room information

	UC6
	Delete Room
	EM Delete Room by RoomNo

	UC7
	Search Room
	EM search Room by RoomNo

	UC8
	Edit Room
	EM edit Room with new information

	UC9
	Reserve Event
	EM Reserve Event with Event information

	UC10
	Delete Event
	EM Delete Event by EventNo

	UC11
	Search Event
	EM search Event by EventNo

	UC12
	Edit Event
	EM edit Artist with new information

2.4.3 Structure the use case model

Use Case Diagrams

[image: image4.emf]Events Manager

F L E System

UC1: Register

Artist

UC5: Register Room

UC9: Reserve Event

UC2: Delete Artist

UC10: Delete Event

UC6: Delete Room

UC7: Search Room

UC3: SearchArtist

UC11: Search Event

UC4: Edit Artist

UC8: Edit Room

UC12: Edit Event

2.4.4 Detail a use case

Uc9 Reserve Event

Main Success Scenario

1. Artist wants to reserve Event in library.

2. Events Manager starts new reserve Event.

3. Events Manager enters date from and date to.

4. System display available room.
5. Artist Make choice.

6. Events Manager chooses room.
7. Events Manager enters ArtistNo.
8. Events manager confirm Reserve event.
9. System displays successful message of Reserve Event, System record the order and update.

According use case3 (nouns), we found our conceptual classes: Artist, Event, Register, Room, Artist catalog, Event catalog, Room catalog.

In following table we describe our domain model

	Conceptual Class name
	Comments

	Register
	Control class for holding the Catalogs

	Artist Catalog
	Gather Artists

	Event Catalog
	Gather Events

	Room Catalog
	Gather Rooms

	Artist
	Class contains name, address, ArtistNo, title, phoneNo.

	Event
	Class contains EventNo, ArtistNo,RoomNo,CheckInDate,CheckOutDate,Type.

	Room
	Class contains RoomNo, Size, and description.

2.4.5 Project plan
Version 2.0

[image: image5.emf]9/26/2005 10/3/2005 10/10/2005 10/17/2005 10/24/2005 10/31/2005 11/7/2005 11/14/2005 11/21/2005 11/28/2005 12/5/2005 12/12/2005

2005-9-19 2005-12-16

Start Project

2005-9-26-2005-10-10

Inception Phase

2005-9-19-2005-9-26

Project Establishment

2005-10-10

Lifecycle objective milstone

2005-10-10-2005-11-7

1st Iteration of Elaboration

2005-11-7

Lifecycle Architectural initial

 Milestone

2005-11-7-2005-12-5

2nd Iteration Elaboration

2005-12-5-2005-12-16

Evaluation and Conclusion

2005-12-5

Lifecycle Architectural Milestone

2005-12-16

Finalize Project

A new version diagram it is different with first one because we did bottom up for first iteration. So far we found it unreasonable. We don’t need to be on rushed; we have several weeks left over according first version. So we adjust the plan as version 2.0. We have 4 weeks for every iteration in elaboration. We will spend 2 weeks on inception, as you can see.

	Name of mile stone
	Reach date
	Symbol
	Definition
	Comment

	Lifecycle objective milestone
	10.10.2005
	Finish domain model and primitive analysis system
	At this point We examine the lifecycle objectives of the project
	

	Lifecycle Architectural initial Milestone
	07.11.2005
	we have done domain model, use model and design model
	At this point we finish components design and code
	

	Lifecycle Architectural Milestone

	05.12.2005
	We will finish system integration, test. Finish connecting with database.
	At this point, you examine the detailed system objectives and scope, the choice of architecture, and the resolution of the major risks.
	

See project plan version 1.0 and 2.0 in appendix 1.3
2.5 Supplementary Specification
Introduction
This document is the repository of FLE system requirements not captured in the use cases.

Functionality

Usability
Human Factors
Artist will be able to see a large-monitor display of the FLE, Therefore:

· Avoid colors associated with common forms of color blindness.

Reliability
Recoverability

There is a back up function is failure to use external services (payment…)
Performance
Our goal: is to achieve a process lending within 30 seconds, 90% of the time.
Supportability
2.6 Risk List

We had added one risk list in version 1.0. So the version to be 2.0

	Version
	Date
	Description
	Author

	2.0
	04.10.2005
	Risk list
	Group 3

	<Risk 05> - Skill and Experience

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	3
	Skill needed of project management
	M
	Project suffocate
	Learn more do more / Consult supervisors

We are not aware of the duty of roles, so it takes time to learn it.

Version2.0 comes from version 1.0, we did not charge any thing in version 1.0 except one added.
See whole risk in appendix 1.4
2.7 Iteration Plan
[image: image6.png]Name. Start Finish ‘t&“ﬂﬁ Oct16, 05 Oct 23,05 Oct 30, 05 Nov 6, 05
W T (WIT[F 188 T (W[T[F[8 S T W[T[F[8 S TWTF[8sMTWTF|
E 15t eration Mon 1011005 Wed 119105
Elbusiness modeling disc_Mon 10/10105 Thu 10/1305 :
develop the domain | Mon 10/10/05 Thu 10/13/05 | s
Elrequinment discipiine | Mon 10/10/05 Fri 10/1405 | p—y
detail relevantuse ¢z Mon 101005 Fri10/14105
El analysis and design dis_Fri 10/14105 Wed 11205 P —————————

architectural analysic
use case analysis
use case design
class design
GUI design

E Implementation discipli
plan coding
coding of classes
unittesting

& project Managerment
projectplan, revised
risklist, revised
iteration plan for Elak

Fri1014/05
Fri1014/05
Mon 1017105
Thu 10120105
Tue 10125105
Thu 1020105
Thu 10120105
Fri10/21/05
Mon 10/31/05
Thu 1027105
Fri11/4/05
Fri11/4/05
Thu 10127105

Wed 10718105
Wed 10718105
Fri10/21/05
Fri10/28/05
Wed 1172108
Wed 11905
Tue 10125105
Wed 11/9105
Fri11/4/05
Mon 117,05
Mon 1177105
Mon 1177105
Mon 1177105

We calculate the total hours we have (unit hours * members) of working days. We did top down for this plan. There will be risk because we are not familiar with roles responsibility. We will expend time on understanding.

2.8 Conclusion on this iteration
What we have done

· First we adjust project plan, revise risk list, and then we find out requirement of stake holders. Clarify actors, structure use case model. We do plan for next iteration.

· Now we had found the stakeholder and actors, and it is very important that we have found use case, which we should focus on. We also had used port five to analysis the system in the business modeling.
· We had structured the use case model

· We had adjusted our plan and milestones
Problems in this iteration:
· How to define the stakeholders.
· How to find out requirement of stakeholders.
· We had a blurred system boundary. Got feed back from supervisors we recognize the problems. We have to isolate this system from what we have. Neglecting Borrower, Librarian so forth, we define our own independent system.

· We wanted to include every possibility in to our system for example: we named painter and singer… to be conceptual classes. It is possible. But we found it was hard to analyze with too many possibilities. So we discussed it in-group, made a decision to restrict system.

· We did not make a property team contract. Some small details are neglected. For example Member was absent. We didn’t detail similar situation. So it is a lesson to us.

What we have learned:

· Inevitable we will be out of the track, so getting recommends is better than making a redo work. So we learned: before a critical action we have to make sure that the way we are doing is appropriate. We will meet supervisors frequently, which assure us on right way.
· Our group’s members collect our own mind, discuss and make decision, then write down our ideas. It is good, and we think we grasp all the point from 1st iteration of Inception phase.
Fun from work:

· When Discussion is on, it would be the rudest way to talk with members.

· Encourage from members is power to everyone.

· Sometimes we don’t know proper translation of a certain English word to Chinese, even we are all Chinese. Because of everyone remembers it in alphabets, and where it suits. For instance discipline
3.0 Elaboration 1st Iteration

3.1 Purpose

 In this iteration we are working on 8 use cases: UC1-U8, they are from inception phase. And to develop the domain model, and follow UP we will analyze design use cases, design class, and design GUI. Revise use cases diagram, illustrate relevant operation sequence in diagram. We will write down relevant operation contract, and picture interaction diagram. Finally we will have design class diagram. We will build system’s architecture. We are making coding in this iteration. Then we revise project plan revise some risk list, develop iteration plan for elaboration 2nd iteration.

3.2 Review Activity
· Develop the domain model: draw domain model.
· Detail relevant use case(s): Write Register artist, register room, delete room, delete artist and so on into fully dressed
· Architectural analysis: It is to analysis the system architectural
· Use case analysis: To distribute the use case behavior to those class.
· Use case design: To refine use-case realizations in terms of interactions.

· Class design: To ensure that sufficient information is provided to unambiguously implement the class.
· GUI design: To ensure that sufficient information to GUI class, we use proto type to design GUI
· Plan coding: plan of order for coding classes.
· Coding of classes: program class.
· Unit testing: use white and black box to test.
· Project plan, revised: adjust schedule if necessary
· Risk list, revised: adjust the risk list if necessary
· Iteration plan for Elaboration 2nd iteration: make plan for next iteration,
3.2.1 Develop the domain model
In this iteration there are 5 domain classes. We look for objects in the real ‘event’- world and we found the following which we find relevant: Artist catalog, room catalog, artist, room.
And we have done Lo-Fi prototype, the stakeholder doesn’t want to provide her personal social number. This is a requirement from stakeholder. We decided that the system would not record Artist’ personal social number, instead of personal social number, a unique number to very registered Artist will be generated atomically in the system, which is Artist’s register number, we call it Artist No.

[image: image7.emf]Painter Speaker

ArtistCatelog

RoomCatelog

-RoomNo

-Type

-Size

Room

-ArtistNo

-Name

-Address

-PhoneNo

-Title

-RegisterYear

Artist

Artist

We chose artistNo, name, title, address, phone number as attributes. Actually there are more attributes than we are taking. For example e-mail address, cprNo, gender and so on. We want to simplify the problem. With less attribute it is easy to create objects of this class and easy testing. For further using we can add more attributes in. we have to mention: why artistNo not cprNo. Stakeholder doesn’t want to show her cprNo in this case, instead we chose artistNo.

Room

Only roomNo, size, description are contained in Room class. Surely there are rental of the room, usage of the room. For easy reason we only take these 3 attributes. It is easy to add more attributes for further developing.

3.2.2 Detail use cases

These use cases we have decided to work on in this iteration. We started with these use cases, because these are most basic use cases of the system. We can set up system’s architecture base on these use cases. We show the design of GUI at the same time for helping to image.
Use cases
UC1: Register Artist
UC2: Delete Artist
UC3: Search Artist
UC4: Edit Artist

UC5: Register Room
UC6: Delete Room
UC7: Search Room

UC8: Edit Room
Uc1 Register Artist

Brief: an Artist comes to Event manager want to be registered, then EM start a new Register Artist then ask Artist for information about name, phone, address, and so on. EM enters the information into system; EM confirms the information then system records the information and system shows the successful message.
Main Success Scenario

10. EM starts new Register Artist.

11. EM enters information (name, phone, address, title).

12. System records the new artist.
We had done some GUI design; here we just show the screen for the use case. It look like below:

[image: image8.emf]Submit

Back Close

Register Artist

Name

Phone number

Address

Enter Artist infromation

Enter Text

Enter Text

Enter Text

Enter Text

Title

Enter Text

Information of Artist

Uc2 Delete Artist

Brief: EM enters an Artist No, system display relevant information. EM deletes the Artist.
Success Scenario:

1. EM starts a new Delete Artist
2. EM enters an Artist No.

3. System displays the Artist’s information.

4. EM deletes the Artist.

5. System show successful information.

[image: image9.emf]Delete Artist

Delete Artist

show

If you forget Artist number Click HERE

Back Delete

Show Information of Artist

Enter Artist number

UC3 Search Artist

Brief: EM uses the system enter Artist No, then system display the information of the Artist (name, address, phone…).

Success Scenario:

1. EM Start a new Search Artist
2. EM enters an Artist No.

3. System displays the Artist’s information.

[image: image10.emf]Search Artist

Search Artist

Enter Artist nuber Enter Text

Back Close

Show Information of Artist

If you forget Artist number Click

HERE

show

Here we just think about use artist number to find out artist, and then push show, in the frame of “show information of Artist” will show the artist information. If you forget artist number you also can use here button the search artist by date, artist’s name. Here we did not show about this, but in our program we had realized. And we didn’t to think about show all the artist, if need we can realize it.

UC4 Edit Artist

Brief: EM starts a new edit Artist. EM enters an Artist No, system display relevant information. then EM edit the Artist with new information..

Success Scenario:

1. EM starts a new Edit Artist

2. EM enters an Artist No.

3. System displays the Artist’s information.

4. EM Edit the Artist information.

5. System shows information of edit successful.

[image: image11.emf]Edit Artist

Edit Artist

Edit Artist with new information!

Name

Title

Phone Number

Address

Enter Text

Enter Text

Enter Text

Painter

Enter Text

Back Close

Submit

New artist information

Uc5 Register Room

Brief: A new room needs to be recorded into system. EM enters the room’s information. System records the room.

Success Scenario:

1. EM starts a new Register Room.

2. EM enters room’s number, rooms’ size, and room’s description.
3. System records the room.

[image: image12.emf]Please type the Artist number

No

Register Room

Register Room

Enter Room infromation

Room number

Size

Description

Enter Text

Enter Text

Enter Text

Enter More Text

Submit

Enter Text

Enter More Text

Show information Register Room

Back Close

Uc6 Delete Room

Brief: EM enters a room’s number, system displays room’s information. EM deletes the room.

Success scenario:

1. EM starts a new Delete Room
2. EM enters a room’s number.

3. System displays the room’s information.

4. EM deletes the room.

5. System show successful information.

[image: image13.emf]Delete Room

Delete Room

show

Back Delete

Show Information of Room

Enter Room number

Uc7 Search Room

Brief: EM enters a room’s number, system displays room’s information.

Success scenario:

1. EM starts a new Search Room
2. EM enters a room’s number.
3. System displays the room’s information.

[image: image14.emf]Search Room

Search Room

Enter Room nuberEnter Text

Back Close

Show Information of Room

show

UC8 Edit Room
Brief: EM start new edit Room, then enters the room no. system display the information of the Room, EM edit the room with new information

Success Scenario:

1. EM starts a new Edit Room

2. EM enters a Room No.

3. System displays the Room’s information.

4. EM Edit the Room

5. System records new information of room.

[image: image15.emf]Edit Room

Edit Room

Edit Room with new information!

size

Description

Enter Text

Enter Text

Back

Close

New Room information

Submit

3.2.3 Architectural analysis

We illustrate the systems architecture.

[image: image16.emf]ArtistGUI

Artist

RoomGUI

GUI Layer

Handler Layer

Model class

Room

Collection Layer

LibraryEventGUI

That means any input out put have to pass through GUI Layer

Collection layer's responsible hold the data and for passing the data

around between work class and handlerLayer.

collection is concerning with worker classes’ create and deletion.

Relation between them is composite aggregation.

the model class is responsibility to define the data and prove basic data.

+addArtist()

+getArtistByName()

+removeArtist()

+size()

ArtistCatalog

+addRoom()

+getRoom()

+removeRoom()

RoomCatalog

+createArtist()

+createRoom()

+findArtist()

+findRoom()

+deleteArtist()

+deleteRoom()

+editArtist()

+editRoom()

LibraryEventHandler

this layer's responsibilty is only to manage and control,

and to distribute those information around. Methods are composed

of a few lines almost do nothing. Actually all catalog classes are

well defined responsibility. functionality of the classes are

in catalog classes. if there is more requirements we will separate

handler

3.2.4 Use case analysis
3.2.4.1 Use case Diagram

No changers form inception phase see appendix A, but we just work on 8 use cases: UC1 Register Artist, UC2 Delete Artist, UC3 Search Artist, UC4 Edit Artist, UC5 Register Room, UC6 Delete Room, UC7 Search Room, and UC8 Edit Room.

3.2.4.2 System Sequence Diagrams

[image: image17.emf]:EventManager

:System

Start a new RegisterArtist

Enter information(name,phoneNo,address,title)

Show Artist information with artistNo

Uc1Register Artist

 EMBED Visio.Drawing.11 [image: image18.emf]:EventManager

:System

Start a new DeleteArtist

Delete Artist

Show massage of artist was deleted

Uc2 DeleteArtist

Enter artistNo

display information of Artist

 EMBED Visio.Drawing.11 [image: image19.emf]:EventManager

:System

Start a new Search Artist

Show massage of artist

Uc3 Search Artist

Edit artistNo

 EMBED Visio.Drawing.11 [image: image20.emf]:EventManager

:System

Start a new Edit Artist

Show massage of artist

Uc4 Edit Artist

Enter artistNo

display information of Artist

Edit Artist information

 EMBED Visio.Drawing.11 [image: image21.emf]:EventManager

:System

Start a new RegisterRoom

Enter roomNo,size,description

Show register information of room

Uc5 Register Room

[image: image22.emf]:EventManager

:System

Start a new DeleteRoom

Delete Room

Show massage of room was deleted

Uc6 DeleteRoom

Enter roomNo

display information of Room

 EMBED Visio.Drawing.11 [image: image23.emf]:EventManager

:System

Start a new Search Room

Show massage of room

Uc7 Search Room

Edit roomNo

[image: image24.emf]:EventManager

:System

Start a new Edit Room

Show massage of room

Uc8 Edit Room

Enter roomNo

display information of Room

Edit Room information

3.2.4.3 Operation Contract

Here we have decided only to show operation contract that inferences the domain model! Only show have precondition and post condition. Finalize operation contract we put in the appendix 1.7
UC2 Delete Artist
Operation Contract CO3
Delete artist ()
Pre condition: artist is found

Post condition: artist was removed

UC4 Edit Artist
Operation Contract CO3
Operation: Edit Artist ()
Precondition: artist was found

Post condition: the artist’s attribute was changed.

UC6 Delete Room

Operation Contract CO3
Delete room ()
Per condition: room was found

Pos condition: room was removed.

UC8 Edit Room

Operation contract CO3
Operation: Edit Room ()
Precondition: room is found

Post condition: room’s attribute was changed.
3.2.5 Use case design

We decided to have one handler for the system.
Because we don’t have too many classes in this system, if more classes are needed in system, we will take more handlers.
Here we show 3 diagrams. Others are very similar.
Sequence Diagram

[image: image25.emf]:LibraryEventHandler

:ArtistNoCreator

:ArtistCatalog

:artist

:data: map

<Artist>

Start a newRegisterArtist

artistNo=getNextNo()

artistNo

addArtist(artist)

RegisterArtist

artist=new Artist(artistNo,name,title,phone,address)

artist

put(artistNo,artist)

UC1 Register Artist

[image: image26.emf]:LibraryEventHandler

UC3 Scarch Artist

:ArtistCatalog

:data: map

<Artist>

Start a new SearchArtist

EnterArtist(aritistNo)

getArtist(artistNo)

artist=get(artistNo)

artist

artist

{ information expert} { controller}

 EMBED Visio.Drawing.11 [image: image27.emf]:LibraryEventHandler

:RoomCatalog

Start a new deleteRoom

deleteRoom(roomNo)

data:map<Room>

deleteRoom(roomNo)

room=remove(roomNo)

room

room

UC6 DeleteRoom

3.2.6 Class design

3.2.6.1 Design class diagram

[image: image28.emf]1

*

1

1

1

*

1

1

+getName()

+getArtistNo()

+getRegisterYear()

+getTitle()

+getPhoneNo()

+getAddress()

+setName()

+setArtistNo()

+setRegisterYear()

+setTitle()

+setPhoneNo()

+setAddress()

-ArtistNo

-Name

-Address

-PhoneNo

-Title

-RegisterYear

Artist

+getRoomNo()

+getSize()

+getDescription()

+setRoomNo()

+setSize()

+SetDescription()

-RoomNo

-Size

-Description

Room

+addArtist()

+removeArtist()

+getArtish()

-ArrayList:data

ArtistCatalog

+addRoom()

+removeRoom()

+getRoom()

-ArrayList:data

RoomCatalog

+createArtist()

+createRoom()

+editArtist()

+editRoom()

+deleteArtist()

+deleteRoom()

+findArtist()

+findRoom()

+setArtistCatalog()

+getArtistCatalog()

-ArtistCatalog:artistCatalog

-RoomCatalog:roomCatalog

LibraryEventHandler

3.2.7 GUI design
We are using prototyping to design GUI, here we just show some screen.

Administrate Artist, when you push this button, the screen will show, four things: register Artist, delete artist, search artist, edit artist. When you push registers Artist, then show next screen. You can see more in appendix 1.8
Administrate Room, it almost like administrate artist, it include: register Room, delete room, search room, edit room.
See more in appendix 1.8
And back button means to back to last screen, close means to close the windows.
These are main menu show below. Here we just show the main menu, you can see the …. In appendix 1.8
Main menu

[image: image29.emf]Fantasy Library Events System

Fantasy Library Events System

Administrate Artist

Administrate Room

[image: image30.emf]Register Artist

Delete Artist

Search Artist

Edit Artist

Back

Close

[image: image31.emf]Register Room

Delete Room

Search Room

Edit Room

Close Back

3.2.8 Plan coding
According the system’s Architectural which we designed. We will program worker class first. Because the worker classes have the low coupling, so we decide to do these first. Base upon worker class we will create catalog class.
3.2.9 Coding of classes

Codes see appendix 2.0.

3.2.9.1 Start up

· Model layer

· Catalog layer

· Handler layer
3.2.9.1.1 Model layer

Artist classes
We take attributes from domain model. There is no change from domain. They are artistNo, name, title, addess, phoneNo. We decide the artistNo and phoneNo are integer type for they are pure digits in domain. Name, title, address are string type. There are several specializations of artist like singer writer, painter and so on. We won’t have multi classes for this relation we have the title to verify the type of the artist.
 We have set() and get() method for all attributes. We have toString() method to present information.excep those wehave toDBString() for SQL sentence in next iteration.

 Room class
Nothing changes from domain. RoomNo is integer type; size and description are string type.
It is similar with Artist class.

3.2.9.1.2 Catalog layer

There are several data structures to chose, array list, link list and so on. Due to rapid searching, we decide to take hash map as container. Alternatively we use Array List. If there is big amount of elements, it takes Array List too long time to look up one certain element by looping. Hash Map is faster because it has key and values pairs. If we have a key we can get the value immediately. For Artist we take ArtistNo(register number) as key. Artist will be the value. For room we will take room number as key. For future use hash map is correct chose.
ArtistCatalog
We chose hash map as container

We have add () remove () toString() as normal. As additional we have a getArtistByName() method which re turn s a ArtistCatalog. This is a second way to look artist out. First we get collection of values, then loop through iterator to find out has the same as input, add it into a new ArtistCatalog. Finally return the ArtistCatalog.

In this layer we have coded ArtistNoCreator. We use singleton pattern. All datafields are private and static. Because of singleton pattern, the only constructor is private. Methods are all public. We calculate Artist No from 100000. We decided only LibraryEventHandler will use this class. When a new artist is created LibraryEventHandler will call getNextNo(), and assign the number to the new object.

RoomCatalog
We chose hash map as container

It is a little simple than ArtistCatalog. We only have add (), remove (), getRoom(), toString().

3.2.9.1.3 Control layer

LibraryEventHandler

ArtistCatalog,RoomCatalog are data fields.

We have createArtist (),findAtist(),editArtist(),deleteArtist(). When Creatartist() is called, ArtistNoCreator’s singleton will be called first. ArtistNoCreator will generate an ArtistNo for the new artist. Followed LibraryEventHandler will create an Artist object with artistNo,name,title,phone,address. Next the new artist object will be added into ArtistCatalog. As result the artist is returned. FindArtist() is method has a artistNo as parameter. The artistNo is the key for artist. An artist is returned if the key is valid otherwise a null is returned. EditArtist() has artistNo,name,title,phone,address as parameters. EditArtist() will find an artist with the artistNo, and then set its attribute with new values. DeleteArtist() is almost the same as EditArtist(), find an appropriate artist first and the remove it from ArtistCatalog.

So there are the similar methods go on with Room.

3.2.10 Unit testing
In our programming every class we use main method to unit testing it self. We state some thing about:

 - Testing of model classes

 - Testing of catalog classes

3.2.10.1 Testing of model classes

Here we just show a test of Artist class. In main we construct an object of the class itself and do a simple “system.out.println()”. here is some code

	public static void main(String[] args){

 System.out.println(new Artist("Shane","Speaker",12,"DK"));
System.out.println(new Artist("Roy","Painter",31159550,"DK"));
System.out.println(new Artist("Selina","Writer",31126554,"DK"));
System.out.println(new Artist("-1",">",$,"%"));
 }

Here is the test, input.

	Test material (Artist Class)

	Input
	 Test 1
	Test 2
	Test 3
	Test 4

	name
	Shane
	Roy
	Selina
	-1

	title
	Speaker
	Painter
	Writer
	>

	phoneNo
	12
	31159550
	31126554
	-1

	address
	DK
	DK
	DK
	@

The next we show after running screen, this is to prove that the model class is working.
OUTPUT

The next we show after running screen, this is to prove that the model class is working.
 Test 1 Test 2
[image: image32.png]Output

Compier Arit-1/0 |
nane :Shane
title :Spesker
prone :12
sadress DK
registermber:0

il

 [image: image33.png]Output

Compier Arit-1/0 |
nane :Roy

title :Painter
phone :31159550
aadress DK
registermber:0

il

 Test 3 Test 4
[image: image34.png]Output
Compier Arit-1/0 |

nane :galina

citle swricer
phone 31126554
aadress DK

yegisterfumber:0

 [image: image35.png]

3.2.11.2 Testing of catalog classes

Here show the catalog class testing, just like model class; we create an object then print.
	public static void main(String[]args){

 ArtistCollection ac=new ArtistCollection();

 ac.addArtist(new Artist("Shane","Speaker",12,"DK"));

 ac.addArtist(new Artist("Roy","Painter",31159550,"DK"));

 ac.addArtist(new Artist("Selina","Writer",31126554,"DK"));

 ac.addArtist(new Artist("-1",">",-1,"@"));

 System.out.println(ac.toString());

 }

	Test material (Artist Class)

	Input
	 Test 1
	Test 2
	Test 3
	Test 4

	name
	Shane
	Roy
	Selina
	-1

	title
	Speaker
	Painter
	Writer
	>

	phoneNo
	12
	31159550
	31126554
	-1

	address
	DK
	DK
	DK
	@

The next screen is show the print out of the catalog; it proved that the catalog class is working.

 Test 1 Test 2

[image: image36.png]Output

‘Compler | arist -1/ ArtistCallection - /O |
nane :snane

cicle spesker

phone (12

[

.

 [image: image37.png]Output
Conpier | At -1J0. AristColedten 110 |
E——

Cieie cainser

phone 31153550
aadress DK

registerNumber:0

 Test 3 Test 4

[image: image38.png]Output
Conpier | At -1J0. AristColedten 110 |

nane :gelina

citle swricer
phone 31126554
aadress DK

registerumber:0

 [image: image39.png]Output

Conpier | At -1J0. AristColedten 110 |

nane :-1
vitle :>
phons :-1

address n
registerfumber:0

3.2.11 Project plan, revised
Same as version2.0 see project plan in appendix 1.3, version 2.0
A risk appeared: one of group member has left the group. We decided that every one should do some over job to cover lack of member. This is going to be risk to next iteration, because in next iteration we will do more in this iteration and next iteration.
3.2.12 Risk list, revised
We had added one risk in this iteration. Because our cording doesn’t follow the design.
	Version
	Date
	Description
	Author

	3.0
	29.10.2005
	Risk list
	Group 3

	<Risk 06> - Same term names

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	3
	The term’s name is not same
	M
	Change code according design
	Coding follow design.

Version3.0 comes from version 2.0, we did not charge any thing in version 2.0 except one added. See whole risk in appendix 1.4. We have some problem on using term name in our system. We have different name in code and design. Because we have been trained to deal similar system. We can code some worker classes with unaccomplished design. That is not good to code without following design. We should avoid similar problems happened.
3.2.13 Iteration plan for Elaboration 2nd iteration
[image: image40.png]Task Name: ‘ka ‘ Start ‘ Finish vember 2005 Decembe
To1s [afslis T s s
= Eaboration 2nd Reraton Dibis | Mon {1705 Mon 12505 | \emm—
 Business modeling discipine 16hws | MonT1705 Wed 11905 | ey
e domein el tos | wontimns wedtises| | g
 Requirements discipaine e Wedttoos Fties| | wey
Detarcvantusecase®) fohs | Wed 11805 Fitinins| | pm
2 Anabsis nd desion discpine Batvs T s [A e] | pe—
Avcrtectral anysis tos | ThuitroRs Tae TS 5.8
Use casoansyeis Tos Mon 1171405 Tuetinsms =
Use casedesin Tos | Tueltnaps Tttnos
U desion s Won 112115 e 12505 =
 implementation discipine 133hws Tue 112205 Mon 12505 —
Plancong Tos | Tue112205 Truttians =
Cong of clsses Shvs ed 112305 1112505 ==
Cotng of persiser lasses | zhvs | Fri 112505 e 175005 =
Untesting s Fitizses Ttnes =
Profec pln, evieed s Thatips Ttanes
R e, v sis Firoes Frit2ans
Heraion e for Construction 108 12fws | Fri 12205 Won 126508

Because one member has left the group, rest of us will get more jobs. Next iteration will be the last one of whole project, mainly we will realize be specifics use case, do testing, integrate system, connect program with database.
3.3 Conclusion on this iteration
What we have done
· Use cases have been detailed.
· We had built the architecture

· We had drawn the use cases diagram, SSD of UC1-8, SD of UC1-8.
· We had coded the class and tested it.

· Reviewed the project plan

· Made the iteration plan for next iteration
Problems in this iteration
· It is a hard part compared with first iterations. We dived into more detailed discussions. We have got feed back from project supervisors, so before starting we recognized problem we had. It is wide system’s boundary, blurred actors. We realize that limiting helps us to analyze system easily, and then we can integrate small components on what we have built up. That is how we explain growing system.

· We found 12 use cases in inception iteration. We just detailed 8 use cases in this iteration. It is important to choose these use cases, because these use cases have been chosen is going to be architecture of the system. For database is going to be new risk, we decided to pick register artist, register room … up as main use cases to concentrate on in this iteration.
· Defining use cases all most is synchrony with coding worker classes. So we paid no attention on how real life is—basic purpose of every interaction to system. That is why we found some problems followed. We have some different opinions on domain model, solving this problem by discussion. We did not program system followed the design. Result is we are confused by same item but different names. It is not efficient to work. We will treat it as a risk in next iteration.
What we have learned:

· We try to explain how to grow system from project. It is necessary to focus on easy small target at beginning. Before well understanding system, we can’t go any further than making essential thing done. Otherwise more risks would appear like wild boundary. There is more benefit from taking small step for instance we can clarify target from simple modules.
· We have make lots decisions by discussing in-group. Sometimes result from discussion would not be the best one, but it is closed to solution of problems. On other hand we can have more imagination than one has, it is opportunity to solve problems in better way.
· It is import to follow design; design provides a clear pointer for coding. Nothing is worse than coding and designing go their own way. We have paid much more on that, so coding has to trace design to us.
Fun from work:
· We achieve result we have done from cooperating between group members.

· Having joke between members create relaxed atmosphere, everyone enjoys this.

· We motivated each other, when we worked together, sometimes in members home we can work till middle of night for accomplishing task of current day.
3.4 Glossary

See Glossary version 1.0 in appendix 1.9
4.0 Elaboration 2nd Iteration
4.1 Purpose
In this part we should revise and work on last four use case: Reserve Event, Delete Event, Search Event, and Edit Event. And to finalize analysis and design the use case, extend the domain model, analysis and extend the Architectural in 4 layers. And extend class design and GUI design; illustrate relevant operation sequence in diagram. Write down relevant operation contract and then realize the code to be use.

4.2 Review Activity
· Extend the domain model: develop domain model.
· Detail relevant use case(s): Write Register artist, register room, delete room, delete artist and so on into fully dressed
· Architectural analysis: It is to analysis the system architectural
· Use case analysis: To distribute the use case behavior to those class.
· Use case design: To refine use-case realizations in terms of interactions.

· Class design: To ensure that sufficient information is provided to unambiguously implement the class.
· GUI design: To ensure that sufficient information to GUI class, we use proto type to design GUI
· Plan coding: plan of order for coding classes.
· Coding of classes: program class.
· Coding of persistent classes: use SQL to program persistent classes
· Unit testing: use white and black box to test.
· Project plan, revised: adjust schedule if necessary
· Risk list, revised: adjust the risk list if necessary
4.2.1 Extend the domain model
Basic on the 1st iteration’s domain model we extend the domain model; we add the event class and event Catalog.

[image: image41.emf]1

0..* 0..* 1

Painter Speaker Exhibition Speech

-ArtistNo

-Name

-Address

-phoneNo

-Title

Artist

-DateFrom

-DateTo

-Type

-Comment

Event

-RoomNo

-Size

-Description

Room

ArtistCatalog EventCatalog RoomCatalog

4.2.2 Detail relevant use case
In this iteration we just work on Use case 9-12. The 1-8 we have done in 1st iteration of elaboration.

Use cases
UC9: Reserve Event

UC10: Delete Event

UC11: Search Event

UC12: Edit Event

UC9 Reserve Event
Brief: Artist come to library, EM help to reserve new event.
Main Success Scenario

1. Artist wants to reserve Event in library.

2. Events Manager starts a new reserve Event.

3. Events Manager enters Artist No.
4. Events Manager enters date from and dates to.

5. System display available rooms.
6. Artist Make choice. Events Manager selects the room, Enter comment.

7. System displays successful message of Reserve Event, System record the order and update.

[image: image42.emf]Reverse Event

Reverse Event

Date From

Date To

Enter Text

Enter Text

big

Size

Show Available room

Show room

Enter Text

Enter More Text

Enter Requirements

Back

Close

Room Number, size, date

Room Number, size, date

Submit

We had done some GUI design, and show this screen for the use case. Same as 1st iteration of elaboration.

UC10 Delete Event
Brief: EM enters date from and date to, system show the event, then makes choice, delete.
Main Success Scenario
1. EM start a new delete event

2. EM enters date from and date to

3. System show the event

4. EM selects an event, and delete event.

5. System show the information of successful deletion.

[image: image43.emf]Delete Event

Delete Event

Date From

Date To

big

Size

Show event

Submit

Back Delete

Room Number, size, date,name

Room Number, size, date,name

UC11 Search Event
Brief: EM enters date from and date to, system find the event’s information
Main Success Scenario
1. EM start a new search Event

2. EM enters date from and date to

3. System show the information of event

[image: image44.emf]Search Event

Search Event

Date From

Date To

Show event

Submit

Back Close

Room Number, size, date,name

Room Number, size, date,name

UC12 Edit Event
Brief: EM enters date form and date to, system show the event then start edit with new information
Main Success Scenario

1. EM start a new edit event

2. EM enters date from and date

3. System show the event

4. EM select event and edit it.

5. System shows the new information.

[image: image45.emf]Edit Event

Edit Event

Date From

Date To

Enter Text

Enter Text

big

Size

Choose room number

Enter Text

Enter More Text

Enter Requirements

Back Close

Room Number, size,

Room Number, size,

Edit Event with new information

Submit

4.2.3 Architectural analysis
We extend the architectural with database. See below.

[image: image46.emf]ArtistGUI

Artist

RoomGUI

GUI Layer

Handler Layer

Model class

+addArtist()

+getArtistByName()

+removeArtist()

+size()

ArtistCatalog

Room

+addRoom()

+getRoom()

+removeRoom()

RoomCatalog

Catalog Layer

ReserveEventGUI

+addEvent()

+getEvent()

+removeEvent()

EventCatalog

Event

LibraryEventGUI

+createArtist()

+createRoom()

+createEvent()

+findArtist()

+findRoom()

+findEvent()

+deleteArtist()

+deleteRoom()

+deleteEvent()

+editArtist()

+editRoom()

+editEvent()

LibraryEventHandler

GUI DB-GUI

DB-Controller Layer

Artist

DataBase

Room Event

DB-Facade

JDBC/ODBC

LibraryEventDBGUI

ArtistDBGUI RoomDBGUI

ReserveEventDBGUI

CMC_ArtistSQL CMC_RoomSQL

CMC_EventSQL

DMC_LibraryEventSingleton

Basically we can read and write data from database through right side of the diagram.

4.2.4 Use case analysis

4.2.4.1 Use case diagram
No changers form inception phase see appendix A, but we just work on 4 use cases: UC9 Reserve Event, UC10 Delete Event, UC11 Search Event, and UC12 Edit Event.

See appendix 1.5

4.2.4.2 System Sequence Diagrams

We had already done the SSD of UC1-UC8 in elaboration 1st iteration. In this iteration we just draw the SSD of UC9-UC12

[image: image47.emf]:EventManager

:System

Start a new Reserve Event

Enter room selected

Show massage of event

Uc9 Reserve Evert

Enter artistNo

Show avaliable room

Edit dateFrom,dateTo

[image: image48.emf]:EventManager

:System

Start a new DeleteEvent

Enter Event selected

Show massage of event was deleted

Uc10 DeleteEvent

Enter dateFrom,dateTo

display information of Event

[image: image49.emf]:EventManager

:System

Start a new Search Event

Show massage of event

Uc11 Search Evert

Edit dateFrom,dateTo

[image: image50.emf]:EventManager

:System

Start a new Edit Event

Enter Event selected

Show massage of event was deleted

Uc12 Edit Event

Enter dateFrom,dateTo

display information of Event

Edit Event

4.2.4.3 Operation Contract
Here we only show operation contract that inferences the domain model! Only show have precondition and post condition. Finalize operation contract we put in the appendix 1.7
UC9 Reserve Event
Operation Contract CO3

Enter room Selected

Operation: EnterRoomSelected ()
Precondition: rooms was found

Post condition: a room was found
Operation contract CO4
Enter Artist No
Operation: enter Artist No ()

Precondition: a room was found

Post condition: Artist was found, a room was found, A RE instance re was created
This is most important step for this use case. When confirm button was pressed, a reserve Event was created with ArtistNo,roomNO, dateFrom,dateTo. Then reserve Event was associated with Events Handler.
UC10 Delete Event

Operation Contract CO5
Delete Event ()
Per condition: event was found

Pos condition: event was removed.
UC12 Edit event
Operation contract CO5
Operation: Edit event ()
Precondition: event is found

Post condition: event was edited.

4.2.5 Use case design
4.2.5.1 Sequence Diagram
Because we only have one Handler in the system, inevitable it leads to low cohesion. For this is a small system with a few use cases, methods within Handler are very simple. If there is more use case, we will follow high cohesion pattern to separate the handler.

[image: image51.emf]:libraryEventHandler

:EventNoCreator

:Event

Start a new RegisterEvent: ()

ReserveEvent(artistNo,roomNo,dateFrom,dateTo)

eventNo=getNextNo()

eventNo

event

put(eventNo,event)

data:map<Event>

UC9Reserve Event

event=new Event(eventNo,artistNo,roomNo,dateFrom,dateTo)

addEvent(event)

:EventCatalog

{creator and controller} {singleton }

4.2.6 Class design
We change data fields by adding reference of EventCatalog. We add related methods.

[image: image52.emf]+getName()

+getArtistNo()

+getregYear()

+getTitle()

+getPhoneNo()

+getAddress()

+setName()

+setArtistNo()

+setregisterYear()

+setTitle()

+setPhoneNo()

+setAddress()

-ArtistNo

-Name

-Address

-PhoneNo

-Title

-regYear

Artist

1

*

1

1

+getRoomNo()

+getSize()

+getDescription()

+setRoomNo()

+setSize()

+setDescription()

-RoomNo

-Size

-Description

Room

1

*

1

1

1

*

1

1

+createEvent()

+deleteEvent()

+editEvent()

+searchEvent()

+createArtist()

+deleteArtist()

+editArtist()

+searchartist()

+createRoom()

+deleteRoom()

+editRoom()

+searchRoom()

-eventcatalog

-artistcatalog

-roomcatalog

LibraryEventHandler

+addArtist()

+removeArtist()

+getArtist()

-ArrayList:data

ArtistCatalog

+addEvent()

+removeEvent()

+getEvent()

-ArrayList:data

EventCatalog

+addRoom()

+removeRoom()

+getRoom()

-ArrayList:data

RoomCatalog

+getDateFrom()

+getDateTo()

+getType()

+setDateFrom()

+setDateTo()

+setType()

-DateFrom

-DateTo

-Type

Event

4.2.7 GUI design
See more design in appendix 1.8

We Extend Administrate Event

We had done the GUI design of Administrate Artist and Administrate Room in elaboration 1st iteration so in this iteration we focus on Administrate Event.

Main menu

[image: image53.emf]Administrate Artist

Administrate Room

Administrate Event

Fantasy Library Events System

[image: image54.emf]Register Artist

Delete Artist

Search Artist

Edit Artist

Back

Close

[image: image55.emf]Register Room

Delete Room

Search Room

Edit Room

Close Back

 EMBED Visio.Drawing.11 [image: image56.emf]Reserve Event

Delete Event

Search Event

Edit Event

Close Back

4.2.8 Plan coding
We start with Event class for its low coupling and then EventCatalog. Finally we will put a reference of EventCatalog into LibraryEventHandler
42.9 Coding of classes

See appendix 2.0
Event class’s Attributes are from Domain model without change.

There is a little difference with ArtistCatalog and RoomCatalog when we are coding EventCatalog. We use ArrayList as container. Because we need to search event by index. Except adding remove method we have a method named getEventBydate(). It has checkin and checkout date as parameters, we setup a for loop to pick up events whose dateFrom is later than checkout date or dateTo is earlier than checkin date. Any events match these two conditions will be added into a new EventCatalog which will be returned. We have getEventsByartist() method for getting an events collection with the same artistNo. Having same function geteventsByRoomNo() method finds Event based on roomNo.
4.2.10 coding of persistent classes

We use SQL to program persistent classes in InterBase.

We show how we created Artist table below.

First we create domain like:

	create domain aNoDomain as int;

 create domain titleDomain as varchar(10)

 check(value in('unknow','Painter','Singer','Author','performer','Healer'));

Then we setup the table by followed sentence

	create table Artist(

ArtistNo aNoDomain not null,

Name varchar(30) not null,

Title titleDomain default 'unknow',

Phone int not null,

Address varchar(60) not null,

regyear int not null,

primary key (ArtistNo))

And we inserted some data into the table

Detail see unit testing.
4.2.11 Unit testing
In our programming every class we use main method to unit testing it self. We state some thing about:

 - Testing of DMC_LibraryEventFacade (database) classes

4.2.11.1 Testing of persistent classes

We had test some in 1st iteration of Elaboration.
Here we just show a test of CMC_ArtistSQL class. In main we construct an object of the class itself and do a simple “system.out.println()”. Here is some code

	public static void main(String[] args){

System.out.println(cas.addArtis(new

Artist(11,"Shane","Speaker",12,"DK")).toString());

System.out.println(cas.addArtis(new Artis(12,"Roy","Painter",31159550,"DK")).toString());
System.out.println(cas.addArtist(new

Artist(13,"Selina","Writer",31126554,"DK")).toString());
System.out.println(cas.addArtist(new

Artist(14,"-1 ",">",-1,"@")).toString());

}

Here is the test, input.

	Test material (Event Class)

	Input
	 Test 1
	Test 2
	Test 3
	Test 4

	name
	Shane
	Roy
	Selina
	-1

	title
	performer
	Painter
	singer
	unknow

	phoneNo
	12
	31159550
	31126554
	-1

	address
	DK
	DK
	DK
	@

	registerNo
	11
	12
	13
	14

The next we show after running screen, this is to prove that the model class is working.
OUTPUT

The next we show after running screen, this is to prove that the model class is working.

Test 1 Test 2

[image: image57.png]| Output

Compier CHC_ArtistsQL - /0 |
its done

nane :hane
citie iperforner
phone 12
sadress DK
registerfumber: 11

 [image: image58.png]| Output

Compier CHC_ArtistsQL - /0 |
its done

nane :Roy
citle :painter
phone 31153550
aadress DK
registerNumber: 12

Test 3 Test4

[image: image59.png]| Output
Compier CHC_ArtistsQL - /0 |

its done

nene :Selina
citle :Singer
phone :31126554
aadress DK
registerfumber:13

 [image: image60.png]| Output

Compier CHC_ArtistsQL - /0 |
its done

nane :-1
R —
phone :-1
aaaress ca

registerfiumber:14

4.2.12 Project plan, revised
We had adjusted the plan, we got one week to do some construction, and last week does evaluation and conclusion.

Version 3.0

[image: image61.emf]19-09-2005 16-12-2005

25-09-200502-10-200509-10-200516-10-200523-10-200530-10-200506-11-200513-11-200520-11-200527-11-200504-12-200511-12-2005

19-09-2005

Start Project

19-09-2005-26-09-2005

Project Establishment

26-09-2005-10-10-2005

Inception phase

10-10-2005-07-11-2005

1st Iteration of Elabroation

05-12-2005-12-12-2005

construction

12-12-2005-16-12-2005

Evaluation and conclusion

16-12-2005

Finalize Project

10-10-2005

Lifecycle objective milestone

07-11-2005-05-12-2005

2nd Iteration of Elabroation

07-11-2005

Lifecycle Architectural building Milestone

05-12-2005

Lifecycle Architectural Milestone

12-12-2005

Initial Operational Capability Milestone

In this iteration we appeared a risk for implementing database unskilled.

4.2.13 Risk list, revised

In this iteration we had added one risk into version 3.0 so the version to be 4.0. See whole the risk in appendix 1.4
we had met some problem of implement database.
	<Risk 07> - Skill and Experience

	Magnitude
	Description
	Impacts
	Indicator
	Mitigation Strategy / Contingency Plan

	3
	Implement database
	M
	Project suffocate
	Follow lesson and do more excises /help from supervisors

For new knowledge database will be the risk for us to notice. We only can work hard on database. Some skillful problems from database we can’t solve, we will look supervisor for solution.

4.3 Iteration plan for construction 1st iteration
We didn’t plan the any iteration of construction. But we have more time so we did some thing in construction 1st iteration.
4.4 Conclusion on this iteration
What we have done
· We had extend the domain model

· The rest of use cases have been detailed.
· We had draw the SSD and SD for UC9-UC12

· We extend the Architectural of this iteration

· Program some class and built some database table.

· Tested the classes

· Revised the project plan
Problems in this iteration
· When we Use case analysis, we were not sure weather all input would be treated as methods. For instance Start new reserve event, we can have a new method base on this operation. But for enter dateFrom, dateTo we would not have a method like that. dateFrom dateTo should be attributes. We found reason is we have named some operations precisely. Because we have deal with Library System since we started this course, we knew what kind of input we are using for next step. Actually we should name the operation like show available room, which is the reason for inputting some dates.

· When we extend domain model, we had two different opinions, one is event class associate with room and Artist class, catalog classes are not connected but via Register. Another one is 3 work classes is not associated; instead 3 collection classes join together. First one means event class can’t reach room and Artist class, interpreting: an event should hold reference of two classes. Event class from second one doesn’t have reference of rest two worker classes. By discussing we found it is really hard to have an event without knowing who reserve it and in which room in real life. So we take first one as design result.
· When we extend the Architecture we met some problems, we didn’t know how database communicate with model classes. We know we should pass data around by object, but we didn’t know how to illustrate the architecture.
What we have learned:

· We know communicate between database and model classes. We have overview of communication between classes.
Fun from work:

· As far as we go, we are approaching the goal.
5.0 1st iteration of construction
5.1 Purpose
The issue of this activity is to implement the design in a Relational DataBase (RDB). The before going into details one has to decide between two streams:

We have chosen to us a directly transformation from design class diagrams to relations/tables as the design is very detailed, thus making EE/R-Diagramming superfluous.

5.2 Review activities

· Choice of RDB

· Review of OOD model

· Categories the and transform into relations

· Transform associations and generalization into relations

· Create a Database Model Diagram
· Define and describe the relations, attributes, keys and domains

· Normalize the table

· Code persistent class
· Design coding
· Code DMC façade class
· Code CMC control class
5.2.1 Choice of RDB

What is fundamental for design DB?
 There are two ways to approach, one is directly transform design class into relation, another is indirectly through E/R diagram. Because we have design class which is similar to E/R diagram somehow it will be more detailed than E/R. we will transform class diagram directly into table.

Choice of DB

 For learning reason we chose inter base and ODBC bridge
5.2.2 Review of OOD model

Class Design see appendix 1.6

We have Artist and Event relation, Room and Event relation.

Artist and Event is one to many association.

Room and Event is one to many association.

For Artist class there are some sub classes such as singer, painter and so on.

For Event class there are sub classes: concert, exhibition and so forth.

5.2.3 Categories the and transform into relations

 We categorized the class into 4 categories: presentation class, controller class, holding class, date class.

Presentation classes are the GUI classes,
Controller class is the controller class:LibraryEventHandler
Holding classes are 3 catalog classes: ArtistCatalog, RoomCatalog, EventCatalog.
Date classes are the Artist class, Room class, Event class.

 We transform controller and catalog classes into CMC-class handling the access and SQL-queries the database. We don’t change any thing form GUI and controller into date base relation. Data classes will be transformed into tables.

Relation List
	Fantasy Library Event

	No.1

	Version 1.0

	Date
12.12.2005
	Initials
<G 3>

	Relation name
	Definition/Description
	Aliases
	Remarks/

Occurences

	Artist
	Person wants to rent place in library
	Writer, signer, and so on
	Many

	Event
	Activities happened in room
	Exhibitions, concert
	Many

	Room
	Place for artist to have Event
	
	Many

5.2.4 Transform associations and generalization into relations

One to one: we don’t have one to one relations

One to many: Artist and Event, Room and Event these one to many association we transform them into table. We put a foreign key into weak part: Event class. So the connections will be implemented by foreign key.

Generalizations and specializations between for example Artist and Painter we wont have extra tables for these. We only squeezed them by putting a type attribute into super class.

Relationship List
	Fantasy Library Event
System
	No. 1

	Version 1.0

	Date
2005-12-12
	Initials
<G3>

	Relation
	Multiplicity
	Association
	Multiplicity
	Relation
	Participation

	Artist
	1…1
	Has events
	0…*
	Event
	O : M

	Event
	0…*
	Happen in
	1…1
	Room
	O : M

Shorts used as follows:

	Participation

	M: Mandatory

O: Optional

The table is to be read as follows:

Artist might be involved in zero or many Event and a Reserve belongs exactly to one Artist.

Event has mandatory participation in this association; i.e can not be created without a Artist. Artist has optional participation in this association; i.e. a Artist can be created and exist without any Event.

5.2.5 Create a Database Model Diagram
Database diagram

The class diagram was used as a starting point and based on the relations/relationships we can now draw the database model diagram:

[image: image62.emf]Artist

PK ArtistNo

Name

Title

Address

PhoneNo

RegisterYear

Event

PK eventNo

ArtistNo

RoomNo

DateFrom

DateTo

Description

Type

Room

PK roomNo

size

description

FK

FK

We have the following relations/tables and attributes:

Relation Attribute List
	Fantasy Library

	No.1

	Version 1.0

	Date
12.12.2005
	Initials
<G 3>

	Relation name
	Attributes

	Atrist
	artistNo(PK), name,address, phoneNo, registerYear, title

	Room
	roomNo(PK),size,description

	Event
	eventNo(PK),ArtistNo(FK), roomNo(FK),dateFrom,dateTo,description,type

 The attributes were just taken directly from the originals

5.2.5 Define and describe the relations, attributes, keys and domains

We can now describe and specify attributes and domains
Relation Attribute Description List
	Fantasy Library
Lend-System
	No. 1

	Version 1.0

	Date
2005-12-12
	Initials
<G3>

	Relation
	Attribute
	Key
	Description
	Default Value
	Allowed

NULL
	Composite

	Artist
	ArtistNo
Address

Title

name
phoneNo
registerYear
	PK

	Uniquely identifies
	
	No

No

No
No

No
No
	No
Yes (critical)

No

No

No

No

	Room
	RoomNo

size
description
	PK

	Uniquely identifies
	
	No
No

No
	No
No

No

	Event
	EventNo

ArtistNo
RoomNo
DateFrom
DateTo

Description
Type
	PK

FK
FK
	Uniquely identifies Refers to Artist

Refers to Room
	Null
Null
	No

No

No
Yes
Yes

No

No
	No
No

No

Yes
Yes

No

No

Attribute Domains
	Library

Lend System
	No. 1

	Version 1.0

	Date
2005-12-12
	Initials
<G3>

	Relation
	Attribute
	Data Type
	Set of Value
	Format

	Artist
	ArtistNo
Address

Name
phoneNo

Title

RegisterYear
	VarChar(10)

VarChar(60)

Varchar(30)

Numeric(12)
VarChar(30)

Date
	0-9digits
Any

Any

0-9 digits
Any

0-9 digits
	xxxxxxxxxx
none

none

xxxxxxxxxxxx
xx-xx-xxxx

	Room
	RoomNo
size
state
	Numeric(20)

VarChar(20)

Varchar(10)
	0-9digits

Any

Any
	None

None

None

	Event
	EventNo

roomNo
artistNo

DateFrom

DateTo

Description

Type
	Numeric(20)

Numeric(20)

Numeric(10)

Date
Date
Varchar(60)

Varchar(30)
	0-9digit

0-9digits

0-9digits

0-9digit

0-9digit
Any

Any
	 xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx

none

none

5.2.6 Normalize the table

Room table only have one attribute for primary key can define rest of the attributes, so it is in 2NF.

Artist table is on 2NF because of Artist No. if every artist has a phone number, it is not on 3NF. Otherwise it is on 3NF.

Event table is on 2NF for having Event No. there is another candidate key which composed of roomNo, artistNo, dateFrom, dateTo. We don’t want to separate them because it is not necessary.

5.2.7 Code persistent class

We have transformed Artist class into table, rest of two are the same process. The SQL sentence see appendix.
We show a screen shot of result.

[image: image63.png]e et e [s

4

5
100001
100002
100003

EVENTNG [ARTISTNG [RO0MNG [DATEFROM[DATETD

[hEscrpon

2 471272006
317172008
3 3/12/2005
3 8/12/2005
1 120272006
3 6/12/2005

3/16/2006
20172008
3/168/2005
8/16/2005
121072008
6/18/2005

goad change.

efdigdifchi

Design coding
We code DMC_LibraryEventSingleton first. And then we will code CMC_Artist whose function is to control Artist table.

Almost paralleling ArtistDBGUI will be done.

Code DMC

 Decision on connection type

 There are two types of connection. One is long living, which is on a whole time. Another is short living, which is close after using.

 Short living is slower for it will be close after using. It is good for multi users.

 Long living is a little faster. But it is not good for multi users. If there are sufficient users, users will block each other.

This system is for one user, so we are taking long loving style.

We take singleton pattern.

We have all data field are static private, and for singleton reason we made a private constructor. No body can access this constructor out of the class.

	public class DMC_LibraryEventSingleton {

 private static DMC_LibraryEventSingleton singleton=new DMC_LibraryEventSingleton();;

 private static Connection con;

 private static Statement stmt;

 private String url="jdbc:odbc:E",driver="sun.jdbc.odbc.JdbcOdbcDriver";

 /** Creates a new instance of DMC_LibraryEventSingleton */

 private DMC_LibraryEventSingleton() {

 connect();

 }

 We have connect () and close () method when they are called they will setup connection to database and close the connection to the database.

	private void connect(){

 try{Class.forName(driver);

 con=DriverManager.getConnection(url,"", "");

 stmt=con.createStatement();

 System.out.println("DB is open");

 }

 catch(ClassNotFoundException e){

 System.err.println("Exception:"+e.getMessage());

 }

 catch(SQLException e){

 System.err.println("Exception:"+e.getMessage());

 }

 }

 public static void close(){

 try{stmt.close();

 con.close();

 System.out.println("it is closed");

 }

 catch(SQLException e){

 System.err.println("Exception:"+e.getMessage());

 }

 }

When Singleton is called connection will be setup, it is no necessary to call connect () again, so we make connect () private.

We have provided static methods for getting statement object and singleton instance.

	public static DMC_LibraryEventSingleton getSingleton(){

 return singleton;}

public static Statement getStmt(){return stmt;}

Code CMC

C public static Statement getStmt(){return stmt;} C_ArtistSQL’s responsibility is to talk with DMC_LibraryEventSingleton and implement SQL query. So first we call an Instance of singleton to get a statement. We can do any queries base on the statement.
We provided addArtist() insertArtist() deleteArtist() and editArtist(). We have two methods in Artist model class called toDBString() and toDBupdateString(). Everytime we create a SQL line we just call these two methods to join, and don’t worry about quote signal.

	public void addArtist(Artist artist){

 line="insert into Artist values("+artist.toDBString()+")";

 try{

 stmt.executeUpdate(line);

 }

 catch(SQLException e){

 System.err.println("SQLException:"+e.getMessage());

 }

 }

We have a method for get Artists from database as an ArtistCatalog type.

	public ArtistCatalog getArtistAsCollection(){

 line="select * from Artist";

 ArtistCatalog ac=new ArtistCatalog();

 Artist a =null;

 try{

 rs=stmt.executeQuery(line);

 while(rs.next()){

 int artistNo=rs.getInt(1);

 String name=rs.getString(2);

 String title=rs.getString(3);

 int phone=rs.getInt(4);

 String address=rs.getString(5);

 int year=rs.getInt(6);

 a=new Artist(artistNo, name, title, phone, address, year);

 ac.addArtist(a);

 }

 }

 catch(SQLException e){

 System.err.println("SQLException :"+e.getMessage());

 }

 return ac;

 }

We implement this method with a ResultSet object rs. We select many rows from database, read them into rs. We get elements from a row and create a Artist object with the elements, then add the object into catalog. Finally return the catalog.

5.3 Conclusion of this iteration
What we have done:
· We have expended the architecture of the system.

· We have transformed data classes into database tables.

· We have coded fundamental classes for the system.
Problems in this iteration:

· We misunderstood long living and shot living in type of connection.

What we have learned:

· We had concept of how database works with model classes and catalog classes.

Fun from work:
· We have no patience when we meet problems, especially on coding. But we have to go on. Once the problem is solved, we are encouraged again. So study is a repeat of depress and encourage.
6.0 Project Conclusion
Doing this project is for learning reason. Through the project period we have gained more experience and improved our skill form project process and through the project practice we have reviewed the knowledge. As reward we have learned much more than we expected from the process. Basically the product is running a few use cases on the stage of beginning construction. We have set up the fundamental for further developing. We dive a little deeper with topics followed:

· Final product

· Product for further thinking

· System develop
· Team working

· Writing skill

6.1 Final product

 The product we have can run some of the use cases we have defined. Basically it can read and write data from the database. System can fulfil register Artist, Room, Event. Automatically the system can generate register number for Artist and Event. And the system can show information by different category. For example in AdministrateEvent user can search Events through different ways. We provide searching by Artist, Room, and all Events. We have implement JList in our GUI design, we can chose item from list, that is little easier than pure typing. We try to input by clicking for instance time input. We want to a small panel display for user to choose date from panel, we can’t make it working.

6.2 Product for further thinking

 Depend on the knowledge we have, we can run some use cases, but not fulfilling the requirements. That motivates us to do more and learn more.

 We want to try to design and implement some easy input interface such as input only by clicking.

 There should be a sub system for user to register on line, of course including reserving Event.

 And we want to try different solution for a certain problem, for instance short living connection type.

6.3 System develop
 Design provides us a right way to solve the problems.

 Developing is iteratively. We have paid for taking step too big. Some details were neglected when we wanted to move faster.
 This project provides us a chance to think in different ways for problems solution.

 We have earned experience on building architecture.

6.4 Team working

For some us this is the first time to do such project within a team. No matter from activities and experience this is branding new.

 The target is what we are working for. We set the milestone and goal then approach the target. Though implement the design we can achieve the goal.

 Communication within group is free and open; to out side is active. Everyone talks to each other. Problems will be spotted to the whole group. Everyone presents own opinion. We meet our supervisors frequently. We knew how important commutation is.

 Decisions making based on discussions.

 Mutual support happens between group members. If any member needs help, whoever is consulted will try the best. That is most important thing, because we can learn from each other and improve individual.

 To sum up: team work is very important. We can’t do the project without the team members. Every one has own opinion through discussion we have an acceptable solution. Members can learn from each other and improve individual skill such as: UML, programming.

6.5 Writing skill
By doing the project we have learned more on English language, and how to organize the sections in the report. We are not used to be writing report in English. Which is the only way can present the process. Writing report constrain us to check dictionary, and consult from expert. We also learned small trick to make the report readable.

 [image: image64][image: image65][image: image66][image: image67][image: image68][image: image69][image: image70.emf]

[image: image71.png]

[image: image72][image: image73][image: image74]

Page 10 of 62

_1195495613.vsd
Form Title

?

Text

Enter Text
Enter More Text

Enter Text

Menu Name

Menu Item

￼

Enter Text

Submit

Back

Close

Register Artist

Name

Phone number

Address

Enter Artist infromation

_1195902021.vsd
:LibraryEventHandler

:ArtistNoCreator

:ArtistCatalog

:artist

:data: map
<Artist>

Start a newRegisterArtist

artistNo=getNextNo()

artistNo

addArtist(artist)

RegisterArtist

artist=new Artist(artistNo,name,title,phone,address)

artist

put(artistNo,artist)

UC1 Register Artist

_1195918892.vsd
System

ArtistGUI

Artist

RoomGUI

GUI Layer

Handler Layer

Model class

+addRoom()
+getRoom()
+removeRoom()

RoomCatalog

Room

Collection Layer

LibraryEventGUI

That means any input out put have to pass through GUI Layer

Collection layer's responsible hold the data and for passing the data

around between work class and handlerLayer.

collection is concerning with worker classes’ create and deletion.

Relation between them is composite aggregation.

the model class is responsibility to define the data and prove basic data.

+addArtist()
+getArtistByName()
+removeArtist()
+size()

ArtistCatalog

+createArtist()
+createRoom()
+findArtist()
+findRoom()
+deleteArtist()
+deleteRoom()
+editArtist()
+editRoom()

LibraryEventHandler

this layer's responsibilty is only to manage and control,

and to distribute those information around. Methods are composed

of a few lines almost do nothing. Actually all catalog classes are

well defined responsibility. functionality of the classes are

in catalog classes. if there is more requirements we will separate

handler

_1195988366.vsd
+addEvent()
+removeEvent()
+getEvent()

-ArrayList:data

EventCatalog

+addRoom()
+removeRoom()
+getRoom()

-ArrayList:data

RoomCatalog

+getName()
+getArtistNo()
+getregYear()
+getTitle()
+getPhoneNo()
+getAddress()
+setName()
+setArtistNo()
+setregisterYear()
+setTitle()
+setPhoneNo()
+setAddress()

-ArtistNo
-Name
-Address
-PhoneNo
-Title
-regYear

Artist

1

*

1

*

1

1

1

1

+getRoomNo()
+getSize()
+getDescription()
+setRoomNo()
+setSize()
+setDescription()

-RoomNo
-Size
-Description

Room

1

*

1

1

+addArtist()
+removeArtist()
+getArtist()

-ArrayList:data

ArtistCatalog

+createEvent()
+deleteEvent()
+editEvent()
+searchEvent()
+createArtist()
+deleteArtist()
+editArtist()
+searchartist()
+createRoom()
+deleteRoom()
+editRoom()
+searchRoom()

-eventcatalog
-artistcatalog
-roomcatalog

LibraryEventHandler

+getDateFrom()
+getDateTo()
+getType()
+setDateFrom()
+setDateTo()
+setType()

-DateFrom
-DateTo
-Type

Event

_1196069947.vsd
System

ArtistGUI

Artist

RoomGUI

GUI Layer

Handler Layer

Model class

+addArtist()
+getArtistByName()
+removeArtist()
+size()

ArtistCatalog

Room

+addRoom()
+getRoom()
+removeRoom()

RoomCatalog

Catalog Layer

ReserveEventGUI

+addEvent()
+getEvent()
+removeEvent()

EventCatalog

Event

LibraryEventGUI

+createArtist()
+createRoom()
+createEvent()
+findArtist()
+findRoom()
+findEvent()
+deleteArtist()
+deleteRoom()
+deleteEvent()
+editArtist()
+editRoom()
+editEvent()

LibraryEventHandler

GUI

DB-GUI

RoomDBGUI

ReserveEventDBGUI

CMC_ArtistSQL

ArtistDBGUI

CMC_RoomSQL

CMC_EventSQL

DB-Controller Layer

DMC_LibraryEventSingleton

Artist

DataBase

Room

Event

DB-Facade

JDBC/ODBC

LibraryEventDBGUI

_1195975576.vsd
�

�

�

�

�

￼ - ￼�

Interval Description�

￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

�

�

￼�

Milestone Description�

�

�

￼�

Milestone Description�

_1195987505.vsd
EventCatalog

RoomCatalog

1

0..*

0..*

1

Painter

Speaker

Exhibition

Speech

-ArtistNo
-Name
-Address
-phoneNo
-Title

Artist

-DateFrom
-DateTo
-Type
-Comment

Event

-RoomNo
-Size
-Description

Room

ArtistCatalog

_1195938720.vsd
Table

_1195906500.vsd
:LibraryEventHandler

UC3 Scarch Artist

:ArtistCatalog

:data: map
<Artist>

Start a new SearchArtist

EnterArtist(aritistNo)

getArtist(artistNo)

artist=get(artistNo)

artist

artist

{ information expert}

{ controller}

_1195907215.vsd
+getRoomNo()
+getSize()
+getDescription()
+setRoomNo()
+setSize()
+SetDescription()

-RoomNo
-Size
-Description

Room

1

*

1

1

1

*

1

1

+addRoom()
+removeRoom()
+getRoom()

-ArrayList:data

RoomCatalog

+getName()
+getArtistNo()
+getRegisterYear()
+getTitle()
+getPhoneNo()
+getAddress()
+setName()
+setArtistNo()
+setRegisterYear()
+setTitle()
+setPhoneNo()
+setAddress()

-ArtistNo
-Name
-Address
-PhoneNo
-Title
-RegisterYear

Artist

+addArtist()
+removeArtist()
+getArtish()

-ArrayList:data

ArtistCatalog

+createArtist()
+createRoom()
+editArtist()
+editRoom()
+deleteArtist()
+deleteRoom()
+findArtist()
+findRoom()
+setArtistCatalog()
+getArtistCatalog()

-ArtistCatalog:artistCatalog
-RoomCatalog:roomCatalog

LibraryEventHandler

_1195904737.vsd
:LibraryEventHandler

:RoomCatalog

Start a new deleteRoom

deleteRoom(roomNo)

room

room

data:map<Room>

deleteRoom(roomNo)

room=remove(roomNo)

UC6 Delete Room

_1195906385.vsd
:libraryEventHandler

:EventNoCreator

{creator and controller}

:Event

Start a new RegisterEvent: ()

ReserveEvent(artistNo,roomNo,dateFrom,dateTo)

eventNo=getNextNo()

eventNo

event=new Event(eventNo,artistNo,roomNo,dateFrom,dateTo)

addEvent(event)

event

put(eventNo,event)

data:map<Event>

UC9 Reserve Event

:EventCatalog

{singleton }

_1195776616.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Search Room

_1195777091.vsd
Form Title

Menu Name

?

Text

Fantasy Library Events System

Administrate Artist

Administrate Room

_1195780019.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Enter Text

Option 1

Reverse Event

_1195780433.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Enter Text

Option 1

Edit Event

_1195779785.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Enter Text

Option 1

Search Event

_1195776837.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Edit Room

_1195773896.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Search Artist

_1195774964.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Enter Text

Edit Artist

_1195682305.vsd
Painter

Speaker

ArtistCatelog

RoomCatelog

-RoomNo
-Type
-Size

Room

-ArtistNo
-Name
-Address
-PhoneNo
-Title
-RegisterYear

Artist

_1195771708.vsd
Form Title

Text

Menu Name

Enter Text

?

Menu Item

￼

Menu Name

Enter Text

Enter Text
Enter More Text

Please type the Artist number

No

Register Room

_1195540711.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Delete Room

_1195597852.vsd
Enter artistNo

Show avaliable room

Edit dateFrom,dateTo

:EventManager

:System

Start a new Reserve Event

Enter room selected

Show massage of event

Uc9 Reserve Evert

_1195497167.vsd
Form Title

Menu Name

?

Text

Administrate Artist

Administrate Room

Administrate Event

Fantasy Library Events System

_1195126366.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Delete Artist

_1195490212.vsd
Enter artistNo

display information of Artist

Edit Artist information

:EventManager

:System

Start a new Edit Artist

Show massage of artist

Uc4 Edit Artist

_1195490490.vsd
Edit artistNo

:EventManager

:System

Start a new Search Artist

Show massage of artist

Uc3 Search Artist

_1195490565.vsd
Edit roomNo

:EventManager

:System

Start a new Search Room

Show massage of room

Uc7 Search Room

_1195491155.vsd
Edit dateFrom,dateTo

:EventManager

:System

Start a new Search Event

Show massage of event

Uc11 Search Evert

_1195490234.vsd
Enter roomNo

display information of Room

:EventManager

:System

Start a new Edit Room

Show massage of room

Uc8 Edit Room

Edit Room information

_1195489041.vsd
Enter artistNo

display information of Artist

:EventManager

:System

Start a new DeleteArtist

Delete Artist

Show massage of artist was deleted

Uc2 Delete Artist

_1195489626.vsd
Enter dateFrom,dateTo

display information of Event

:EventManager

:System

Start a new DeleteEvent

Enter Event selected

Show massage of event was deleted

Uc10 Delete Event

_1195489848.vsd
Enter dateFrom,dateTo

display information of Event

Edit Event

:EventManager

:System

Start a new Edit Event

Enter Event selected

Show massage of event was deleted

Uc12 Edit Event

_1195489138.vsd
Enter roomNo

display information of Room

:EventManager

:System

Start a new DeleteRoom

Delete Room

Show massage of room was deleted

Uc6 Delete Room

_1195488629.vsd
:EventManager

:System

Start a new RegisterArtist

Enter information(name,phoneNo,address,title)

Show Artist information with artistNo

Uc1Register Artist

_1195488702.vsd
:EventManager

:System

Start a new RegisterRoom

Enter roomNo,size,description

Show register information of room

Uc5 Register Room

_1195226446.vsd
Form Title

Text

Menu Name

Enter Text

Enter Text
Enter More Text

?

Enter Text

Option 1

Delete Event

_1195133005.vsd
Form Title

?

Text

Reserve Event

Delete Event

Search Event

Edit Event

Close

Back

_1193225501.vsd
￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼
里程碑说明

￼ - ￼
间隔说明

￼
里程碑说明

￼
里程碑说明

_1195045759.vsd
Form Title

?

Text

Register Artist

Delete Artist

Search Artist

Edit Artist

Back

Close

_1195045892.vsd
Form Title

?

Text

Register Room

Delete Room

Search Room

Edit Room

Close

Back

_1194944780.vsd
System

Events Manager

F L E System

UC1: Register
Artist

UC5: Register Room

UC9: Reserve Event

UC2: Delete Artist

UC10: Delete Event

UC6: Delete Room

UC7: Search Room

UC3: SearchArtist

UC11: Search Event

UC4: Edit Artist

UC8: Edit Room

UC12: Edit Event

_1188982010.vsd
￼�

￼�

�

�

�

�

�

￼�

Milestone Description�

�

�

￼�

Milestone Description�

�

�

�

�

�

￼ - ￼�

Interval Description�

�

�

￼�

Milestone Description�

