[image: image39.wmf]NORDDISTRIBUTION

A/S

Table of Contents

IV1.0
 Project Establishment

1.1
 The Consignment
IV
1.2
 Company Agreement
V
1.3
 Project Organisation
V
1.3.1
 Group Structure
V
1.3.2
 Group Mission Statement
VI
1.3.3
 Group Description
VI
1.4
 Risk Assessment
VIII
1.5
 Back up Procedure
IX
1.6
 Document Standards Specification
X
1.7
 Resources
XI
1.8
 Work Contract
XII
1.9
 Project establishment summary
XIV
1.10
 Time Schedule
XV
2.0
 Pre Analysis
1
2.1
 Company Description
1
2.1.1
 Internal Environment
1
2.1.2
External Environment
4
2.2
 Operations Overview
6
2.2.1
 Current way of operating
7
2.3
 Company Situation Overview
8
2.3.1
 SWOT Analysis
8
2.3.2
 Porter’s theory of 5 competitive forces
9
2.3.3
 Competitive Strategies
10
2.4
 Operation Analysis
10
2.5
 Recommendations
12
2.6
 Solution
13
2.7
 The System we have chosen
15
2.8
 Reasons for this selection
15
2.8.1
 Is a BPR or Total Quality Management (TQM) approach best?
15
2.9
 The BPR and TQM combined approach
16
2.10
 BIS
16
2.11
 Possible Risks Involved
17
2.12
 System Objectives
17
2.13
 Measurability of Objectives
17
2.14
 Implementation of the system
18
2.14.1
 Resistance to change
18
2.15
 Summary
18
3.0
 Object Orientated Analysis
19
3.1
 Problem Domain
19
3.2
 Application Domain
20
3.3
 System Definition
20
3.3.1
 System Definitions
20
3.3.2
 Evaluation of System Chosen
21
3.3.3
 Data Flow Diagram (DFD)
21
3.4
 Classes
23
3.4.1
 Evaluation of classes
24
3.5
 Events
26
3.6
 Structures
29
1.6.1
Generalization – Specialization
30
1.6.2
Aggregation
31
1.6.3
Association
31
3.6.4
Complete class structure including clusters
32
3.7
 Behaviour
33
3.8
 Attributes
34
3.9
 Usage
35
3.9.1
 Actors
35
3.9.2
 Use Cases
36
3.10
 Functions
38
3.11
 Interfaces
39
3.12
 Conclusion of OOA
40
4.0
 Object Oriented Design
41
4.1
 Design
41
4.1.1
Design Criteria
41
4.1.2
Component Design
42
4.2
 Problem Domain Component
45
4.3
Function Model Component
48
4.4
 Interface Component
51
4.5
 Conclusion
51
5.0
 Database Design and Implementation
52
5.1
 Overview
52
5.2
 Logical Database Design
52
5.3
 Physical Database Design (PDD)
64
5.6
 SQL and Java
68
5.7
 Conclusion on Database Design
69
5.8
 Prototype Implementation
69
6.0
 Conclusion and Evaluation
73
6.1
 Evaluation
73
6.2
 Personal Comments
75
7.0
 Appendixes
A
7.1
 Appendix A
A
7.2
 Appendix B
B
7.3
 Appendix C
D
7.4
 Appendix D
H
7.5
 Appendix E
I
7.6
 Appendix F – Source Code for Java
K
7.7
 Appendix G – Source Code for SQL
II
7.8
 Appendix H – Diaries
OO
7.8.1
 Daily Diary
OO
7.8.2
Weekly Summary
RR
7.9
 Appendix I – Baselines
TT
7.10
 Appendix J – Bibliography
WW

Table of Figures

4Fig 1
Overview of ND’s operations

Fig 2
The Current Warehouse System
6
Fig 3
Porters 5 forces
9
Fig 4
The recommended system v2.
13
Fig 5
Information flow using the new database system
14
Fig 6
DFD of the new system v.5
22
Fig 7
Generalisation – Specialisation Items
30
Fig 8
Generalization – Specialization Staff
30
Fig 9
Aggregation Structure
31
Fig 10
Association and Aggregation Structure
31
Fig 11
Class Structure Diagram
32
Fig 12
State chart Diagram for the class Item v4
33
Fig 13
State chart Diagram for the class Consignment v4
33
Fig 14
Embedded State chart Diagram for the class Customer v2
34
Fig 15
Navigation Diagram for the PC Interface
39
Fig 16
New Storage Activity Class
43
Fig 17
Location state chart diagram
43
Fig 18
PDC and FMC
46
Fig 19
FMC, HIC, EIC and FMC model holder Diagram
48
Fig 20
Interaction Diagram
50
Fig 21
The Final OOD Navigation Diagram
51
Fig 22
ER diagram v4
54
Fig 23
EER Diagram
58
Fig 24
ER showing Primary Keys
59
Fig 25
Our Company Contract with ND
A
Fig 26
An example of a Delivery Document
B
Fig 27
An example of a Consignment
C
Fig 28
Navigation Diagram for the handheld scanner
H
Fig 29
Optional EER Diagram
J
Fig 30
ER showing Primary Keys
J

1.0

Project Establishment

1.1

The Assignment
The main objective of this project is to identify a logistical problem within a company, and to illustrate, in a report, how implementing a business information system could solve this problem and then implementing a prototype of this system. This prototype will also include the use of relational databases as part of its design. To achieve this, we will first formulate a business analysis of our chosen company to identify a logistical problem. A system that solves this problem will then be designed in accordance with the techniques and methods learned in Systems Development, with a strong focus on Object Orientated Analyses (OOA) and Object Orientated Design (OOD) as inspiration. These activities will help us implement a stand-alone prototype, which will represent our solution to the problem.

The Company

The company that we have chosen is a distribution company called Norddistribution (ND) based in Glostrup. The company delivers a variety of goods of which some are stored in the warehouse before being delivered. The company’s owner/director, Mr. Henrik Johansen, has fully agreed to cooperate with the group for the entire length of the project and he will be our main contact at the company during our investigation. (Please refer to the Appendix A for the company contract document.)

Mr. Johansen has informed us that a problem exists in the warehouse, with regard to inventory management. One of his main concerns since the company has recently relocated to larger premises is that of finding goods quickly in the warehouse, for the completion of Consignments for his customers.

Because multiple employees check in and retrieve goods in the warehouse, this often leads to the time consuming exercise of searching for the correct goods matching the Consignment documents.

At the time of commencing this project, Mr. Johansen had decided to install a scanning system, which identifies all goods that are checked in to the warehouse using a barcode system. Included in this system is an identification barcode for each shelf location within the warehouse itself. Ideally, this system would allow employees to scan goods in, assign a shelf location to the goods using the scanner, and retrieve the goods by scanning the Consignment documentation. This would tell the employee exactly where the goods were located in the warehouse. Each use of the scanner would update information in Mr. Johansen’s inventory management database.

Since this system is closely related to our project, we decided that we could develop our own version of this system, so that when both were complete, we could compare the two systems and evaluate our performance. Mr. Johansen was also quite keen for us to use this approach and has expressed great interest in the results.

The objectives in respect of our different disciplines are:

Business analysis

We will be conducting a study of the company and its business environment using a variety of tools and techniques acquired from our first and second semester Management and Organisation (MAO). These will enable us to perform a pre analysis on ND. From this we will determine a logistical problem that can be solved using a computerized system.

System Development

Using the pre-analysis document made in the MAO phase of this project and the methods from

OOA and OOD, we will create a model of a system that we feel is the most appropriate. Using this model and Enhanced Entity Relationship (EER) diagrams, we will design components and relational database tables. This model will be the foundation for substantiating a prototype of an operative computer system.

Programming

Using the model design, EER diagrams and Object Oriented Programming (OOP) we will create a simple stand-alone prototype that will perform basic queries to a database. This prototype will have limited functionality and serve only as a user interface for the relational database.
Indirect Objectives

To gain experience in a real world environment and to put into practice the skills and knowledge we have acquired throughout the two first semesters. This Consignment also extends our skills and experience of working in groups.

1.2

Company Agreement

Norddistribution A/S has fully agreed to cooperate with the project group throughout the running of the project period. We have made an agreement with the Managing Director, Mr. Henrik Johansen that we will identify a logistical problem, analyze it and present a possible solution for this problem
.

1.3

Project Organisation

1.3.1

Group Structure
The group will be a four-person team, and the roles will be allocated as shown in the following table. The Project leader role will be the only role that will be rotated amongst the members of the group. This will be done in intervals of 2 weeks with Chris McCombe selected as the leader towards the end of the project time. Please refer to the project schedule for specific time periods of leader roles.

All the other roles will be fixed for the project time period, because we feel, that it will create a more stable working environment.

We feel that the following roles are necessary for a successful project:

· The project leader is needed to coordinate activities and meetings.

· The backup roles are the most important roles. They are very important safeguards against loosing information.

· The secretary is also important, because this person arranges the meetings with the supervisors of the group. He makes notes and minutes at meetings, and also prints out documents when needed.

· We need the contact person to maintain a continuous link with the company.

	Roles
	Description
	Group member(s)

	Project leader

(PL)
	1) The coordinator of the meetings of the group.

2) Setting individual Consignments to members when required.
	This rotates during the project period

	Backup primary

(BP)
	1) Uploading a copy of every days work to our iGroup
 account after each day.

2) Mails documents to supervisors when needed.
	Jakob

	Backup secondary

(BS)
	1) Taking a copy of the primary backup, either directly from BP, or from iGroup.

2) Takes the role as BP if the original BP is absent.
	Mark

	Secretary

(S)
	1) Printing out of the documents.

2) Takes minutes from the meetings.

3) Arranging the meetings with the supervisors.
	Thabet

	Company contact

(CC)
	1) Contacting the company/Mr. Johansen when needed.

2) Responsible for the meetings with the company.
	Mark

1.3.2

Group Mission Statement
“We will use all the talent, knowledge and experience that our group possesses to create a report and a functional prototype of the highest possible standard obtainable by the group members. We will endeavour to maintain a democratic, fun and relaxed working environment.”

1.3.3

Group Description

The group consists of 4 members from 4 very different backgrounds, ages and levels of experience. We feel that this is one of the great strengths of team “Fun Factory”, the informal name of our group.
Chris comes from Australia and has had variety of different working experiences working in both Australia and England. He has worked in some of the largest and most prestigious sporting events in Australia as a catering manager, this has resulted in his ability to work well in pressured situations. He has experience as an IT system user and some knowledge of hardware.

Mark also comes from Australia. Being an electrician by trade, his technical background is an asset to the group. He has managed his own business in this field and has had some experiences with computers.

Jakob is the Dane in the group. He has come directly from “gymnasiet”, thus making him the youngest member of the group. This also makes him the least experienced in the group. But he is the computer wiz in the group, the one being consulted, when a problem with a computer occurs.

Thabet is from Iraq, and is educated as a civil engineer. He worked with Mac machines and has worked with PC’s as a normal user. He has been through a short course about Windows NT 4.0.

This has helped him to know more about different operating systems and selected hardware.

	Members
	Strength
	Weakness

	Chris McCombe
	· Communication.

· Leadership.

· Good overall knowledge of subjects.

· Speed.
	· Absence.

· Quality.

· Talks too much

	Mark Ryan

	· Cooperative, ideas.

· Programming

· Doesn’t stress.

· Practical
	· Learning.

· Punctuality.

· Typing skills.

· Systems development.

	Jakob Kierkegaard
	· Technically minded.

· Computer skills.

· Organized.

· Business.
	· System development.

· Easily distracted.

· Could participate more in discussions.

	Thabet Al-Assadi
	· Thorough.

· Organized.

· Ideas and suggestions.

· Logical.

· Programming.

· Commitment
	· Hard to understand.

· Can be too pedantic at times.

· English skills are not the best.

· Systems development.

Group Summary

We feel that our group is strong in programming, and above average with the business (MAO). However, our skills in system development are lacking. We hope to improve these skills throughout the project period.

We feel that the diverse knowledge and experience represented by our different backgrounds will enrich our working environment.
1.4

Risk Assessment

	Risk
	Consequence
	Possibility
	Threat
	Precautions
	Action

	Loss of motivation and commitment
	Delays

Disturbance

Stress
	L
	H
	Read the work we have done so far.

Focus on goals.
	Change of roles, and responsibility.

	Member becomes ill for more than 2 days
	Delays

Loss of Motivation
	H
	H
	Eat well and healthy.

Get enough sleep.

No partying.
	Split work between the members and work over time.

	Company decides not to cooperate anymore
	Loss of motivation

Loss of information
	L
	M
	Written contract.

Minimize disruptions to the Company.
	Improvise and describe the problem in the conclusion of the report. Continue as on campus.

	Time schedule is breached
	Delays

Stress

Loss of quality
	M
	H
	Maintain a constant speed of work in relation to schedule.
	Overtime work and division of Consignment in the group.

Delimit the schedule.

	Uncertainties over the project
	Delays

Wrong product

Stress
	L
	M
	Keep focused on objectives.

Regular communication with advisors.
	Meeting with the advisor

Review of Guidelines.

Complete a thorough and intensive pre analysis.

	Unavailability of Project Advisor and/or Supervisor
	1. Delays

2. Panic

3. Uncertainty
	L
	L
	Make agreements with advisor about a course of action to take in this situation.
	Use email or phone.

Approach other Advisors

	All the back-up devices fail

	Loss of motivation

Loss of quality

Delays
	L
	L
	Always make sure there is a secondary back up and each member has a copy at home or on a disk.
	Collect all paper work and files from the group members and split the re-editing in the group. Review Back-Up procedure.

Legend

	High
	H

	Medium
	M

	Low
	L

Risk assessment conclusion

The risk analysis shows that the average risk for the working process being interrupted is low. The group feels that the most threatening risk of this project is the time aspect. It is very important that the precautions are kept in place to avoid a crisis situation.

1.5

Back up Procedure

The following list will be our backup procedure during the project period.

1) The secondary back up person takes copy of the latest main working document from the Primary backup person and creates a copy on his own for storage on pc or diskette.

2) This copy is saved in the format [year-month-day] ND.doc

3) The primary backup person will take a copy of the latest main working document and upload it to our iGroups account at the end of each day’s session as well as saving it on his own laptop.

4) The old version of the document is removed after the updated version has been uploaded.

5) All sub documents created are saved with the primary back up person on the format [year-month-day] [document description] [version number]

6) A folder named “latest version sub documents” contains the latest version of all sub documents. This folder is copied to the secondary back up person after every work session.

7) All old documents are kept on the primary backup person’s laptop in folders named in the format project documents [month]

1.6

Document Standards Specification

	FONTS
	Type/font Size
	Format

	Chapter Title
	Caps/Arial/18 (Headline1)
	Bold

	Chapter Subtitle

Sub-subtitle
	Cap + lower/Arial 16

(Headline2)

Cap + lower/Arial 14

(Headline3)
	Bold, Left + Regular indent

Bold, Left indent

	Bread text
	Cap/lower/TimesNewR/12
	Bread Text

	Footnote
	TNR 8
	Footnote

	List Point type
	·
	

	Numbered List
	1)
	

	Alpha List
	a)
	

	
	
	

	Line Spacing
	Space
	

	Between Chapter Title

And sub-title

Sub-title and Bread

Bread text
	2 lines

1, 5 lines

1,0 lines
	

	Header-report title +

Chapter title right
	Arial 14 bold
	

	Footer-our names and page nr
	TNR-8
	

	Margins
	3cm top & bottom

2cm left & right
	

	Text
	Left justified
	

	OTHER
	
	

	Additional pages
	Appendix, Index, Bibliography, Contents
	

	Diagrams
	Black/White
	

	Front Page
	Black/White
	

1.7

Resources

Human:

	Name
	Nationality
	Address
	Telephone
	E-mail

	Chris McCombe
	Australia
	Vedbækgade 5, st, tv

2200 København N
	35 82 09 65

26 70 09 65
	coom@orangenet.dk
coom69@hotmail.com

	Mark Ryan
	Australia
	J.M.Thielesvej 14,st

1961 Frederiksberg
	35 24 12 45
	Mr241170@rhs.dk

	Jakob Kierkegaard
	Denmark
	Røglevangen 12

4000 Roskilde
	27 20 44 52
	jkierkegaard@hotmail.com

	Thabet

Al-Assadi
	Iraq
	Toldskrivervej 8,

2400 KBH. NV
	20 61 52 89
	th2july98@hotmail.com

Technical:

The list below is the set of tools that we will be using during the project. The choice is based on the school’s common tools so that the entire group will provide a compatible product that can be used in the school infrastructure.

Software

· Microsoft Word 97/2002

· Visio Professional 2000/2002

· Interbase 6.0 (Database Management System)

· Java 2.0 - SDK 1.3

· TextPad 4.4.2

Hardware

· Personal laptops, our own and the schools pc’s.

· Laser printer at school

· Floppy Disk’s and CD’s for back-ups

· Internet and network driver for back-ups

· Mini disc recorder for Company meetings

· iGroups file sharing web drive

Project Advisor

MAO Teacher:
Klavs Frisdahl
E-mail:

frisdahl@rhs.dk

Klavs is the Management and Organisation teacher at Roskilde Handelsskole. He is very qualified for the job of project advisor, as he is an expert not only in MAO, which is an integral part of this project, but cooperating with a company as “consultants” in general. We will be coordinating regular meetings with Klavs throughout the duration of the project. It is at these meetings that he will steer us in the right direction and give us feedback and guidance from the documentation and ideas that we will present to him.

1.8

Work Contract

Working hours

All days in the week from Monday to Friday are to be considered as being used to work on the project. The weekends are not to be used to do the project, unless we find it necessary to do so. Every day a start at 9:30 and the schedule continues to at least 16:00 in the afternoon. But this does not mean that we can’t stay later.

Working place
Roskilde Handelsskole.

Decisions
When needing to make decisions in the group, the opinions of the present group members are taken into consideration. If a vote is needed, it is the majority that will prevail. If it is a draw, the project leader will be the one taking action by including a third party, most often a supervisor, to evaluate the situation. If the supervisor is unavailable, the counter group will be consulted.

Working process
In the beginning of each working day, the group will start by briefly going through what was done the day before, and the assignments of the day will be based on this. Even though this is a project based on group work, there might be assignments that will be easier to solve by doing it individually. This will be determined by the assignment.

At the end of the day the group will get together and find out, if homework is necessary for the next meeting. The work done that has been written in electronic form will be uploaded to our page on iGroups.

Communication
The primary communication form when not working with the group is by telephone, and if possible the member’s cell phone number is used. If a member of the group is not available through a phone, email is used.

Absence:
If a member unexpectly does not show up for a meeting, he has to contact one of the other members, so they are aware of this, and this should preferably be done before 9:00. If the member

not showing up had homework to do, he is requested to send this by email to one of the others in the group, or upload it to our iGroups page on the Internet. If the absence is lasting for more than one day, his work is divided between the others in the group. During the absence, the work done during the day should be sent to the one absent to keep him up to date.

If the absence is planned, the rest of the group should hear of it as soon as possible (preferably at least two days before), so the group can take it into consideration when planning.

Sanctions:

If any member of the group is not performing his job as agreed with the rest of the group, or not according to the contract, it will be discussed by the group, and anything will be put aside to get the group to work properly. If the problem(s) continue after 4 discussions, it will be taken to the project advisors so they can help the group to find out what to do.
Changes to the contract:

If anyone feels that the contract needs editing, the person takes it up with the rest of the group, so it can be discussed. But the change will not take place unless everyone in the group agrees.

By signing this contract, I declare my agreement with the written terms
Roskilde

Mark Benjamin Ryan

Chris McCombe

(35241245)

(26700965)

Jakob Kierkegaard

Thabet Al-Assadi

(27204452)

(35826552)

1.9

Project establishment summary

The project establishment has given the project a realistic starting point. We have made precise assignments for individual group members and established other important objectives. This activity has helped us to understand and accept the situation we are facing and it has been formulated in a clear and explicit format. We have realized that it is important that everyone in the group must know the assignment, their responsibility and the overall goals of the project. Working practices has been considered, and the course of the project has been planned. We feel that the establishment supports the future management of the project, especially the schedule, which will play an important role in time considerations.

It is vital, that all project group members take part in discussions and decisions. This will give everyone the opportunity to influence the project and create a feeling of shared responsibility.

The company agreement has also been formulated here, and signed by the company contact person and the company itself. This is an important part of the establishment process, and also serves as a precaution against future deviations and problematic situations that could arise and affect the work process.

1.10

Time Schedule

[image: image1.emf]IDTask NameStartFinishTime

3 Mar 200210 Mar 200217 Mar 200224 Mar 200231 Mar 20027 Apr 200214 Apr 200221 Apr 200228 Apr 2002

89101112131415161718192021222324252627282930311234567891011121314151617181920212223242526272829301

22d18-03-200215-03-2002

Project

Establishment

33w05-04-200218-03-2002Pre Analysis

41w22-03-200218-03-2002

Company

Analysis

53d27-03-200225-03-2002

Problem

Selection

61w 2d05-04-200228-03-2002

Solution

Selection

72w 3d22-04-200204-04-2002Analysis

83d08-04-200204-04-2002

Problem

Domain

91w15-04-200209-04-2002

Application

Domain

101w22-04-200216-04-2002OOD

111w 1d29-04-200222-04-2002Database

123d24-04-200222-04-2002E/R Diagrams

133d29-04-200225-04-2002

DB

Implementation

141w03-05-200229-04-2002Prototyping

151w03-05-200229-04-2002Java

161d06-05-200206-05-2002Conclusion

171d07-05-200207-05-2002

Complete

Document

18

11w14-03-200208-03-2002

Project

Initialisation

5 May 2002

2345678

Jakob Kierkegaard as leader

Mark Ryan as leaderThabet Al Assadi as leaderChris McCombe as leader

Review

2.0

Pre Analysis

Introduction:

This analysis will describe the company and its situation. The pre-analysis will also analyse the company operation and identify possible problem areas. At the end of this pre-analysis we will make recommendations, and give a Business Information System model that will suite this company’s requirements. From this analysis we will make a recommendation as to whether it is feasible to proceed or not.

2.1

Company Description

Overview:

Norddistribution (ND) is a distribution company established by Mr. Johansen in the early 1990’s.

The company operates as a third party logistics management provider to most of its customers (please refer to process analysis for further details). This service includes picking up goods from a customer, taking them back to the warehouse, and then delivering them to the final destination or end user. On average the company makes around 1100 single deliveries in one day, which could be anywhere in Denmark, but also including southern parts of Sweden. The present annual turnover is approximately 12 million kroner. The company does not supply or produce any of the goods that it delivers and is purely focused on the distribution aspect of its operations.

The company also has a trailer rental service that operates out of a variety of Texaco service stations across Denmark. ND has prospered over the last 10 years to expand from a small operation involving only a handful of employees to and operation that now employs 12 employees and 15 sub contractors. Mr. Johansen has decided to increase his focus on the distribution aspect of the business and has made specific decisions to achieve this. They have also recently moved to new larger warehouse in Glostrup.

2.1.1

Internal Environment

Information source

After conducting several interviews with Mr. Johansen, the Managing Director of the company, we were able to appreciate and understand his viewpoint of the company, how he sees it now, and how he would like to envisage it in the future. This included his considerations to employees and what he perceived as being the most important aspects of the company’s operations. Most of the information contained in the following analyses was directly obtained from these interviews, whilst other points were derived from assumptions made by the group. These assumptions were either based on the information gathered during our several visits to the company, or expansions on what Mr. Johansen had told us during the interviews.

Strategy Analysis

Present Mission Statement

The main priority is for all employees to have “fun” and the success of the company will be a natural extension of the enjoyable workplace. The company will aim to deliver all goods accurately within 24 hours.

Company Strategic Goals

1) That the company will not grow to a size that would require the hiring of a full time bookkeeper.

2) To have a stress free and fun environment.

3) To have a profit every year of approximately 5% of turnover but will accept a profit close to this. This goal has a lower priority than the first 2.

4) To make a constant improvement to it service by deploying new techniques. E.g. it has renewed its middle size vans, which have improved the company’s transporting capacity by approximately 25%.

Company Tactical Goals

1) To have as little paperwork as possible.

2) To deliver Consignments more quickly than most competitors.

Present Strategy

1) ND is using a differentiation strategy
 focusing on the quality and service provided to their customers.

2) ND focuses on improving the speed of deliveries, as this is part of the quality of their service. This is a Time Based Competition approach.
 ND aims to retain and acquire new customers on the basis of the speed of their deliveries.

3) ND has focused on a particular category of customers. The company wants customers with regular Consignments that generates reasonable turnover. They openly inform many possible customers that ND is not the distributor best suited to them. This applies to very small customers and one-time customers.

4) The company has a more expensive price structure than most other distributors in the market place but are the only distributor that offers this high level of delivery accuracy, customer service and flexibility.

5) Mr. Johansen has decided that the company will have a fun atmosphere. This has resulted in good relationships between Mr. Johansen and his employees, sub contractors and customers.

Strategy Analysis Summary

Mr. Johansen is largely very content with the situation at ND and the Strategy Analysis reveals this. The levels of profit and growth that he is planning for are quite low. The overall aim is the retention of the pleasant working environment and to retain reasonable levels of profit.

Structural Analysis

Structure

1) ND has a very loose structure where most employees interact in a team like fashion although they may only work together for short periods each day.

2) There is a clear distinction between the manager and the staff in respect of decision-making. The role of the manager includes tasks that are also undertaken by the other employees.

3) There are 10 drivers employed by ND as well as another 15 sub contracted drivers.

4) Mr. Johansen works in the warehouse with one other employee. They operate as a permanent team sharing information and tasks in a way that enables them to achieve the tasks as quickly and easily as possible.

5) The sub contactors also operate as a self-directed team that also share tasks and delivery loads to complete the delivery as quickly as possible.

Job Design / Structure Analysis

Most of the employees of ND are drivers. The structure follows that of job simplification
 in that most tasks are repetitive. The occasional special customer request and new destination provides some relief to this repetition. Mr. Johansen and his assistant have a more job enrichment
 type design to their job as they have a larger variety of more interesting jobs involving responsibility to make decisions and solve problems. This means that Mr. Johansen and his assistant have more job satisfaction
 than the ND drivers.

Structural Analysis Summary

ND’s structure is quite simple with only one manager and 2 groups of employees as well as sub contractors. All leadership and direction comes from Mr. Johansen. The drivers do work together, and help each other in the co-ordination of Consignments. The drivers assist the warehouse employees with the movement of items. Overall the structure could be described as being 3 separate teams; Drivers, Warehouse Employees and Sub Contractors that assist each other with Mr. Johansen the overall leader of the group.

Cultural Analysis

Culture

· The culture at ND is one that flows from the mission statement. Mr. Johansen has stated that to have fun while working is his most important consideration. The culture could be said to resemble a “club” culture
 as the relationships between manager and staff have a casual overtone.

· The employees show a high level of loyalty and commitment to the company. Mr. Johansen also shows faith in the employees’ thoroughness and competency. This is rewarded by remuneration higher than the industry average. This shows the faith Mr Johansen has in his employees and also address’s the hygiene factor of their motivation
.

· Social interaction is encouraged outside working hours. The company supports this. This address the belongingness needs according to Maslow’s theory
.

· The management’s expressed values follow closely to that which we would identify with an adaptive culture
. The visible behaviour is not as clear as the management has selected a certain type of customer and is not interested in expanding this to other less suitable types.

· Mr. Johansen displays a strong leadership style where no decision is questioned. There is a very limited amount of ideas taken from the employees. Mr. Johansen’s personality and relaxed character enables the workplace to operate smoothly. This balances his autocratic style
.

Cultural Analysis Summary

The culture is an unusual mix of both a very relaxed workplace combined with an autocratic leadershipstyle. Mr. Johansen is clearly the source of all new ideas and decisions. His personality allows this to be done in a way that maintains the good working environment, and retains his stated aim of having a “Fun” workplace.

2.1.2
External Environment

[image: image2.wmf]Inbound

Items

Outbound

Items

Norddistribution’s

Warehouse

Norddistribution’s

Customer

Delivered to

end user

Final Destination

Henrik

Consignments

for pick-up

Customer

2.

Consignments

picked up &

taken

back to

warehouse

Jobs

assigned

Driver

3.

consumer

1.

Driver and

customer rep

Driver and

end user

Consignments

delivered to

final destination

Consumer request

Delivery

request

Item

storage

Driver

4.

5.

6.

7.

8.

Fig 1

Overview of ND’s operations

Customers

The company’s customers can be one of the following:

1. A provider of items to be delivered.

2. A receiver of the delivered items.

3. A separate third party that has arranged for the delivery of items.

The company is reluctant to take on too many new customers, as the company does not want to expand much more. They would prefer to have customers that fit into the system that they have. They will discourage or quote high prices to one-time customers. Regular or larger sized customers are preferred.

Suppliers

The company has a special relationship with its fuel supplier, Texaco, as this is the fuel provider that also provides the outlets for the trailer rental part of the business. This supply chain management
 has enabled both members of the chain to reap benefits from the relationship that would not result from a simple supplier relationship. Both companies are interested in the success of the trailer rental business.

The other aspects of supplier chain management operate in a more traditional manner, as there is a limited scope to share goals with suppliers. Most supplier decisions are made on price and quality considerations.

Competitors

No direct competitors in respect to the level of price, quality and flexibility of service. ND offers a level of flexibility and quality slightly below a UPS type courier, but above a regular large distribution company, at a price between the two. ND does not offer a “track & trace” facility as UPS does. ND does however, offer more flexibility and a “one stop shop” solution to its customers than other distributors. When a customer has a special request ND will fulfill this request even if it involves using another company to do so. A customer will not need to find another distributor for these special requests.

2.2

Operations Overview

[image: image3.wmf]Inbound

items

Outbound

items

Check in

items

Check out

items

Henrik

$

$

$

Consignment

Documents

Items

retrieval

?

Items Storage

Consignment Documents

C

o

n

s

i

g

n

m

e

n

t

D

o

c

u

m

e

n

t

s

Delivery Notes

Delivery

Notes

Fig 2

The Current Warehouse System

Document definitions:

· Delivery Note – The document carried by drivers that has the number of packages to be delivered to the warehouse. This is matched with the number of packages that are delivered, and the delivery note is then thrown away. See a copy of this document in Appendix B

· Consignment Document – This document contains information about where the final destination of the Consignment is, the customer, the contents and how many individual items make up the Consignment. This document is retained throughout the process and eventually returned to the customer with an invoice. See a copy of this document in Appendix B

The drivers come in with the items, which they place somewhere in the warehouse where there is a free spot. The delivery notes are given to Mr. Johansen, who throws them out. Mr. Johansen then gives the Consignment documents to a driver that will deliver the items to the end user. The driver then uses time to find the items in the warehouse, collects all the items in the Consignments and delivers them according to the documents.

Comments

The current system does not use the employee’s time as efficiently as it could. The new system should reduce these inefficiencies. When the drivers are coming in to get the items they are to deliver, they can spend a lot of time to try finding the items they need.

2.2.1

Current way of operating

ND operates as a third party logistics management provider to most of its customers (please refer to process analysis for further details).

ND handles two types of Consignments from their customers.

1) The first involves ND picking up items either from the customer or a nominated supplier and delivering them to a final destination. The items may not go directly to the final destination if the amount of items is too small or another truck’s delivery route is better suited. The majority of Consignments go through ND’s warehouse.

2) The second type is when the customer delivers items to the ND warehouse to be distributed further to a final destination.

The function that we are concerned with will be the Inventory Management aspect of this procedure, which currently operates as follows:

1) Items arrive at ND and are checked in manually using a delivery note and then allocated a position in the warehouse by a ND employee, but not by the sub-contracted drivers.

2) An identifying label is kept on the items and the Consignment documentation is forwarded to Mr. Johansen.

3) When its time for shipping, the items are located by employees, who match the Consignment documentation to the identifiable information on the items.

4) The items are then checked out manually using the Consignment documentation again and loaded onto a truck for delivery to the final destination.

Additional comments

The company does not offer warehousing of stock to customers, but warehouses some of their own rental trailers during winter, as well as those that have become obsolete and are for sale. This is a small, less significant aspect of the business that Mr. Johansen would like to reduce. This emphasises that Mr. Johansen focuses on the company’s core competencies
.

Current IT System

Besides the use of the Danske Fragtmænd (DF) scanning system, there is currently no internal EDB system in place at the company’s operations warehouse.

Documentation flow

[image: image4.wmf]Customer

Items

Consignment Docs

Items

Registered

Data Store /

 Mr Johansen

I

t

e

m

s

D

a

t

a

Shelf

 No.

Items

Located

L

o

c

a

t

i

o

n

D

a

t

a

Shipping

 Date/Time

Items

Retrieved

I

t

e

m

s

L

o

c

a

t

i

o

n

I

t

e

m

s

D

a

t

a

End User

Items

Consignment

Docs

Fig 3

Modified DFD of the present data flow
2.3

Company Situation Overview

2.3.1

SWOT Analysis

	Internal
	External

	Strengths

1) Centrally located in the Copenhagen area. This means savings in both fuel consumption and time, thus providing a cost advantage compared to their competitors located outside Copenhagen.

2) A clear, simple and fast decision making structure.

3) They are small enough to be able to get items in and out of the warehouse within 24 hours.

4) The ability to meet customers’ unusual and special needs at a profit through their flexible and pricing structure.

5) Content, competent and well rewarded work force.

6) Good reputation for accurate, fast and reliable service.
	Opportunities

1) They have the possibility of expanding into most of South Sweden and the rest of Denmark.

2) The increasing number of elderly Danes requiring incontinency products.

3) The prospect of lower bridge tolls between Denmark and Sweden.

4) No direct competitors.

	Weaknesses

1) Lack of inventory control system.

2) Their average prices are higher than other distributors.

3) Management unwilling to expand the company to a large degree.

	Threats

1) Increasing European competition in the field of distribution.

2) The possibility of rapid fuel cost rises because of conflicts in the Middle East.

3) Downturns in the Danish or World economy.

4) New entrants focusing on providing the same level of quality and flexibility as ND.

5) ND has only got a 2-year contract with Panasonic, of whom they are renting their warehouse.

SWOT summary

It seems as if, that ND is well positioned in the market, with no direct competition and a good location. Their central location in Copenhagen means that they are centrally located to their customers. This is not a disadvantage to customers far away, e.g. customers in Århus and the southern part of Sweden.

They are a small company, but have the opportunity to expand over the most of Denmark and South Sweden. However, they are reluctant doing so, because they have no intentions of getting any larger than they already are.

They are known for being fast, accurate, and able to meet special demands from their customers. This also means that their prices are higher than the competitors’, but apparently their high quality of service is worth the cost. Customers are also willing to pay a higher price for the quicker speed of the deliveries compared to that provided by most competitors. This closely corresponds to the company’s differentiation strategy.

As all other companies that have got trucks as a primary part of the company, they are vulnerable to various crises in the Middle East, where most of the fuel comes from. If the prices just rise a little, they have to pay much more because of ND’s vehicles’ high consumption of fuel.

2.3.2

Porter’s theory of 5 competitive forces

[image: image5.emf]Potential new

entrants

Bargaining

power of

suppliers

Rivalry among

competitors

ND

Bargaining

power of

customers

Threat of

substitute

products

Fig 3

Porters 5 forces
Porter’s theory of 5 competitive forces defines the different kinds of forces that can affect a company. The following is a list of how these forces affect ND.

1. The threat of new entrants - ND could be affected by the entry of new competitors, as the amount of capital required for new entrants is quite low. They only require a telephone and some customers in the simplest model. This is counterbalanced by the good reputation that ND has earned. This is very difficult to gain in a short time.

2. Bargaining power of customers – ND’s customers would like lower charges for the deliveries and they may attempt to pressure ND into lowering their charges. ND’s flexible pricing structure enables some room to bargain in this area. ND’s reputation for quality, speed and accuracy enables them to still charge more than their competitors and still have satisfied customers.

3. Bargaining power of suppliers – It has built a good relationship with the fuel supplier, Texaco, which functions as an outlet for the ND’s’ trailer rental. Texaco can still change its prices at will, but ND can threaten to purchase fuel elsewhere if the trailer business is curtailed by Texaco. ND has already done this with Statoil.

4. Threat of substitute products – The possibility for substitutes is low but some movement could occur from his business towards other means of transport e.g. rail or air. Pressure for changes in the direction could come from environmental grounds or extreme rise in fuel prices.

5. Rivalry among competitors – This does not affect ND so much as ND does not have any direct competitors. ND has chosen not to advertise but to contact prospective customers directly.

2.3.3

Competitive Strategies
1) ND is using a differentiation strategy focusing on the quality and service provided to their customers.

2) ND is also using a time based competition strategy
 by aiming to be quicker to respond to customer requests and have quicker delivery times than competitors.

3) The company has focused on a particular category of customers and openly informs many possible customers that they are not the distributors best suited to them.

4) The company has a more expensive price structure than most other distributors in the market place but are the only distributor that offers this high level of delivery accuracy, customer service and flexibility.

5) Mr. Johansen has decided that the company will have a fun atmosphere. This has resulted in good relationships between Mr. Johansen and his employees, sub contractors and customers.

2.4

Operation Analysis

Introduction
In this section we will be looking at ND and its operations to find areas that could be improved through the use of a Business Information System (BIS). We will be using tools from Business Process Reengineering (BPR)
 methodology. We will be breaking the business cycle down to individual processes. This method will allow us to identify the processes that add value and those that do not. We will use this information to decide which parts of the business cycle BIS can improve.

Supply Chain Analysis

ND’s supply chain is different from many other businesses; they provide services, not products. They have a special relationship with their fuel supplier (Texaco), through their trailer rental business. ND has not focused on any other aspect of the inbound logistics to provide a competitive advantage.

Process Analysis of the business cycle

	Customer delivery to warehouse:
	Value Added

	Receive notification of an upcoming delivery to the warehouse, and possibly its address to be distributed to.
	No

	Delivery arrives at a specified time (usually in the morning) for the driver/company.
	No

	A ND staff member checks in the items. This means, that the items are counted and matched with the driver’s delivery note.
	No

	The Consignment documents are removed from the items, and passed to Mr. Johansen.
	No

	The items are placed somewhere in the warehouse by one of the ND staff members.
	No

	Mr. Johansen decides which driver will take what Consignment.
	No

	The drivers come in, and are given the Consignment documents by Mr. Johansen.
	No

	The drivers search the warehouse for items to be matched with the Consignment documents
	No

	The drivers load the items and deliver them to the addresses specified on the documents.
	Yes

	The driver returns the Consignment documents to Mr. Johansen. Mr. Johansen forwards them to the customer with an invoice. If the customer is DF, the Consignment documents are gathered and sent once a month without an invoice. DF calculates from the Consignment documents the amount of payment they will send to ND.
	No

	Deliveries that will be made via the warehouse
	Value Added

	A customer makes a request for a delivery to be made. This delivery will be required to pass through the warehouse and then be delivered to the final destination.
	No

	Mr. Johansen assigns the order by contacting a driver, who arranges to pick up the items.
	No

	When the driver collects the items, the Consignment documents are checked and matched to the items.
	Yes

	The driver delivers the items to the warehouse and puts them somewhere in the warehouse himself.
	No

	The Consignment documents are given to Mr. Johansen.
	No

	Mr. Johansen assigns a driver to the delivery of the items to the final destination. (Not necessarily the same driver that has brought the items to the warehouse.)
	No

	The driver that will be delivering the items to the final destination collects the Consignment documents from Mr. Johansen.
	No

	The drivers search the warehouse for items to be matched with the Consignment documents
	No

	The driver loads the items and delivers them to the addresses specified on the Consignment documents.
	Yes

	The driver returns the Consignment documents to Mr. Johansen. Mr. Johansen forwards them to the customer with an invoice
	No

	Deliveries that will not be made via the warehouse
	Value Added

	A customer makes a request for a delivery to be made. This delivery will not be required to pass through the warehouse but will be delivered directly to the final destination.
	No

	Mr. Johansen assigns a driver to the delivery and contacts them to arrange the pick up.
	No

	When the driver collects the items, the Consignment documents are checked and matched to the items.
	Yes

	The driver loads the items and delivers them to the address /-es specified on the Consignment documents.
	Yes

	The driver returns the Consignment documents to Mr. Johansen. Mr. Johansen forwards them to the customer with an invoice
	No

From this analysis we can see that the majority of steps that occur add no value to the business cycle. This means that a customer is not willing to pay more for the product when more resources are is used on these non value-adding processes. In an effort to make the company more efficient we will look at ways to reduce the resources used on these non value-adding processes. This will allow more resources to be directed towards the value adding processes.

Mr. Johansen has mentioned to us that he is worried that too much time is spent searching for consignments in the warehouse. We can see that this is a non-valued process that we could try and make more efficient with BIS.

We can also see a possibility that a BIS could be used to help in the allocation of drivers to jobs. Mr. Johansen feels that his present system of contacting drivers by mobile phone when he receives the orders operates satisfactorily at present.

2.5

Recommendations

Mr. Johansen is currently running an efficient and effective company, so it is limited how many changes we can recommend to him.

If Mr. Johansen was considering a higher growth strategy, we could recommend a BIS system that would include customers, employees, deliveries and item information.

With the current goals and strategies, we recommend Mr. Johansen implements an inventory management system, making it easier to locate and place items in the warehouse. This would address the concerns mentioned by Mr. Johansen and could be used to move resources to the value added processes in the business cycle.

The following figure represents an overview of the recommended system.

[image: image6.wmf]Inbound

items

Outbound

items

Scan in

items

Check out items by

scanning them out

Henrik

$

$

$

Consignment

Documents

Items Storage

Items location

scanned in

Items found by

scanning docs

Delivery

Notes

Consignment Documents

Delivery Notes

Workstation

C

o

n

s

i

g

n

m

e

n

t

D

o

c

u

m

e

n

t

s

1

4

3

2

Fig 4

The recommended system v2.
2.6

Solution

System users

We recommend a solution that assists all staff, including the drivers, in checking in and retrieving items in the warehouse. Mr. Johansen will also use this system for making queries to a database to retrieve statistics.

System functions

This system will track and record the position of items at recorded locations within the warehouse. It will provide for fast and accurate depositing of items, while enabling quick retrieval of them using the Consignment documents.

How the system will work

Scanners will be used to identify items, specific locations and their corresponding Consignment documents within the warehouse. Using these scanners, staff will check the items in with the corresponding Consignment documentation and scan the shelf location at which they deposit the items. The scanner will then update data relating to the items and their locations in the warehouse. The items can then be located in the warehouse by reading (with the scanner) the location connected to the Consignment document. A central database will be used to hold all data connected to locations and items (see fig 3).

Input and outputs of the system

The inputs for the system will be information from Consignment documents, staff member identification, shelf locations, customers, items and times and dates of Consignments. Outputs of the system can be seen on a visual display on the scanner itself. It will show information about particular Consignments, and tell the user exactly where the items are in the warehouse. Mr. Johansen will be able to read the same information on his computer, with the added ability to see statistics on the items, Consignments, customers and staff member performance.

Benefits to the company

The reductions in time wasted searching for items in the warehouse will mean faster discovery of Consignments, but also detecting incorrect Consignment documents quicker, enabling better customer service. A better overview and control of warehouse resources will be possible. It will also provide the ability to retrieve statistics on customers, staff and Consignments, assisting Mr. Johansen to formulate strategies in order to set and achieve new goals for the company.

[image: image7.wmf]Inventory management database

Data on items, customers, staff, locations, Consignments

Database Management System

Data & information

Items/Materials

Model

Java

prototype

Reports on items delivered,

employee performance etc.

Scanner

Items inbound

Items outbound

Scanner and PC

screens

Scanner data storing

Items location/retrieval

Scan location

& Items

Scan

documentation

data

Data from scanner /

Input from keyboard and/or mouse

Data

Provision of information from the inventory Database.

Fig 5

Information flow using the new database system

As illustrated by figure 6, the new database system will store information about the items within the warehouse. This database will provide information, which will help users monitor and control the movement of items. These items pass through the warehouse before being shipped out for delivery. Not only will this create a more efficient inventory management system, but also allow all data about the items and their customers, to be managed and stored as a central resource.

An important process of this new system will be the recording of transactions and placement of items within the warehouse itself. Looking at the diagram, it can be seen that items coming in, are scanned for identification and given a location somewhere in the warehouse. The scanner records this position. This information is sent to the database by the scanner, where it is stored and a similar process uses the data for retrieval and delivery of the items. Interaction between the scanner and the database will be controlled by database management system software of the developer’s choice.

2.7

The System we have chosen

The system described above including the use of scanners will be the system we feel matches ND’s requirements the best.

We have chosen to recommend a system that uses a collection of handheld scanners to record the registering of incoming god to the warehouse as well as the placement of those items.

2.8

Reasons for this selection

2.8.1

Is a BPR or Total Quality Management (TQM)
 approach best?

Early in our examination of the chosen ND logistic problem we felt that a BPR approach would be the most suitable. We felt that the solution would require a re-engineering of the entire business cycle. After we had completed our process analysis and considered more carefully the present business methods at ND, we realised that what was required was modifications to only two processes in the cycle. As this is a less than radical re –engineering of the business cycle we feel a TQM approach would be more suitable.

We have chosen to use a combination of TQM and BPR methods to discover how to improve ND’s business cycle. We will use the insights gained by the BPR methods of discovering these value added processes to help us improve the quality of the products ND offers.

Using TQM principles we can improve the quality of the overall process. We will be able to improve the time based competition aspect
 of quality by improving the speed of the overall process.

Reducing the resources spent on non-value added
 processes could do this.
2.9

The BPR and TQM combined approach

In section 2.3 (Operations Overview) we have used process analysis to find and evaluate the service cycle to discover and evaluate the value-added and non value-added processes. We have applied the insights gained to the TQM methodology.

The initial investment in IT and the consultants required to implement the system that we have recommended resembles the BPR strategy. This large initial investment is expected to provide benefits to the company. The company should be aware, that there is no guarantee that this investment will be of any benefit. It will be applied to just two processes in the service cycle and will simply improve these processes rather than re-engineer them. This follows the concepts outlined in the BPR philosophy of adding value to processes.

The system that will be implemented can be expanded to offer further possible improvements to processes if ND continues to grow. This will enable further TQM improvements in information and resource management over a longer timeframe and enable possible improvements in speed, quality and productivity
.

Many aspects of how the system has been chosen and will be implemented have come from both BPR and TQM. The use of Process maps
 is important to the success of the project, as it would be with BPR
. Benchmarking
 will also be important to the success of our project and is an important TQM and BPR tool.

2.10

BIS

Mr. Johansen has shown very little interest in a lot of the features that a BIS can offer. He has limited interest in using information that could be generated by a BIS to help in planning, decision-making and marketing. This is connected to ND’s strategies of not wanting to grow any larger if possible, and his reluctance to use resources on people and products not essential to the running of the business. This can be most clearly shown by his statement that he does not wish to employ a permanent bookkeeper although some of his customers have said that if he becomes any larger without one, they will not be able to supply him with their business.

When asked if he would use information that could be generated without requiring extra data to be inputted or more staff employed he has cautiously said yes.

This does provide us with the opportunity of developing some extra functionality within the system utilizing data that ND will be putting through the system. This could generate forms showing usage of possible warehouse capacity, stock movements within the warehouse through a specific time period and a variety of other useful statistics. These would not be created automatically but be available on request from the user. Mr. Johansen would then be able to use the system how and when he wanted to. He would not feel that he was being weighed down by unnecessary and possibly irrelevant documents that he would not use. This will be important in encouraging Mr. Johansen to learn how to utilize the system we will develop to its optimal use.

2.11

Possible Risks Involved

Some of the possible risks with the implementation of this system are as follows:

	Possible Risk
	Likelihood of Risk

	That the time used upon the implementation of this system could create problems over this period with the performance within the warehouse. This could result in a higher number of errors and a resulting loss of confidence from customers.
	Low

	Extra paperwork could be generated by the system discouraging its use and therefore meaning the entire process has been wasted.
	Low

	The time taken to input information required by the system could negate any time saving gains the new system could offer.
	Medium

	Scanners could be lost or damaged, creating extra, unexpected costs.
	Low

	The price of the system that is implemented and the maintenance of new equipment that will also be required may outweigh the possible gains of the new system.
	Medium

	The system that is implemented could become outdated very quickly and/or the system price may fall drastically meaning a possible cost-saving opportunity has been wasted.
	Low

	Employees may not accept the new the system resulting in no productivity gains.
	Low

	That the Critical Success Factors
will not be met.
	Medium

2.12

System Objectives

The following are the Critical Success Factors for this project.

1) To provide measurable timesaving in the finding of goods within the warehouse.

2) To simplify the procedure for placing items in the warehouse, saving time.

3) To enable better management of the space within the warehouse meaning more items can be placed with the warehouse without a loss of efficiency.

4) To enable the generation of useful information and statistics about the warehouse inventory when requested.

2.13

Measurability of Objectives

The following steps should be followed to ensure the success and evaluation of the changes made.

1) Create measurable aspects of the system objectives. I.e. the time to be saved in a new searching for items method.

2) Baselines for all aspects in the present system that will be used to assess the success of the new system. E.g. average time taken to find and place items in warehouse.

3) That the new system provides information on warehouse capacity and other useful statistics.

2.14

Implementation of the system

There are a number of things to consider in the implementation of this system.

This is a system that we have recommended to suit ND’s present size and goals. The system should have the capability to grow and adapt to change in response to changes in both size and ND’s goals.
2.14.1

Resistance to change

Unlike many other occasions where the majority of resistance to change exists within the employees we feel the resistance to change will come from both management itself and the employees. The employees may resist changing, because they may not have been informed completely about the advantages of the new system. In most cases a workforce is worried about changing duties, job security and job prestige. Here we feel these worries a not so great amongst the employees. They appear to have few concerns about their roles and job security.

Mr. Johansen however, appears to be quite concerned about the company growing beyond the limits he has set, and about being swallowed up in unnecessary paperwork. These attitudes have been a plus in the past as it has enabled him to have quality relationships with the employees and focus on his core competencies.

Mr. Johansen may not utilize all the possibilities that this new system may offer. This will not be a problem, but could create some difficulty in the implementation. Mr. Johansen may be reluctant to invest the time necessary to allow the system and its tools to create the improvements that may be possible.

To help reduce the employees’ and Mr. Johansen’s possible resistance to change, we should, as “consultants”, use some implementation tactics
. All relevant information about the new system should be made available in an easy to read, and comprehendible format, thus implementing a communication and educational technique of implementation
. The possible benefits gained from information collated by the system should also be clearly explained. We should be clear in informing Mr. Johansen that it is not necessary to use the extra functionality provided by the new system.

2.15

Summary

We have discovered that ND is a focused and well-run company. Over time ND has refined its operations in a way that has allowed it to focus on its core competencies
. Following the analysis we have undertaken, a problem area has been selected and a solution recommended. We have assessed the possible risks involved in the investment in this system and believe that it should be undertaken.

ND has recently decided to move in this direction. ND will be implementing an Inventory management system supplied by Psion Teknologix that should be installed just before our project is completed. At this stage in our report we had very little information as to how this was to be implemented as Mr. Johansen was leaving it almost entirely up to the consultants with Psion Teknologix. We are curious to see how similar the models we will be creating in the following sections of our report compare to those of the Psion Teknologix consultants.

3.0

Object Orientated Analysis

Overview:

This chapter will contain the object oriented analysis section of our report. We will begin by describing the system in terms of its problem domain (PD) and application domain (AD). Using the information and recommendations from pre-analysis we will create a selection of possible system definitions. Thereafter, a choice will be made from these definitions. Once this step has been completed we will go further into the Object Oriented Analysis (OOA) methodology. We will use these methods and activities to gain a clearer picture of both the PD and AD.

These activities will help in different ways. This is an outline of how we will structure our analysis, the order of the activities is listed below and we will follow this sequence as close as possible, while reviewing and editing previous results along the way.

1) We will begin with discovery and analysis of the classes and objects within the new system.

2) Events that involve these objects and classes will be examined and evaluated.

3) The structures that describe the connections between classes and objects.

4) The behaviour of objects within the new system will be examined and evaluated.

5) To look at who will be using the system and how, utilizing actors and use cases and functions.

6) Will complete the OOA by making some user interface recommendations using navigation diagrams.
3.1

Problem Domain

The problem domain is the part of a context that is administrated, monitored, or controlled by a system.

The problem domain that we have selected based on the pre analysis includes the items and their movements within the warehouse as well as the performance of the staff within the warehouse. We will be modelling the real world, as future users will see it.

This will also include the documents and information connected to this part of the system’s context
.

Some of the objects included within the PD will be staff, items, locations, customers and Consignment documents.

Any movement of an item will update the data connected to that item. There is control over the locations within the warehouse that will not allow a space to be used by separate items simultaneously.

3.2

Application Domain

The application domain is the organization that administrates monitors or controls a problem domain.

The new system will assist in monitoring and controlling the movement of items within the warehouse. It will assist with the management of the warehouse resources. This includes the control of the usage of space and employees within the warehouse. It will be able to generate relevant statistics about customers, employee performance and the movement of items.

All employees will require access to the system using the scanner to discover relevant information about items within the warehouse. The employees will make changes to items and locations and in doing so will update the model using the scanner.

Mr. Johansen will need to be able to request information from the system including details about warehouse capacity, the number of Consignments presently in the warehouse and the number of events an individual staff member has participated in. Mr. Johansen will use statistics generated by the system to assist him in planning and decision-making.

3.3

System Definition

3.3.1

System Definitions

We are following Lars Mathiassen’s recommendations by defining alternative systems that allows us to compare these alternatives and their possible strengths and weaknesses. Finally we will show the different alternatives to Mr. Johansen, letting him make the final choice. This will mean that the system we design will be more relevant to the user organisation, than one created without this input. Based on the pre analysis made of the company we have selected possible system definitions that could solve ND’s logistical problem.

We will describe the three alternative system definitions and use the FACTOR
 criteria in describing the chosen alternative. The other definitions FACTOR tables are in Appendix C.

Alternative 1

The system would cover all incoming and outgoing Consignments. It would track and control their movement and position. It would monitor and control all human resources, generating reports that would enable more efficient use of staff. The system would also cover all material resources and the costs associated with them. The system would provide an overview of the state of the business and reports that would help with decision-making.

Alternative 2

This is an inventory management system that will allow the monitoring and control of all Consignments and items within the warehouse. The system will provide a prioritizing system that will allow Consignments with a higher priority to be delivered first. The system will also indicate where items should be placed within the warehouse. Reports can be generated that describe the length of stay in the warehouse of the items, as well as the present capacity of the warehouse.
Alternative 3

This system is a condensed version of the first 2 with the aspects that are perhaps more important to ND according to our pre-analysis. The system will focus on the items within the warehouse, not including those items handled by the sub contractors. The system will monitor and control these items and their location within the warehouse. The system will also monitor when and which staff store or move items. Reports can be generated that provide information about warehouse capacity, number of items moved and the staff members involved in moving them.

	System: Inventory 2
	No. 3
	Version 5
	Date 18.4.2002

	Functionality:

	Control of items and the location of items within the warehouse that are not connected to the sub contractors. It will monitor the staff placing and retrieving items in the warehouse. Administration of Consignment documents and the status of the items connected to these documents. The generation of relevant statistics concerned with the state of the inventory and movements within the warehouse.

	Application domain:
	Managing Director, warehouse employees and staff.

	Conditions:
	Must use a fast response, user-friendly interface for non IT trained users. We will develop most of the system with limited contact to the prospective users. The contact with ND will provide input to assist in the selection of system choice, interface and in testing of the prototype. This project has a time span of 8 weeks.

	Technology:

	The prototype is to be a stand-alone system running on a PC. It is to be created on PC’s and laptops using software specified in our Project Establishment.

	Objects
	Customers, items, locations and employees.

	Responsibility
	An inventory administration tool that monitors and controls items and their movements within the warehouse. It will monitor and record which staff have moved items and when.

3.3.2

Evaluation of System Chosen

In creating the 3 different alternatives of system definitions, we were able to facilitate the choice for Mr. Johansen in selecting the most suitable system. After making deliberate variations in the elements of each alternative, we were able to illustrate to Mr. Johansen the different possibilities and choices involved. In doing so, we opened the way for further discussion and evaluation of each definition, not only amongst ourselves as a development team, but with the future user/s of the system.

After we discussed these alternatives with Mr. Johansen, he chose alternative 3. It contained the functionality that he required and offered the functions that he felt would be useful in the future. It was the best match to how he perceived the problem domain. It also was a broad enough project to allow the group to meet the requirements of the school in providing a problem domain complex enough for us to apply the separate disciplines of our Datamatiker course.
3.3.3

Data Flow Diagram (DFD)

We have included a DFD to clarify the flow of information within the new system. This has assisted us greatly in modelling the logical aspect of the system. As a tool we have also found it useful in explaining our understanding of how the new system should operate without the distraction of physical aspects of the system.

[image: image8.wmf]1

Check in

Items

2

Item

storage

4

Locate

Item

A

Item in

System

Database

B

Henrik

5

Check out

Item

Consignment

info

Item info

L

o

c

a

t

i

o

n

D

a

t

a

Consignment

info

C

Driver

L

o

c

a

t

i

o

n

u

p

d

a

t

e

s

Location

 Data

C

o

n

s

i

g

n

m

e

n

t

i

n

f

o

D

Item out

Shipping

data

Item Info

Generate

Reports

Statistics

Print info

Consignment

allocated

Consignment info

C

o

n

s

i

g

n

m

e

n

t

i

n

f

o

Consignment info

E

m

p

l

o

y

e

e

I

D

Employee ID

E

m

p

l

o

y

e

e

I

D

Fig 6

DFD of the new system v.5

An item needs to be checked against a delivery note when it arrives at the warehouse and it is then placed within the warehouse, identifying the staff members involved. The accompanying Consignment document is moved to the office. This document contains data about the associated items, their movements and the customer. The data on the document will be used to find and complete the delivery of these items with the use of scanners. An item is checked out of the warehouse with the accompanying Consignment document, again registering staff involvement.

3.4

Classes

A Class is a collection of objects sharing the same structure, behavioural patterns and attributes
.

We conducted two interviews with Mr. Johansen, and observed the business operations at ND. These activities gave us an insight that enabled us to brainstorm for classes we felt could be in the PD using the General Types
. We did not evaluate the classes we discovered but merely placed them in a general types class table
.

 To gain a better overview of the classes and events in our chosen System Definition, we have separated the various subsystems and their accompanying classes and events in the table below.

	Subsystem: Inventory Management
	No.1
	Version 4
	Date 18-04-02

	Sub-systems
	Account System
	Delivery System
	Inventory Management System
	Material Resource Planning System
	Geographical Information System

(GIS)
	Human Resources System

	Events
	Fuel purchased

Invoice received

Invoice sent

Payment made

Payroll calculated

Received trailer income
	Delivery received

Delivery sent

Customer served

Customer registered

Customer deleted

Delivery requested
	Item sorted

Item checked in

Item placed

Item relocated

Item checked out

Location Registered

Location Deleted

Location is filled

Location is emptied

Consignment registered
	Fuel purchased

Trucks purchased

Equipment maintained

Trailer purchased
	Route planned

Delivery tracked

Distance calculated

Traffic problem identified
	Staff employed

Staff dismissed

Staff trained

Staff incapacitated

	Classes
	Delivery

Customer

Sub contractor

PC

Invoice
	Item

Location

Driver

Truck

Pallet

Customer

Destination

Consignment documents

Complaint

Barcode
	Item

Location

Driver

Warehouse employee

Scanner

Pallet

PC

Consignment documents

Barcode

Customer
	Truck

Fuel

Scanner

Pallet

Warehouse

PC

Fax

Telephone

Printer

Enquiry
	Address

PC

Map

Truck

Driver
	Driver

Warehouse employee

Sub contractor

Managing Director

Assistant

Comments

This activity gave us an overview of the system we are developing. It also showed us the boundaries of this system. We also realised the connections between the subsystems by the duplication of some classes, and the connections to classes in other subsystems.

3.4.1

Evaluation of classes

In creating the above list of candidate classes, we have gained an overview of all possible classes for our problem domain. For each of these candidates, we can now determine which of these are most relevant to our particular system. We evaluate each candidate by answering the following questions affirmatively:

1. Can we identify objects from the class?

2. Does the class contain unique information?

3. Does the class encompass multiple objects?

4. Does the class have a suitable and manageable number of events?

	Subsystem: Inventory Management
	No. 1
	Version 5
	Date 18.4.2002

	CLASS

NAME
	TYPE
	PART OF PD
	UNIQUE ID
	INFOMATION
	REGISTRATION
	OBJECTS
	ANY EVENTS
	REASON

	Barcode
	A
	
	
	(
	
	
	
	This is just an identifier on items which are part of a delivery

	Consignment
	C
	(
	(
	(
	(
	(
	(
	This will contain all information about the goods final destination.

	Customer
	C
	(
	(
	(
	(
	(
	(
	Are not in the PD as they are only an attribute of Consignments and items. It would be a class in another subsystem.

	Item
	C
	(
	(
	(
	(
	(
	(
	The integral part of the PD that will be monitored and controlled.

	Location
	C
	(
	(
	(
	(
	(
	(
	A class involved in most important events.

	Staff
	C
	(
	(
	(
	(
	(
	(
	Staff are part of the PD as they are registered in events involving classes in the PD.

	Consignment Document
	I
	
	(
	(
	(
	(
	(
	This is only a piece of paper, we only use the data connected to this paper. The data is part of a delivery.

	Pallet
	I
	
	
	
	
	
	
	This is not relevant to any events but is only a resource.

	PC
	I
	
	(
	(
	
	
	
	This is not involved in the system except as a resource.

	Scanner
	O
	
	(
	(
	(
	(
	
	This is another system in the AD

Legend:

	Type

	C: Class

A: Attribute

 I: Irrelevant

O: Other system

After matching these criteria to all of the candidate classes we arrived at the following list of classes. We will continue with our discovery of relevant events based on the following classes.

	Subsystem: Inventory Management
	No. 1
	Version 5
	Date 18.4.2002

	Class name
	Reason / Comment

	Item

	Items are one of the main PD components. Objects of this class will be created with every Consignment that enters the warehouse and updated on check out. An item can only exist in one Location within the warehouse.

	Staff
	Staff members are connected to any events they have taken part in (check in, check out and moving). Reports can be generated to view the performance of individual staff members. It will be possible to identify the staff member last associated with items.

	Customer
	A customer will be associated with all Consignments and items. Records will be kept of all Consignment transactions with customers. Reports can be generated describing customer status and frequency of business.

	Location
	A location is updated to all incoming items and again when the items are checked out. Objects of this class exist without any items in the warehouse making them an essential part of the PD. They are an integral part of our solution for efficient retrieval of the items.

	Consignment

	We need this class in the PD as it provides important information about the items and their customers. Objects of this class will be created when Consignments arrive, and updated when they leave the warehouse.

Comments

After further investigation we have found, that these are the five classes that exist within our PD. We will continue analysing these classes and related events.

3.5

Events

An event is an instantaneous incident involving one or more objects
.

We began by brainstorming for the events we felt could be in the PD using the General Types
. We did not evaluate the events we discovered but merely placed them in the table below.

	Subsystem: Inventory Management
	No. 1
	Version 2
	Date 16.4.2002

	General Types
	Events

	Work/Production
	Items Sorted, Customer Served

	Transportation
	Delivery Received, Delivery Sent

	Consumption
	Fuel Purchased

	Life cycle
	Items, Checked in, Item Located, Item Relocated, Item Checked out, Location Registered, Location Deleted, Customer Created, Customer Deleted, Item Created, Item Deleted, Item Stored

	Career/Education
	Staff Employed, Staff Dismissed

	Contacting/Exchange
	Delivery Requested

	Monitor & Control
	Items time/date Elapsed

	Planning/Management
	Location Filled, Location Emptied

	Decision
	Space Checked

Comments

By completing the table above, we realised, that the class delivery was unclear. We then re-evaluated our classes, renamed and described the Delivery class to our present Consignment class.

Evaluation of events

In creating the above list of candidate events, we have gained an overview of all possible events for our problem domain. For each of these candidates, we can now determine which of these are most relevant to our particular system. We evaluate each candidate by answering the following questions affirmatively:

1. Can we identify the event when it happens?

2. Is the event instantaneous?

3. Is the event atomic?

4. Is the event part of the PD?

Event Candidate List Evaluation

	Subsystem: Inventory Management
	No. 1
	Version 4
	Date 18.4.2002

	EVENT

NAME
	TYPE
	PART OF PD
	INSTANTANIOUS
	INFOMATION
	REGISTRATION
	ATOMIC
	ANY OBJECTS
	REASON

	Consignment Deleted
	E
	(
	(
	(
	(
	(
	(
	A Consignment and all items contained within it are deleted from the system.

	Consignment Registered
	E
	(
	(
	(
	(
	
	(
	This event registers a Consignment and all items belonging to it.

	Customer Deleted
	E
	(
	(
	(
	(
	(
	(
	A customer can be deleted from the system at the user’s discretion.

	Customer Registered
	E
	(
	(
	(
	(
	(
	(
	This event occurs when a new customers’ details are entered into the system

	Item Checked Out
	E
	(
	(
	(
	(
	(
	(
	An item is scanned and removed from the warehouse.

	Item Relocated
	E
	(
	(
	(
	(
	(
	(
	The item is moved within the warehouse.

	Item Stored
	E
	(
	(
	(
	(
	(
	(
	An item is stored in a location and the location is scanned and recorded in the system.

	Location Deleted
	E
	(
	(
	(
	(
	(
	(
	A location is removed from the warehouse.

	Location Registered
	E
	(
	(
	(
	(
	(
	(
	A new location is registered.

	Staff member deleted
	E
	(
	(
	(
	(
	(
	(
	When a staff member is no longer employed they are deleted from the system.

	Staff member employed
	E
	(
	(
	(
	(
	(
	(
	Staff member is employed and registered by the system.

	Consignment Checked out
	F
	(
	(
	(
	(
	
	(
	This event is the completion of all associated items being checked out. This is not atomic as it can be broken into the “Item Checked Out”-event(s) connected with it.

	Consignment Located
	F
	
	(
	(
	
	(
	(
	The items for a specific Consignment have been found in the warehouse. This is not part of PD, as no changes occur in the PD. This will be a function of the system.

	Item Located
	F
	
	(
	(
	
	(
	(
	An Item is found in the warehouse. This is not part of PD, as no changes occur in the PD. This will be a function of the system.

	Report Printed
	F
	
	(
	(
	
	(
	
	This function will be called from the system but will not affect any objects within the PD.

	Delivery Checked In
	I
	
	(
	(
	
	(
	(
	The Delivery Checked In is the event of checking the number of items from a delivery to the warehouse against the delivery note provided by the truck driver. This is not relevant as this is an event in a delivery subsystem.

It is NOT the checking of items against a Consignment document.

Legend:

	Type

	E: Event

F: Function

I: Irrelevant

O: Other system

Comment
This is a summary of the relevant events. The events that were determined to have been functions or not part of the PD have been removed.

Event List

	System: Inventory Management
	No. 1
	Version 3
	Date 18.04.2002

	Event Name
	Description

	Consignment Deleted
	A Consignment and all items contained within it are deleted from the system.

	Consignment Registered
	This event registers a Consignment and all items contained within it.

	Customer Deleted
	A customer is taken of the system. Deleted by an authorised user.

	Customer Registered
	A new customer is added to the system with specific details entered into the system.

	Item Checked Out
	When an item is removed from its stored location and removed from the warehouse and the system updated to record this.

	Item Relocated
	An item is moved from one place in the warehouse to another. This is recorded by the system.

	Item Stored
	An item is stored in a location and the location is scanned and recorded in the system.

	Location Deleted
	A location in the warehouse is removed from the system.

	Location Registered
	A new location in the warehouse is registered in the system.

	Staff member deleted
	A staff member is removed from the system.

	Staff member employed
	A staff member is added to the system.

After we have evaluated the candidate events in the tables above, we have listed the relevant events in the event table below matching them to the classes involved. This has helped us evaluate the quality of the class and event candidates we have selected. The tables can show that a class may have too many responsibilities if it is involved in too many events. It can also indicate highly coupled classes
.

Event Table

	Subsystem: Inventory Management
	No. 1
	Version 5
	Date 18.4.2002

	Events/Classes
	Item
	Location
	Consignment
	Staff
	Customer

	Consignment Deleted
	+
	-
	+
	*
	-

	Consignment Registered
	+
	-
	+
	*
	+

	Customer Deleted
	-
	-
	-
	-
	*

	Customer Registered
	-
	-
	-
	-
	*

	Item Checked Out
	+
	+
	+
	+
	-

	Item Relocated
	*
	*
	+
	*
	-

	Item Stored
	+
	+
	+
	+
	-

	Location Deleted
	-
	+
	-
	-
	-

	Location Registered
	-
	+
	-
	-
	-

	Staff Employed
	-
	-
	-
	*
	-

	Staff member deleted
	-
	-
	-
	*
	-

Legend:

	Type

	+: Once

*: Several

-: None

Comments

During the creation of the event table, we discovered that the description of the class “Shelf Location” was too specific, as items can be stored anywhere in the warehouse. This led us to change the class name to the more general description “Location”.

Conclusion

The close examination of the events and the tables above has provided us with a deeper understanding of the connections between classes and objects. This has confirmed our selection of elements for our PD model.

3.6

Structures

We will describe the structural relations between classes and object in the problem domain. We will be examining the static and abstract relations between the classes we selected. An examination of the dynamic and concrete relations between objects will be undertaken.

Modelling generalisation-specialisation, aggregation-association and cluster structures will do this. We will complete this process by creating a class diagram showing all the important relations. This class diagram will provide a coherent overview of the PD.

1.6.1 Generalization – Specialization

We examined the event table to discover common events and properties that could be collected and represented by one abstract or “super” class, which can then be decomposed into smaller specialized classes. We represent two of these, Items and Staff.

[image: image9.emf]Item

Regular item

Sub Contractor

item

Fig 7

Generalisation – Specialisation Items

[image: image10.wmf]Staff

Managing

Director

Warehouse

Employee

Driver

Sub

contractor

Fig 8

Generalization – Specialization Staff
1.6.2 Aggregation

The aggregation structure represents the relation between two or more objects where one is a fundamental and defining part of the other object.

This structure shows that items are a part of a Consignment and that one of these objects cannot exist without the other. We can add and remove some of the items, without affecting the fundamental properties of Consignment. This means that this aggregation is of the type container-content
.

[image: image11.wmf]Consignment

Item

1..*

1

Fig 9

Aggregation Structure

1.6.3 Association

The association structure represents a meaningful relation between one or more objects that is not an aggregation or generalization-specialization relation.

This structure shows the associations between the following objects in figure below.

[image: image12.wmf]Consignment

Item

0..1

0..1

Location

1..*

1

Staff

Customer

1..1

0..*

0..*

0..*

Fig 10

Association and Aggregation Structure

Comment

An item cannot be broken down any further and can therefore only be placed in one location. A location holds only one item at a time to remove any chance of mixing of items from separate Consignments. A Consignment must have a customer to exist.

3.6.4 Complete class structure including clusters

[image: image13.wmf]Assignment

Goods

Other goods

Sub Contractor

goods

0..1

0..1

Location

1..*

1

Staff

Customer

1..1

0..*

1..*

0..*

People Cluster

Managing

Director

Warehouse

Employee

Driver

Sub

contractor

Consignment

Cluster

Fig 11

Class Structure Diagram

Comments

The overall class structure diagram displays clusters, aggregations, associations and specializations of general classes. The diagram illustrates two main clusters, that of Consignments and People. This provides clarity in showing relations between the objects in the people cluster and those in the Consignment cluster. We feel that we have modelled only the necessary structural relations because they fill the following criteria, in accordance with Lars Mathiassen

· Structures must be used correctly.

We should not mix the aggregation and association. A staff (member) is associated with one or more items. That staff member handles the items, and the items are handled by the staff. Both will be able to exist independently of each other. On the other hand it is impossible to have a Consignment without any items that makes a Consignment is an aggregation of Items.

· Structures must be conceptually true.

The names used in the diagram are the ones used in daily work by the users of the system (translated from the Danish terms used). This enables the users to understand the diagram, even though it is not that important at this stage of the project.

· Structures must be simple.

The structures are simple, to provide an overview. This also makes it easier for the daily users for understanding it, though they might not be involved in the reviewing of the structures.

3.7

Behaviour

The purpose of this behaviour section is to model the dynamics of the PD. We have chosen to use a state chart diagrams to describe and clarify the behaviour of the main classes within our problem domain. This allows us to show the transitions between different states of an object, and indicate possible PD events for that object. From this we will derive class attributes
 from their behavioural patterns.

We have balanced the need for precise and accurate tracing of the events with the need for a simple overview. Therefore we have selected only the most important classes and relevant events.

[image: image14.emf]Item

Stored

Stored

Checked

Out

Re-Located

Not stored

Deleted

Awaiting storage

Item

registered

Fig 12

State chart Diagram for the class Item v4

The class item is one of the most integral classes in our PD. This diagram shows the sequence of events involving items. Using this we have discovered which events create and delete the item object. The item is not automatically deleted from the system, when they leave the warehouse for shipping.

[image: image15.wmf]Consignment

Registered

Awaiting storage

Final Item

stored

Stored

Delivery

Assigned

Awaiting Check Out

Final Item

Checked

Out

Item stored

Item Located

Item Checked Out

Not stored

Deleted

Passive

Customer

becomes passive

Customer

reactivated

Fig 13

State chart Diagram for the class Consignment v4

As class Consignment is a generalization of item, the events that both classes experience are similar. We can also see that some Consignment events depend upon the completion of some item events.

The Consignment can become passive if the customer is moved into a passive state for not paying invoices within a designated period. The Consignment becomes active again when the customer has returned to an active state. A Consignment can only move to a passive state from stored, as all Consignments arriving to the warehouse will be registered and then stored. Once a delivery has been assigned to a driver it is too late to stop the Consignment from being checked out.

[image: image16.wmf]Active

Customer

Registered

Passive

Deliveries

Refused

Deliveries

Re-Allowed

Customer

Deleted

Delivery Request Made

Consignment Delivered

Fig 14

Embedded State chart Diagram for the class Customer v2

The customer’s state can influence other objects within our system. We discovered through the process of creating this state chart diagram that a Consignment should have a passive state that we had not considered before.

3.8

Attributes

	Subsystem: Inventory Management
	No. 1
	Version 4
	Date 18.4 2002

	Customer
	Staff
	Consignment
	Item
	Location

	Name

Address

Phone number

Fax number

Email

Date Registered
	Name

Address

Phone number

Date Employed

Date Of Birth

Number of items handled pr day
	Consignment

Customer

Final destination address

Check In Date

Check Out Date

Number of Items
	Consignment

Check In Time

Check Out Time

Checked In By

Checked Out By

	Status

Location description

3.9

Usage

3.9.1

Actors

In OOA it is advantageous to utilize the following actor list for the actor candidates:

	System: Inventory Management
	No.1
	Version 2
	Date 18.04.02

	Actor Name
	Reason / Description

	Clock
	For triggering the deletion of an item.

	Employee
	For the checking in and out of items in a Consignment. Employees will use the scanner to interact with the target system. This will be done manually if the scanner is broken

	Manager
	Has the same functionality as the staff, with the added ability to gain full access to the system. He is the one that makes queries about statistics and also accesses employees’ data.

	Scanner
	It is the link between the users and the system.

Employee

This person will interact with Consignments, items and locations. The employee will be involved in the Consignment registration, check in item, check out item, locate and relocate item. The employee needs to be able to update records connected to Consignments, items and locations.

The employee does not need extensive IT skills. They will be using a handheld scanner for all operations they are involved in. The employee will log on to the scanner using a unique ID.

Speed and simplicity is the most important consideration to the employee in the performance of tasks. Inputting large amounts of data is not suitable to this role.

Manager

This person will be an extended version of the employee role. The manager will have responsibility over the overall state of the warehouse. All activities associated with employee will also be associated with the manager. Additional activities will be the registration and deletion of staff, customers and locations. The manager will also delete outdated Consignments and request reports containing information about employee performance, customer information and warehouse capacity.

The manager will have a unique ID that allows access to the PC aspect of the system as well as the scanner. A better understanding of the system will be required.

The manager requires the system to provide a good overview of the warehouse operations. This will inform the manager about the efficiency and integrity of employees and Consignments.

Scanner

The scanner is a separate system, whose role is to be an interface between the employees and the managers, and the target system. The scanner(s) will only provide access to authorized employees by using their ID’s. This separate system will temporarily store transactional information about Consignments coming in and out of the warehouse. When docked, it will update the target system. It will also update itself by receiving the latest updates of the item ID’s and locations.

Some functionality will be available with the information available on the scanner. This includes the locating, checking in, checking out and relocating of items. It will also be able to register Consignments and locations. All these functions can be selected by a user, either via a scroll menu on the display or hotkeys on the keypad.

3.9.2

Use Cases

In OOA it is advantageous to utilize the following use case list for the use cases candidates:

Check-in Item

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the check-in option. The Consignment ID (barcode on the item) is scanned and then the item is placed into a location. The location ID is then scanned. Then event completed will be selected.

Check-out Item

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the check out option. The location ID is then scanned. The Consignment ID (barcode on the item) is scanned and then the item is removed from the location. Then event completed will be selected.

Delete Consignment

A clock will trigger the system to delete an item after a certain amount of time.

This will be done to restrict the size of the required data storage resources. The consignment can also be deleted manually.

Delete Location

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the delete location option. The barcode is scanned or the location name typed into the scanner keypad in the warehouse location format. The system will ask if the user is certain that this is the location to be deleted. Clicking OK makes confirmation.

Delete Person

An authorized staff member enters their ID and enters the administrative part of the system. If the ID does not have the authority to use this section of the system, another ID is requested. This will only happen 3 times before the system will lock out this part of the system for a defined period. The user selects the delete menu option. From this menu the user selects either the delete customer or staff. The user scrolls through a list of staff or customers and selects the one to be deleted. The system will ask if the user is certain that this is the person to be deleted. Clicking OK makes confirmation.

Locate Item

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the locate item option. The Consignment document is scanned. The locations of all items that are associated with the Consignment are shown on the screen. When the item(s) have been located the return to main menu is selected.

Register Consignment

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the register Consignment option. The Consignment document ID is scanned. The staff member enters the number of items that are associated with the Consignment into the scanner. This information is found on the Consignment document. Consignment registration complete is selected.

Register Location

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the register location option. A barcode label is placed at the location. This is then scanned and the actual location typed into the scanner keypad in the warehouse location format. Clicking OK makes the confirmation.

Register Person (customer/ staff)

An authorized staff member enters their ID and enters the administrative part of the system. If the ID does not have the authority to use this section of the system, another ID is requested. This will only happen 3 times before the system will lock out this part of the system for a defined period. The user selects the registration menu option. From this menu the user selects either the register customer or staff. The data required for the staff or customer is entered into the fields on the screen.

Clicking OK makes the confirmation.

Relocate Item

A staff member logs on to the scanner by entering their staff ID. The scanner will prompt to try again if the ID is not recognized. A list of options is shown on the screen. The staff member selects the relocate option. The location ID is then scanned. The Consignment ID (barcode on the item) is scanned and then the item is relocated from the location to a new location. The new location ID is then scanned. Then event completed will be selected.
Use Case / Actor table

By selecting use cases from the table above and matching those to the actors mentioned previously, we have created the table below. The Use case/Actor table provides an overview of which actors are involved in what use cases. This will provide us with an overview of the interaction between actors and use cases, while also giving us a better understanding of the AD.

	System: Inventory Management
	No. 1
	Version 1
	Date 17.04.2002

	Use case/Actor
	Clock
	Employee
	Manager
	Scanner

	Register Consignment
	-
	*
	*
	*

	Register Person

(Staff / Customer)
	-
	-
	*
	-

	Delete Person

(Staff / Customer)
	-
	-
	*
	-

	Store Item
	-
	*
	*
	*

	Remove Item
	-
	*
	*
	*

	Relocate Item
	-
	*
	*
	*

	Register Location
	-
	*
	*
	*

	Delete Location
	-
	*
	*
	*

	Locate Item
	-
	*
	*
	*

	Delete Consignment
	*
	-
	*
	-

Shorts are used as follows:
+: Once *: Several -: None
Comment

We realised after the process of creating the Use Case / Actor table that the role of manager is an extension to the role of the employee. We have also become aware of some of the attributes that the classes will require from analysing the behavioural patterns.

3.10

Functions

A function is “a facility for making a model useful for actors”
.

This is our first attempt to list the functions that we feel the system will require. We have discovered these functions through our analysis of both the AD and the PD. Through classes, events and especially use cases, we have derived the following list.

Function table
	System: Inventory Management
	No. 1
	Version 3
	Date 20.04.02

	Functions
	Function Specification
	Complexity
	Uncertainty
	Type

	Check Consignment Status
	S
	1
	2
	R

	Check Integrity of Consignments*
	S
	4
	2
	C/R

	Check Out Item
	S
	2
	2
	U

	Delete Customer
	N
	1
	1
	U

	Delete Employee
	N
	1
	1
	U

	Delete Location
	N
	1
	1
	U

	Delete Outdated Consignment
	S
	2
	3
	C/U

	Display Consignment Location
	N
	2
	3
	R

	Edit Customer Info
	N
	2
	2
	U

	Edit Employee Info
	N
	2
	2
	U

	List Customers
	N
	1
	1
	R

	List Employees
	N
	1
	1
	R

	Locate Item
	N
	1
	1
	R

	Print Information**
	S
	3
	2
	R

	Register Consignment
	I
	3
	3
	U

	Register Customer
	I
	1
	1
	U

	Register Employee
	I
	1
	1
	U

	Register Location
	N
	1
	1
	U

	Relocate Item
	N
	2
	1
	U

	Store Item
	N
	2
	2
	U

	View Information**
	S
	2
	2
	R

*
Checking that the number of items registered matches the associated Consignment.

**
Information is data/statistics on employees, customers etc., also including reports.

Key to function table

	Function Type
	Function Specification
	Complexity
	Uncertainty

	U: Update

C: Compute

S: Signal

R: Read
	I : Implicit

N: Name

S: Spec detailed
	1:Simple

2: Low

3: Medium

4:Complex

5.Very Complex
	1:Very low

2:Low

3:Medium

4:High

5:Very High

Comments

By creating the function table, it has enabled us to determine the system’s information processing capabilities
. It has also allowed us to identify all functional requirements for the AD. We have maintained consistency between the functions, the use cases and the model. We have realised, that most of our functions are simple, and with a low level of uncertainty. For this reason, we have not continued with specification of the more complex functions.

3.11

Interfaces

Utilizing the lists of use cases, attributes and functions, we have designed these possible interfaces for the scanner
 and the PC. This provides an overview of how the functions will work in the AD. During this process, it’s possible we will get new insights in how these functions will be used.

[image: image17.emf]Log in

Log in

Exit

Employees

Return to Menu

Add employee

Name

Address

Phone No.

[Inserted automatically]Employee ID

Search

Mobile No.

E-mail

Print Details

Show Activity

Status[Active / Passive / Admin]

Edit Details

Customers

Return to Menu

Add customer

Name

Address

Phone No.

[Inserted automatically]

Customer No.

Search

Fax no.

E-mail

Print Details

Show Activity

Status

[Active / Passive]

Edit Details

General Reports

Return to Menu

Choose type

Choose Start DateDDMMYYYY

DDMMYYYYChoose End Date

Daily

Weekly

Monthly

Yearly

Per Employee

View History

[Results]

Print

Assignment Activity

Item Activity

Staff Performance

Warehouse Capacity

Sort

Consignments

Return to Menu

Danske Fragtmænd 67

Barcode No.

No. of Items

Customer

CreateDelete

[Results]

List Item Location(s)

List Employees Involved

Search

Print Details

Main Menu

Customers

EmployeesConsignments

General Reports

Log out

Fig 15

Navigation Diagram for the PC Interface
We have selected the object-oriented style for the PC interface
. This compares with the functional style interface, chosen for the scanner. In this interface we decided to access functions through a separate window for the selected object.

We discovered a new attribute for the employee, which is “status”. This determines if the employee is at work (active) or dismissed(passive). The last option would be admin that would enable the employee to access this system.

We also discovered that employee ID would be necessary to enable employees to log in to the system.

3.12

Conclusion of OOA

From the activities we have completed in our OOA, we have gained a thorough understanding of the AD and PD. By going through the iterative OOA process, each separate activity created new insights into previous activities, opening the way for making improvements. The OOA process has been both exhausting and frustrating, but ultimately a very rewarding experience. This has laid a good foundation for the next phase in the project, Object Oriented Design.

4.0

Object Oriented Design

Overview

In this section we will be using the system requirements generated from the PD and AD analysis, to formulate an architectural design of structured components, to be used in the implementation of our system. This iterative activity will include defining criteria for the design, analyzing the system and operational requirements with regard the technical platform being used, and then evaluating the design to determine whether it can be implemented according to the criteria that we established. Our goal will be to develop a structured architecture that defines the system components and their relations.

4.1

Design

4.1.1
Design Criteria

In defining the criteria for design we hope to describe the system in a way that eliminates all essential uncertainties
. This means setting design priorities that allow the system to model the problem domain, implement all the functional requirements and have an interface that offers users the specified interactions. Our goal here is to create a good design, which emphasizes usability, flexibility and comprehensibility. This emphasis is important, as usability determines how accessible the system is to the users, while flexibility and comprehensibility help ease design and implementation work.

Design Criteria Table
	Inventory Management System
	No. 1
	Version 1
	Date 20.04.2002

	Criterion
	Importance
	Reason

	Usable
	5
	ND will rely on the successful interaction between the system and users.

	Secure
	3
	The system contains only mildly sensitive information.

	Efficient
	2
	The system will be implemented on only one PC.

	Correct
	5
	ND will have no use for the system if it does not fulfil the requirements.

	Reliable
	4
	If the required levels of precession are not achieved, the likelihood of productivity gains are greatly reduced.

	Maintainable
	3
	As this is a very small system, detection of defects should not be difficult.

	Testable
	3
	The limited functionality of the system will make it easy to test.

	Flexible
	3
	The chances of ND modifying the system are very low.

	Comprehensible
	3
	The system should not require much further development so the need is not high.

	Reusable
	1
	This is not a requirement.

	Portable
	2
	It is highly unlikely that a new technical platform will be required.

	Interoperable
	3
	The system may need to interact with other systems in the future.

	Importance

	1: Irrelevant

2: Not important

3: Slightly important

4: More Important

5: Very Important

4.1.2 Component Design

The structure of our system components will be following the “Generic Architecture Pattern” as described by Lars Mathiassen in the book, Object Orientated Analysis and Design. This pattern consists of several components designated as layers allowing a system to be decomposed into an interface layer, a function layer and a model layer. In our system, these layers will be represented by five different components. The Problem Domain Component (PDC), the functional Model Component Holder (FMC Holder)
, the Functional Model Component (FMC), the Human Interface Component (HIC) and the External Interface Component (EIC). It is worth noting that the model contents of our system (the PDC) will be stored in a database system. This can be considered an extra level underneath our model component, as it encapsulates the technical platform. This will be discussed further in database design.

Private and Common Event List

	Inventory Management System
	No. 1
	Version 2
	Date 24.04.2002

	Private

	Event
	Attributes

	Customer Deleted
	Customer ID

	Customer Registered
	Customer ID, Date, Name, Address, Phone No., Fax, E-mail

	Location Deleted
	Location ID, Location Description

	Location Registered
	Location ID, Location Description

	Staff Employed
	Staff ID, Name, Address, Phone No., Date, DOB (date of birth)

	Staff Deleted
	Staff ID

	Common

	Event
	Attributes

	Consignment Deleted
	Consignment ID

	Consignment Registered
	Consignment ID, Customer ID, No. of Items, Date

	Item Removed
	Consignment ID, Employee ID, Date, Location ID, Date, Time

	Item Stored
	Consignment ID, Employee ID, Date, Time, Location ID

Comments

We discovered the need for a new class to describe the iterative event of relocating items. In investigating this event we realised that this was the same as the store item event with a null value for the old location ID. From this we have created a new storage activity class as described in the structural diagram below.

[image: image18.emf]ItemLocation

Storage Activity

0..*

1

0..*

1

Fig 16

New Storage Activity Class

This structure shows the one to one aggregations between the Storage Activity class and Item and Location classes. This is a result of discovering an iterative event that occurs in both the Item and Location class. Lars Mathiassen recommends that if this occurs, we should look for alternative ways to describe this situation. This could be done with new classes and structures that represent the events and all the accompanying information. We have chosen to implement a new class named Storage Activity in the way shown in the diagram above.

[image: image19.emf]AvailableOccupied

RegisteredDeleted

Item Stored

Emptied

Fig 17

Location state chart diagram

This diagram displays the iterative nature of the Item Stored event, and its association to Location. This emphasized the need for the new Storage Activity class.

Reviewed Function List

	System: Inventory Management
	No. 1
	Version 3
	Date 20.04.02

	No.
	Functions
	Function Specification
	Complexity
	Uncertainty
	Type

	1
	Check Consignment Status
	S
	1
	2
	R

	2
	Check Integrity of Consignments*
	S
	4
	2
	C/R

	3
	Create Report
	S
	4
	2
	C/R

	4
	Delete Customer
	N
	1
	1
	U

	5
	Delete Employee
	N
	1
	1
	U

	6
	Delete Location
	N
	1
	1
	U

	7
	Delete Outdated Consignment
	S
	2
	3
	C/U

	8
	Display Consignment Location
	N
	2
	3
	R

	9
	Edit Customer Info
	N
	2
	2
	U

	10
	Edit Employee Info
	N
	2
	2
	U

	11
	List Customer/Employee/Consignment
	N
	2
	2
	R

	12
	List Customers
	N
	1
	1
	R

	13
	List Employees
	N
	1
	1
	R

	14
	Locate Item
	N
	1
	1
	R

	15
	Print Information**
	S
	3
	2
	R

	16
	Register Consignment
	I
	3
	3
	U

	17
	Register Customer
	I
	1
	1
	U

	18
	Register Employee
	I
	1
	1
	U

	19
	Register Location
	N
	1
	1
	U

	20
	Relocate Item
	N
	2
	1
	U

	21
	Remove Item
	S
	2
	2
	U

	22
	Search Consignment
	N
	3
	4
	R

	23
	Search Customer
	N
	2
	3
	R

	24
	Search Employee
	N
	2
	2
	R

	25
	Show Customer Activity by day/month/year
	S
	4
	2
	C/R

	26
	Show Staff Activity by day/month/year
	S
	4
	2
	C/R

	27
	Show Warehouse Capacity
	N
	2
	2
	C/R

	28
	Store Item
	N
	2
	2
	U

	29
	View Information**
	S
	2
	2
	R

*
Checking that the number of items registered matches the associated Consignment.

**
Information is data/statistics on employees, customers etc., also including reports.
Key to function table

	Function Type
	Function Specification
	Complexity
	Uncertainty

	U: Update

C: Compute

S: Signal

R: Read
	I : Implicit

N: Name

S: Spec detailed
	1:Simple

2: Low

3: Medium

4:Complex

5.Very Complex
	1:Very low

2:Low

3:Medium

4:High

5:Very High

This function table is a developed version of the one in OOA. We have gained a deeper and more thorough understanding of the functions that the system will require. Most of the new functions were discovered as we worked with the Interfaces, Use cases and Component Design. During the creation of this table we realised we would have the 3 search functions. The functions discovered from the Component Design have also been added to this table. The added functions are the three Show-functions and the Create Report.

4.2

Problem Domain Component

The problem domain component is the part of the model that holds the objects representing the PD.

The idea is that whenever a relevant event occurs in the problem domain, the model component objects should change state accordingly. As our system is also used as an administrative tool, therefore it relies heavily on the model component. This can be seen when a user activates a function in the FMC, which often requires updating the model. Through a process of iteration, our goal with the design of the PDC is to find the appropriate classes and attributes to be represented by it, and place them into a model diagram. This enables a clear understanding of the requirements for implementation in Object Orientated Programming (OOP).

[image: image20.emf]-Consignment ID

-Check In Time

-Total Items

-No.Items stored

Consignmnet

-Name

-Address

-Phone Number

-Fax Number

-E-Mail

-Date Registered

-Status

-Customer ID

Customer

-Name

-Address

-Phone Number

-Mobile Phone

-Date of Birth

-Staff ID

-Status

-Date Employed

Staff

-Status

-Location Description

-Location ID

Location

-Time

-Activity Type

-Activity ID

Storage Activity

Sub Contractor

Warehouse Employee

Manager

Driver

PDC

-Item ID

-Type

Item

Subcontractor Item

Regular Item

1..1

0..*

0..*1

0..*

1..1

{ occupied, available }

{ active, passive }

+Register()

+Edit()

+Delete()

FMC_Staff

+Register()

+Edit()

+Delete()

FMC_Customer

+List_Customers()

+List_Employees()

+List_Consignments_in_Warehouse()

+List_All_Consignments()

+List_Storage_Activity()

+List_Storage_Activity_by_Employee()

+Show_Warehouse_Capacity()

+Show_Staff_Activity()

+Show_Customer_Activity()

Reports

+Locate()

+Delete()

+Register()

FMC_Consignment

+Store_Item()

FMC_Item

+Find_Customer()

+Find_Staff()

+Find_Consignment()

Search

FMC

Model

Holder

FMC

+Register()

+Delete()

FMC_Location

1..*

1..1

1..10..*

-Number of Consignments

-Number of activities per staff

-Number of Consignments per customer_x

-Date

Activity Summary

1..1

1..1

{ remove, store }

Fig 18

PDC and FMC

During the process of creating this diagram we discovered the need for a new Class Activity Summary. This class will record the data required to generate the reports for Staff Activity, Customer Activity and the number of Activities. One object of this class will be created at the end of each day. This will contain an attribute Number of activities for every staff and customer individually as well as a total number of new Consignments registered on that day.

We have also included a new association for the Class Storage Activity. This now has an association to the Class Staff, as the staff involved in the activity will be recorded.

The Class Storage Activity includes a type, which indicates if the activity was a removal or a store activity. This will allow the system to track the location of the individual Item.

We have separated the FMC layer into FMC and FMC Holder layer, as this is the logical format we would prefer to utilize. We expect to reduce this down to a single FMC layer in our prototype but this will occur when we are implementing the model and not before.

4.3
Function Model Component

[image: image21.wmf]+Register()

+Edit()

+Delete()

FMC_Staff

+Register()

+Edit()

+Delete()

FMC_Customer

+Locate()

+Delete()

+Register()

FMC_Consignment

+Store_Item()

FMC_Item

+Find_Customer()

+Find_Staff()

+Find_Consignment()

Search

FMC

Model

Holder

FMC

HIC

EIC

+Staff_Log_In()

HIC_Log_In

+Go_to_HIC_Consignment()

+Go_to_HIC_Employee()

+Go_to_HIC_Customer()

+Go_to_HIC_General_Report()

+Go_to_HIC_Log_In()

HIC_Main_Menu

+Find_Customer()

+Find_Staff()

+Find_Consignment()

HIC_General_Reports

+Find_Customer()

+Register_Customer()

+Edit_Customer()

+Delete_Customer()

+Show_Customer_Activity()

+Print_Customer_Details()

HIC_Customer

+Register_Consignment()

+Delete_Consignment()

+Search_for_Consignment()

+List_Item_Locations()

+List_Involved_Employees()

+Print_Consignment_Details()

HIC_Consignment

+Register_Employee()

+Delete_Employee()

+Edit_Employee()

+Print_Employee_Details()

+Search_for_Employee()

+Show_Employee_Activity()

HIC_Employee

+Delete_Old_Consignment()

+Delete_Old_Storage_Activity()

+Check_Consignment()

+Check_Storage_Activity()

+Create_Activity_Summary()

EIC_Clock

+Register()

+Delete()

FMC_Location

+Register_Location()

+Delete_Location()

+Check_Location_Status()

HIC_Location

+Register_Consignment()

+Store_Item()

+Remove_Item()

+Register_Location()

+Delete_Location()

+Locate_Consignment()

EIC_Scanner

+Print_Report()

+Print_Consignment()

+Print_Employee()

+Print_Customer()

EIC_Printer

+List_Customers()

+List_Employees()

+List_Consignments_in_Warehouse()

+List_All_Consignments()

+List_Storage_Activity()

+List_Storage_Activity_by_Employee()

+Show_Warehouse_Capacity()

+Show_Staff_Activity()

+Show_Customer_Activity()

Reports

Fig 19

FMC, HIC, EIC and FMC model holder Diagram

We have created this diagram using the PDC that we have constructed, the function list and use cases. The diagram is structured in a way that compliments the interface diagram that was designed in OOA. We realised that the OOA interface lacked a Location window and we have included one in this diagram. The functions described in the OOA Scanner interface diagram are included as an EIC. The scanner will be treated as an external system allowing actors to access the target system. All Scanner functionality is available through the PC interface.

The clock will be initiating some important events. The Consignment and Storage Activity Classes will not be considered permanent, as the functionality provided by them will be temporarily useful. The large numbers of these classes produced each day will require a large amount of storage in our data structures as well as a slow response to any searches. To reduce this drain on our resources we have defined a delete Consignment and Storage Activity function that will delete these objects after 1 month.

This is another reason for the creation of the previously mentioned Report Class to hold the data required for reports that would require access to some of the data in the Consignment and Storage Activity Classes. The clock will also initiate the Create_Activity_Summary function at the same time every day to create consistency in the data that the report will hold. This will eliminate any inconsistencies of measuring data over varying time periods.

[image: image22.emf]:Main

Menu

:Log In

Screen

Check Staff

ID

:Consignment

Menu

Enter

Consignment

ID

Enter

Customer ID

Enter No.

 of Items

Log In OK/

not OK

Check for

Duplicate

Check

Validity

Data OK/not

OK

Invalid Data

Enters

Staff

ID

Refusal

Accepted

Log Out

The Use Case begins when the

Employee enters their Staff ID in

the Log In Screen.

The screen will change to the

Main Menu or issue a polite

refusal.

The Employee clicks the

Consignment button.

The screen changes to the

Consignment Menu.

The employee enters the

Consignment ID, Customer ID

and number of Items.

Once this has been entered the

create button is clicked.

The Consignment details are

shown in a text field confirming

the successful creation of a

Consignment or an error

message.

This use case finishes when the

employee clicks on return to the

Main Menu. From here the

employee can select other

functions or Log out.

Register Consignment

Use Case

InterfaceSystem

Fig 20

Interaction Diagram

The creation of this diagram has not led to the discovery of new aspects of our system. The overview gained from this diagram will assist with the creating of the interfaces. Within our simple system this is one of the more complex use cases but the diagram has not provided any new insights.

4.4

Interface Component

[image: image23.wmf]Main Menu

Customers

Employees

Consignments

General Reports

Log out

Location

Log in

Log in

Exit

Employees

Return to Menu

Add employee

Name

Address

Phone No.

[Inserted automatically]

Employee No.

Mobile No.

E-mail

Print Details

Status

[Active / Passive / Admin]

Edit Details

[Results]

Dick

Employee List

Delete

OK

Consignments

Return to Menu

Danske Fragtmænd 67

Consignment No.

No. of Items

Customer

Create

Delete

[Results]

List Item Location(s)

List Employees Involved

Print Details

General Reports

Return to

Menu

Choose report

type

[Results]

Print

List Employees

Activities by Employee

No. of New Consignments

Warehouse Capacity

Units

OK

Choose Start Date

DD

MM

YYYY

DD

MM

YYYY

Choose End Date

All

Dick

Henrik

Søren

Information type

Daily

Weekly

Yearly

Location

Return to Menu

Location ID

Create

Delete

[Results]

Print Details

Location description

Customers

Return to Menu

Add customer

Name

Address

Phone No.

[Inserted automatically]

Customer No.

Fax No.

E-mail

Print Details

Status

[Active / Passive]

Edit Details

[Results]

Danske Fragtmænd

Customer List

Delete

OK

Fig 21

The Final OOD Navigation Diagram

This second Navigation Diagram includes all the new functionality that we have unearthed during the OOD process. We have also modified the interface design to include clearer confirmation to the user. We have also placed result text fields in each window to allow results to be displayed for the user. The Location window that was not included in the first version has now been included.

The Navigation Diagram for the scanner was not reviewed, and can be found in Appendix D.

4.5

Conclusion

The iterative OOD process has provided the model that we will be able to use in the implementation of the target system. We have designed the structure of the components and described the accompanying relations. During this process we discovered some new classes and relations that will be important to the successful implementation of the system. The completion of this section has provided a solid foundation upon which we can base our Database Design and OOP activities.

5.0

Database Design and Implementation

5.1

Overview

In this section we will design and create the system database. We are going to build data models to represent the company, by using a systematic approach in Database design that will satisfy the users’ requirements and achieve the stated Design Criteria mentioned in OOD.

We will divide the database design into 2 sections. We will begin with Logical Database Design (LDD) and then Physical Database Design (PDD). This will be an iterative procedure as many of the physical considerations have influenced our modeling in the OOD. LDD will provide the logical data model of the system. PDD will be where decisions will be made as how to implement the design.

Throughout the process we will be checking the model we are working with to ensure it supports the user transactions.

5.2

Logical Database Design

In this section we will concentrate on the logical representation of our database to design the most accurate model of reality with the highest level of integrity possible. We have not considered Conceptual Database design
 as this has been covered during both the OOA and OOD.

We have begun the LDD with the model that we have created in OOD. New entities and relations may be discovered in LDD. The model that we will create in LDD will provide the information for the process of PDD and which entities and relations could be implemented.

Entity Relationship (E/R) and Enhanced Entity Relationship Diagrams (EE/R) will also be used for determining the relations between these entities. The EE/R Diagram will also help us by showing the subtype entities. These are results of converting the PDC in OOD using methods learnt from Lek. Cand. Scien. Michael Claudius.

Defining Entities

The first step in building a logical data model is to define the main entities that the users are interested in. These entities are determined as objects for out OOD model
. By reviewing our OOD, we were able to directly transform the classes from the PDC into Entities of the logical data model. We feel that these entities are the best representations with respect to the user’s requirements. In the following table we have documented the descriptions and the occurrences of each entity in accordance with the methodologies described in Database Solutions textbook.

Entity Definitions/Description Table

	System: Inventory Management
	No. 1
	Version 1
	Date 24.04.02

	Entity Name
	Description
	Aliases
	Occurrence

	Customer
	Issues Consignments
	N/A
	Many.

	Consignment
	Collection of items from one customer with one end destination and delivery date.
	Assignment, Delivery.
	Many, a customer can have many Consignments.

	Item
	A labeled quantity of goods that is a part of a consignment. Has a size that fits on one pallet. Cannot be broken up into smaller parts.
	Goods, Units.
	One too many connected to one consignment.

	Staff
	A general term describing the people that have legal access to the system.
	Drivers, Warehouse employees, Managers, Sub contractors.
	Many, approximately 30.

	Storage Activity
	An activity involving an item, its movement, location and the staff member involved.
	Relocation, Storage and Check out activities.
	Many storage activities can occur to each item.

	Report
	A summation of the storage activity within the warehouse over a 24-hour period.
	N/A
	Once every 24 hours.

	Location
	A described and labeled position within the warehouse with space for one item.
	Position name, Shelf location.
	Every registered location in the warehouse.

Identifying Relationships

Now that we have established the entities for the logical data model, we need to identify all the relationships that exist between them. By checking each entity in the ER diagram for a potential relationship with another entity, we were able to describe the relationship between them, and identify their participation and multiplicity
.
Relationship Table

	System: Inventory Management
	No. 1
	Version 2
	Date 27.04.02

	Entity
	Multiplicity
	Relationship
	Entity
	Multiplicity
	Participation

	Customer
	0..*
	Issues
	Consignment
	1..1
	O : M

	Consignment
	1..*
	Has
	Item
	1..1
	M : M

	Storage Activity
	1..1
	Updates
	Item
	0..*
	M : O

	Storage Activity
	1..1
	Updates
	Location
	0..*
	M : O

	Staff
	0..*
	Initiates
	Storage Activity
	1..1
	O : M

	Activity Summary
	0..*
	Records
	Storage Activity
	1..1
	O : M

Entity Relationship (ER) Modelling

We have used Entity Relationship Diagrams to visualise the relationships between entities to assist us in modelling the system. We have used UML notations wherever possible. We have also used the UML notation to express the multiplicity of the relationships.

[image: image24.wmf]-Name

-Address

-Phone Number

-Fax Number

-E-Mail

-Date Registered

-Status

Customer

-Consignment ID

-Consignment registered

-Total Items

-Items Stored

Consignmnet

-Location ID

-ItemID

Item

-Location ID

-Location Description

-LocationStatus

Location

-StorageActivityID

-StorageActivityTime

-StorageActivityDate

-StorageActivityType

Storage Activity

-Number of Consignments

-No of activities per Staff

-No of activities per Customer

-Summary Date

Activity Summary

-Staff ID

-CPR No

-Name

-Address

-Phone No

-Mobile No

-Status

-Date Employed

-Staff Type

Staff

1..1

0..*

0..*

1..1

0..*

1..1

0..*

1..*

1..1

1..1

0..*

1..1

initiates

data collected

updates

updates

1..1

0..*

updates

has

issues

Fig 22

ER diagram v4

The entities we have modeled in this ER diagram have come from our OOD model. We have modeled the relationships that exist between the entities we have identified. We have included some relationships that were not identified in OOD. We have included the attributes of the entities to help us understand the relations between the entities.

We have realized at this point that the Activity Summary is an aspect of PDD but as it was identified in OOD as necessary we have not removed it from our ER diagram.

Identifying Attributes with Entities

During the OOD phase of this project we were able to determine attributes for each class in the problem domain component. We have now taken the classes from this model and represented them here as entities with the associated attributes now listed for each one. In some entities, we split up composite attributes to form new simple ones, as we felt it was important for the user to gain access to the separate component/s. An example of this can be seen with “postcode” in customers. It was originally a part of the “address” attribute and is now a simple attribute in its own right

After assessing each entity’s attributes, we were able to determine which of these best represented the primary key/s in each. Most of these were obvious, as they contained uniquely identifiable information and were the least likely to have their value changed in the future.

Entity Attribute Specification Table

	System: Inventory Management
	No. 1
	Version 3
	Date 27.04.02

	Entity
	Attributes
	Key
	Description
	Multi valued
	Default Value
	NULL Legal

	Customer
	Name
	
	
	No
	
	No

	
	Address
	
	
	No
	
	No

	
	Post Code
	
	
	No
	
	No

	
	Phone No.
	
	
	No
	
	No

	
	Fax No.
	
	
	No
	
	Yes

	
	E-mail
	
	
	No
	
	Yes

	
	Date Reg.
	
	
	No
	Present
	No

	
	Status
	
	Person status active/passive
	No
	Active
	No

	
	Customer ID
	PK
	Generated by the system/chosen
	No
	
	No

	Consignment
	Consignment ID
	PK
	Generated by system
	No
	
	No

	
	Time Registered
	
	
	No
	Present
	No

	
	Total Items
	
	
	No
	
	No

	
	Customer ID
	
	
	No
	
	No

	
	Items Stored
	
	
	No
	0
	No

	Item
	Consignment ID
	PK
	
	No
	
	No

	
	ItemLocation ID
	
	Present Location.
	No
	Null
	Yes

	
	Item ID
	PK
	Generated by the system.
	No
	
	No

	
	Item Type
	
	Regular or Sub Contractor
	No
	
	No

	Storage

Activity
	Staff ID
	
	
	No
	
	No

	
	ActivityTime
	
	
	No
	Present
	No

	
	Location ID
	
	
	No
	Null
	Yes

	
	ActivityDate
	
	
	No
	
	No

	
	Item ID
	
	
	No
	
	No

	
	SummaryID
	
	
	No
	
	No

	
	Consignment ID
	
	
	No
	
	No

	
	Activity Type
	
	Removal or Storage.
	No
	
	No

	
	StorageActivityID
	PK
	
	No
	
	No

	Staff Details
	First Name
	
	
	No
	
	No

	
	Last Name
	
	
	No
	
	No

	
	Address
	
	
	No
	
	No

	
	StaffPhone No.
	
	
	No
	Null
	Yes

	
	Mobile Phone No.
	
	
	No
	
	No

	
	CPR.No
	PK
	
	No
	
	No

	
	Date Employed
	
	
	No
	
	No

	
	PersonStatus
	
	Active / Inactive
	No
	
	No

	
	StaffType
	
	Warehouse Employee, Driver, etc
	No
	
	No

	Staff
	Staff ID
	PK
	
	No
	
	No

	
	CPR-No.
	
	
	No
	
	No

	Location
	Location ID
	PK
	
	No
	
	No

	
	LocationStatus
	
	Occupied / Empty
	No
	
	No

	Location Description
	Location Description
	
	
	No
	
	No

	
	Location ID
	PK
	
	No
	
	No

	Activity Summary
	Total No. of Consignments
	
	No. of Consignments registered the last 24 hrs.
	No
	Null
	Yes

	
	Total No. of activities
	
	No. of activities recorded the last 24 hr
	No
	Null
	Yes

	
	Total No. of Consignments
	
	No. of Consignments registered the last 24 hrs.
	No
	Null
	Yes

	
	SummaryID
	PK
	
	No
	
	No

	
	SummaryDate
	
	
	No
	Null
	Yes

Determining Attribute Domains

The next step in constructing our data model is to determine the attribute domains. A domain is the set of allowable values for one or more attributes
. This is an important part of the logical data model, as it allows us to define the meaning and source of values that attributes can hold. In accordance with Carolyn Begg & Thomas Connolly’s method
, we have specified in the following table, the domains for each of the model’s attributes and included their allowable set of values and the size and format for each one. The creation of domains can assist in the retaining of relational integrity by ensuring that only valid datatypes can be entered into the database.

Domain Attribute Specification Table

	System: Inventory Management
	No. 1
	Version 4
	Date 27.04.02

	Entity
	Attribute
	Data Type
	Set of Value
	Format

	Customer
	Name
	VarChar (40)
	Any values
	Non specific

	
	Address
	VarChar (30)
	Any values
	Non specific

	
	Post Code
	Char (4)
	1000-9999
	dddd

	
	Phone No.
	VarChar (11)
	8-11 digits
	Non specific

	
	Fax No.
	VarChar (11)
	8 digits
	Non specific

	
	E-mail
	VarChar(40)
	Any values
	Non specific

	
	Date Reg.
	VarChar (10)
	Any values
	Non specific

	
	Person Status
	VarChar (7)
	Active, Passive
	Non specific

	
	Customer ID.
	VarChar (4)
	1-4 digits
	Non specific

	Consignment
	Consignment ID
	VarChar (20)
	Any values
	Non specific

	
	Total Items
	Char (4)
	4 digits
	Non specific

	
	Date Registered
	VarChar (10)
	Any Values
	Non specific

	
	Customer ID
	VarChar (4)
	4 digits
	Non specific

	
	Items Stored
	SmallInt
	Any values
	Non specific

	Item
	Item ID
	VarChar (4)
	Any values
	Non specific

	
	Item Location ID
	Char (10)
	Any values
	Non specific

	
	Consignment ID
	VarChar (20)
	Any values
	Non specific

	
	Item Type
	VarChar (13)
	Sub contractor/ Reg.
	Non specific

	Staff Details
	CPR No
	VarChar(11)
	6 digits – 4 digits
	dddddd-dddd

	
	First Name
	VarChar (15)
	Any values
	Non specific

	
	Last Name
	VarChar (30)
	Any values
	Non specific

	
	Address
	VarChar (30)
	Any values
	Non specific

	
	Staff Phone No.
	VarChar (11)
	8-11 digits
	Non specific

	
	Mobile Phone No.
	VarChar (11)
	8-11 digits
	Non specific

	
	Date Employed
	VarChar (10)
	Short date
	Non specific

	
	Person Status
	VarChar (7)
	Active, Passive
	Non specific

	
	Staff Type
	VarChar(15)
	Manger, Driver, Sub contractor, Warehouse
	Non specific

	Staff
	Staff ID
	VarChar(6)
	Any values
	Non Specific

	
	CPR-No.
	VarChar(11)
	6 digits – 4 digits
	dddddd-dddd

	Storage Activity
	Item ID
	VarChar (4)
	Any values
	Non specific

	
	Storage Activity ID
	SmallInt
	Any values
	Non specific

	
	Consignment ID
	VarChar (20)
	Any values
	Non specific

	
	Summary ID
	SmallInt
	Any values
	Non specific

	
	Staff ID
	VarChar(6)
	Any values
	Non Specific

	
	Location ID
	VarChar (10)
	Any values
	Non specific

	
	Time Registered
	Time
	Any Values
	hh:mm

	
	Date Registered
	VarChar (10)
	Any Values
	Non specific

	
	Activity Type
	VarChar (6)
	Remove, Storage
	Non specific

	Location
	Location ID
	VarChar (10)
	Any values
	Non specific

	
	Location Status
	VarChar (5)
	Full, Empty
	Non Specific

	Location Details
	Location Description
	VarChar (10)
	Any values
	Non Specific

	
	Location ID
	VarChar (10)
	Any values
	Non specific

	Activity Summary
	Summary Date
	VarChar (10)
	Any values
	Non specific

	
	Total No. of activities
	SmallInt
	Any values
	Non Specific

	
	Total No. Consignments
	SmallInt
	Any values
	Non Specific

	
	Total No. Consignments
	SmallInt
	Any values
	Non Specific

	
	SummaryID
	SmallInt
	Any values
	Non Specific

EE/R diagram

Using an EE/R diagram to model data we are aiming to represent subtype entities. We are going to evaluate the inheritance and Participation type between the super type and the subtypes. It also shows the generalization and specialization structures.

[image: image39.wmf]
Fig 23

EER Diagram

By evaluating the above EE/R diagram we can see two generalization structures have been represented. We examined the inheritance type for each of them and found that any subtype entity can only inherit from the super type entity. This means that it is a disjoint
.

Evaluating participation type in both the Staff structure and the Item structure is mandatory, because all the subtype entities do not have any special attributes and the super type occurrence can stand-alone. Therefore we decided to remove the subtypes and use (Type) attribute in the Staff and Item super types to define each entity’s role. An additional version of the EER Diagram can be found in Appendix E

[image: image25.wmf]-Customer ID

Customer

-Consignment ID

Consignmnet

-Item Location ID

-ItemID

Item

-Location ID

Location

-Storage Activity ID

Storage Activity

-Summary ID

Activity Summary

-Staff ID

Staff

1..1

0..*

0..*

1..1

0..*

1..1

0..*

1..*

1..1

1..1

0..*

1..1

initiates

data collected

updates

updates

1..1

0..*

updates

has

issues

-Location Description

Location Description

-CPR No

Staff Details

1..1

1..1

has

1..1

1..1

has

Staff removes item

Item Location ID

changes to null

Items stored

reduced by one

Location

status

changed to

empty

Activity will be

recorded at the end

of the day

Fig 24

ER showing Primary Keys

This Diagram includes only the Primary Keys as the shown attributes. The arrowhead lines show the transaction pathway
 for the removal of an item from a location within the warehouse. We have conducted a number of transaction pathways to check that our model and the designed tables will support the transactions the users will require. Another (and simpler) version of this diagram can be found in Appendix E. The diagram also represents the normalized structures of Staff and Location. These were being investigated at the same time as these diagrams were being created and have therefore been represented here.

Determining Foreign Keys

By studying the relationships between these entities through the use of EE/R diagrams, we were also able to determine the foreign keys for each one. This meant studying the cardinality between the entities and determining where a foreign key was required. We selected the attributes that gave us the strongest referential integrity
 for our data model
.

Entity Overview Table
	System: Inventory Management
	No. 1
	Version 3
	Date 27.04.02

	ActivitySummary (noOfConsignments, noOfActivitiesPerStaff, noOfConsignmentsPerCustomer, summaryDate, summaryID)

Primary Key summaryID

	Consignment (consignmentID, timeRegistered, total Items, customerID, itemsStored)

Primary Key consignmentID

Foreign Key customerID references Customer (customerID)

	Customer (customerID, firstName, lastName, address, postcode, phoneNo, faxNo, eMail, dateRegistered, status)

Primary Key customerID

	Item (itemID, consignmentID, itemLocationID, itemType)

Primary Key itemID, consignmentID

Foreign Key consignmentID references Consignment (consignmentID)

Foreign Key itemLocationID references Location (locationID)

	Location (locationID, locationStatus, locationDescription)

Primary Key locationID

	Staff (staffID, firstName, lastName, address, staffPhoneNo, mobileNo, cPR-No, status, dateEmployed, staffType)

Primary Key staffID

	StorageActivity (consignmentID, summaryID, storageActivityID, staffID, locationID, activityTime, activityDate, itemID, activityType)

Primary Key storageActivityID

Alternate Key consignmentID, itemID, activityTime, activityDate

Alternate Key locationID, activityDate, activityType, activityTime

Alternate Key staffID, activityDate, activityType, activityTime

Foreign Key locationID references Location (locationID)

Foreign Key consignmentID references Consignment (consignmentID)
Foreign Key itemID references Item (itemID)

Foreign Key staffID references Staff (staffID)

Foreign Key summaryID references Summary (summaryID)

We have examined these tables to ensure that they hold all the data that the users will require. We have also checked that if a transaction uses more than one table that a foreign key links these tables.
 From this we have concluded that these tables support all the required user transactions.

Normalization

In this section we will examine the structure of the tables that have been designed. We have followed the rules of normalisation to reduce the unnecessary duplication of data. We have set our standard at that of 3.NF
. We will only design tables that are of this level of normalisation.

[image: image26.wmf]Location

PK

Location

Description

Location

Status

Location ID

2.NF

1fd

2fd

Location

Description

PK

Location ID

Location

Description

Location

PK

Location ID

Location Status

3.NF

[image: image27.wmf]Item

3.NF

PK

Item ID

Location ID

Item Location ID

Item Type

PK

FK

[image: image28.wmf]Staff

PK

Staff

 ID

F-name

L-

name

Date

Empl.

2.NF

Add.

Phone

Mobil

Staff Satus

CPR.

No.

Staff Type

1fd

2fd

Staff

PK

Staff

 ID

3.NF

CPR. No.

Staff

Details

PK

F-name

L-name

Date

Empl.

Add.

Phone

Mobil

Staff Satus

CPR.

No.

Staff Type

FK

[image: image29.wmf]Storage

Activity

PK

Activity

Date

Activity

Time

Storage

Activity

 ID

2.NF

Item

ID

Consignment

ID

Location

ID

FK

Staff

 ID

Activity

Type

FK

FK

FK

Summary

ID

FK

1fd

2fd

3fd

Storage

Activity

PK

Location ID

3.NF

Activity

Date

Consignment

ID

Activity

Time

FK

Staff

 ID

Activity

Type

PK

PK

FK

Storage Activity Date

PK

Activity

Date

Summary ID

FK

Normalisation Comments

We have examined all of the designed tables and discovered that the majority was already in a 3NF form. The complexity of the Storage Activity Table led us to examine the model more carefully. Difficulties in achieving 3NF can be a sign of an incorrect or inaccurate model
. This could lead to the redesign of the model, tables or perhaps both. The new tables are described in the table below.

New Tables after Normalization table
	System: Inventory Management
	No. 1
	Version 2
	Date 1.05.02

	LocationDescription (locationDescription, locationID)

Primary Key locationDescription

Foreign Key locationID references Location (locationID)

	Location (locationID, locationStatus)

Primary Key locationID

	Staff (staffID, cPR-No.)

Primary Key staffID

Alternate Key cPR-No.

	StaffDetails (firstName, lastName, address, staffPhoneNo, mobileNo, cPR-No, status, dateEmployed, staffType)

Primary Key cPR-No,

	StorageActivity (storageActivityID, summaryID, activityDate)

Primary Key storageActivityID

Foreign Key summaryID references Summary (summaryID)

	StorageActivityDetails (consignmentID, staffID, locationID, activityTime, activityDate, itemID, activityType)

Primary Keys locationID, activityTime, activityDate

Alternate Key staffID, activityDate, activityTime

Alternate Key consignmentID, itemID, activityTime, activityDate

Foreign Key locationID references Location (locationID)

Foreign Key consignmentID references Consignment (consignmentID)
Foreign Key itemID references Item (itemID)

Foreign Key staffID references Staff (staffID)

Conclusion to Logical Database Design

LDD has provided us with a logical data model of the system. The activities of ER and EER modeling have assisted us in gaining an overview of the system. The process of examining the relationships between entities has enabled us to select primary and foreign keys. Throughout the process we have checked that the model supports the user transactions that have been specified in our OOA and OOD.

We will now use the information gained during our process of LDD to physically implement the logical database design we have created.

 5.3

Physical Database Design (PDD)

In this section we will outline the methodology we have followed in implementing the Logical Database Design. We have followed the 4 steps outlined by Thomas Connolly and Carolyn Begg
.

1. Translate the logical data model for the Database Management System (DBMS)

2. Design the physical Representation.

3. Consider the introduction of controlled redundancy

4. Design Security Mechanisms

We will begin by translating the information from LDD into base tables and business rules for the DBMS. We will then analyze transactions and choose indexes. The derived data and denormalization will be considered. We will complete our implementation by designing user views and access.

We have translated the tables outlined in Entity Overview table in LDD in the format displayed below. We have used Structured Query Language (SQL)
 statements to define domains and create the tables within Borland Interbase. We have implemented these tables defining the type of data that will be accepted, if nulls will be allowed, identifying primary and foreign keys as well as default values and constraints.

	/* Storage Activity */

CREATE DOMAIN

 ActivityType AS VARCHAR (6)

CHECK (VALUE IN ('Remove', 'Store')) NOT NULL;

CREATE DOMAIN

StorageActivityID AS SMALLINT NOT NULL;

CREATE DOMAIN

CheckConsignmentID AS VARCHAR(20)

CHECK (VALUE IN(SELECT ConsignmentID FROM Consignment));

CREATE DOMAIN

CheckItemID AS VARCHAR(4)

CHECK (VALUE IN(SELECT StaffID FROM Staff));

CREATE DOMAIN

CheckStaffID AS VARCHAR(6)

CHECK (VALUE IN(SELECT StaffID FROM Staff));

CREATE DOMAIN

CheckLocationID AS VARCHAR(10)

CHECK (VALUE IN(SELECT LocationID FROM Location));

CREATE DOMAIN

CheckSummaryID AS SMALLINT

CHECK (VALUE IN(SELECT SummaryID FROM Summary));

CREATE DOMAIN

DateRegistered AS VARCHAR(10) NOT NULL;

CREATE DOMAIN

TimeRegistered AS TIME NOT NULL;

CREATE TABLE StorageActivity(

 itemID

CheckItemID,

 consignmentID

CheckConsignmentID,

 staffID

CheckStaffID,

 locationID

CheckLocationID,

 activityTime

TimeRegistered DEFAULT CURRENT_TIME,

 activityDate

DateRegistered DEFAULT CURRENT_DATE,

 activityType

ActivityType,

 storageActivityID

StorageActivityID,

 summaryID

CheckSummaryID,

 PRIMARY KEY (StorageActivityID),

 FOREIGN KEY (StaffID) REFERENCES Staff(StaffID)

ON UPDATE CASCADE ON DELETE NO ACTION,

 FOREIGN KEY (LocationID) REFERENCES Location(LocationID)

ON UPDATE CASCADE ON DELETE NO ACTION,

 FOREIGN KEY (ConsignmentID) REFERENCES Consignment(ConsignmentID)

ON UPDATE CASCADE ON DELETE NO ACTION,

 FOREIGN KEY (ItemID) REFERENCES Item(ItemID)

ON UPDATE CASCADE ON DELETE NO ACTION,

 FOREIGN KEY (SummaryID) REFERENCES ActivitySummary(SummaryID)

ON UPDATE CASCADE ON DELETE NO ACTION);

The domains define the data types required as well as checking if the values entered exist within the parent
 tables. All primary and foreign keys are identified and the references for these foreign keys are also stated. We have chosen to have no action on delete when the entity involved could be required after the parent record is deleted
. When we would like the child record to be deleted when the parent is deleted we have chosen to cascade the deletion
.

The business rules for ND that affect the Database design are as follows.

1. Only one item can be placed within a single location.

2. All Customers must have a telephone number.

3. All staff must have a mobile phone number.

4. All goods will be either sub contractor or regular.

5. An item can only exist with an associated consignment.

These business rules have been implemented using the domains we have created and have not required any extra constraints within the tables.

The physical representation

To make decisions about the physical representation we need to have identified the transactions that will run frequently and the critical transactions
. To assist in identifying the frequency of transactions we have created the cross-referencing table and transaction table with estimated frequencies.

	Cross-referencing transaction table with estimated frequencies per week (frequency)
	Version 2
	Date 1.05.02

	Transaction / table
	Locate Consignment

(4000)
	Store Item

(5500)
	Remove Item

(5500)
	Register Consignment

(5000)
	Create staff activity report

(5)

	Type
	I
	R
	U
	D
	I
	R
	U
	D
	I
	R
	U
	D
	I
	R
	U
	D
	I
	R
	U
	D

	Customer
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Consignment
	
	X
	
	
	
	
	X
	
	
	
	X
	
	X
	
	
	
	
	
	
	

	Location
	
	X
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	

	Location Details
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Item
	
	X
	
	
	
	
	X
	
	
	
	X
	
	X
	
	
	
	
	
	
	

	Activity Summary
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X
	
	

	Staff
	
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	X
	
	

	Staff Details
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Storage Activity
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	

	Storage Activity Details
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	

I = Insert; R = Read; U = Update; D = Delete

From this table we can see that we have many transactions that will insert rows into both the Storage Activity and Storage Activity Details tables in the same transaction. Many transactions occur that updates both the Consignment and the Item Tables. As this may indicate that we could improve the system performance by merging these tables we will analyze these transactions.

The Store Item transaction will require a new row to be added to both the Storage Activity and Storage Activity Details tables. We could improve the performance by merging the tables and requiring only one table to be updated. We would have a higher degree of redundancy. This will not be an important problem as we have an Activity Summary table to hold the important information. The records stored in the Storage Activity table will be deleted after 4 weeks to reduce the required data storage resources. We have therefore decided to merge the Storage Activity Tables.

We became aware of the number of records that would be generated by the system during our OOD, which is why this class was identified so early. This will enable the system to use the available EDB resources more efficiently.

We will not be considering types of possible file organisations, as Interbase 6.0 does not offer the facility to select different forms of file organisations.

Indexes

We will implement indexes in situations only when an index will improve the performance of important transactions. We have taken into account the extra resources that creating an index will use and balanced this against the expected gains.

1. The Staff and Customer Tables will be quite small and will therefore not require indexes.

2. The Consignment, Location and Location Description Tables will be accessed using the primary key so the primary key will be indexed.

3. The Activity Summary table will be accessed by the summary date so this will be indexed.

4. The Item Table will be accessed by use of the ConsignmentID so this will be indexed.

5. The Storage Activity table will be accessed via both the StaffID and the ConsignmentID so these will be indexed.

Derived Data

We have already included some derived data in the tables we have designed. The group discovered the importance of the involved transactions during OOD. We have included a Items Stored attribute within the Consignment table to allow a check if the items in an Consignment have been removed from the warehouse without needing to calculate if this has occurred by using a join
 between the consignment and Item tables. As this transaction will be frequent we have chosen to include the derived data attribute.

Duplicating columns or joining tables

We have considered whether to duplicate columns or to join tables to improve performance. This could be done by reducing the number of joins in the necessary queries as recommended by Connolly and Begg. The denormalising of certain tables
from 3NF was chosen to speed up frequent and/or critical transactions.

The Storage Activity and Storage Activity Details tables have a one to one relationship. A join will be required for all transactions involving these tables so it will be suitable for merging. This will provide an improvement in performance for some of the most critical transactions, store item and remove item.

The new table will be

StorageActivity (storageActivityID, consignmentID, summaryID, staffID, locationID, activityTime, activityDate, itemID, activityType)

Primary Key storageActivityID

Alternate Key consignmentID, itemID, activityTime, activityDate

Alternate Key locationID, activityDate, activityType, activityTime

Alternate Key staffID, activityDate, activityType, activityTime

Foreign Key locationID references Location (locationID)

Foreign Key consignmentID references Consignment (consignmentID)
Foreign Key itemID references Item (itemID)

Foreign Key staffID references Staff (staffID)

Foreign Key summaryID references Summary (summaryID)
We have already chosen to duplicate 2 foreign keys in our Item table. The system will be accessing the LocationID for the Locate Consignment transaction. This will improve the performance of this transaction. We could improve this transaction further by adding the foreign key Location Description. The Locate transaction will return the location description so if it is stored here a join between the Item and Location tables will not be necessary. The new table will be as follows.

Item (itemID, consignmentID, itemLocationID, itemLocationDescription, itemType)

Primary Key itemID, consignmentID

Foreign Key consignmentID references Consignment (consignmentID)

Foreign Key itemLocationID references Location (locationID)

Foreign Key itemLocationDescription references Location (LocationDescription)

Security

The security of our database will be controlled by the need for a log in code for the staff to access our system. This will be the StaffID. The scanner that would be used in the fully implemented system would have different levels of access for the Manager compared to the other members of staff.

The PC interface that we will be creating in our implementation will only be available to the manager class of staff. The only staffIDs that will be accepted by the system will be those of the managers.

We have therefore only created the manager user views and the only access rule will be the use of the staffID.

5.6

SQL and Java

We have created a prototype containing SQL statements within a Java program that connects to Borland Interbase 6.0 Database. We have used SQL statements to create the Database as outlined in our Physical Database Design. The structure of the database has been created using SQL as a Database Definition Language (DDL). The queries to the database have been created using SQL as a Database Manipulation Language (DML). The Queries have placed within a program written using the Object Orientated Programming Language Java.

The program has been written following the principles of Object Orientated Programming (OOP). We have connected this Object Orientated Design to our relational database. The resulting program contains some compromises between OOP and the need to create an efficient system to handle the user transaction. This can be seen form the duplicating of some attributes in the Location and Item tables and the accompanying duplication within the Java program.

We encountered the following challenges in creating the necessary SQL and Java code.

1. The volume of code required in creating an easy to use Human Interface Component (HIC).

2. Attempting to use primary keys based on a current date.

3. Creating the correct constraints that would allow the required level of referential integrity and still allow required level of performance.

Despite these challenges we have successfully created both a relational database and a java program. They have both followed the design created in OOD and PDD.

5.7

Conclusion on Database Design
We designed data models by transforming our OOD model to ER and EE/R models. Through the logical design process we evaluated all the model entities, their attributes and the relationships between them. Checking whether the designed tables supported the user transactions has done the evaluation. We went further through the logical design process by defining business rules for the target system and normalizing the model to ensure data consistency, minimal redundancy and maximum stability. We have applied only one view
 as the prototype will be accesible only to staff with administrative priviliges.

In the Physical Database Design we have implemented this model and adapted it to the DBMS we will be using, Borland Interbase. We have also modified the model and the tables to provide the required performance for the critical transactions. We have also modified the model and tables to reduce the load on he system created by the most frequent transactions. We will now create an interface for the DBMS using Java following the model we have finalized in PDD.

5.8

Prototype Implementation
Introduction

The aim when constructing our prototype was to reflect the design as seen in the OOD and RDBD sections of our report. Although the program offers limited functionality, we have implemented 17 Java classes. All the database tables for the complete system were implemented using Interbase 6.0. Although we will be presenting the prototype to Mr. Johansen for his appraisal, due to time constraints, this will not take place until after the project has to be delivered. This was unfortunate for the group, as we would have liked to summarize his comments and present his feedback here for the reader.

Choosing Functionality

We have made it quite clear to the company that the prototype will only represent some of the main concepts of our design but more importantly, the most critical ones. The most important functionality of our system was to be able to locate an item belonging to a consignment within the warehouse. This is the main feature of our prototype.

At the time of finishing this project, the prototype was also able to create, find, edit, delete and insert customers and employees in the database. It could be argued that these operations belong to a separate administrative system. We chose to include this subsystem in our model in OOA to provide a problem domain that would have more than 2 main classes. It should also be noted that a scanner would perform most of the functionality concerned with our system. The PC interface was chosen as our prototype as it enabled us to include functionality form both the scanner and PC interface.

Security

As expressed in the analysis and design of our system (OOD 4.4, OOA 3.9.2) limited security should be available for information access. As we experienced time constraints towards the end of the project, we implemented only a simple login dialog screen, which accepts a 4 digit number before allowing the user access to the main menu. If the user enters 3 wrong numbers consecutively, the program shuts down and user has to restart again.

Navigating the interface:

After the user has logged in, the program begins at the main menu window which gives the user a choice between working on consignments, locations, customers, employees and reports. The screen provides 5 buttons, which enable this choice to be made and a logout button for exiting the program.

For each button selected, a new window open up, representing the particular problem domain component in question. After interacting with the program at this level, the user must first return to the main menu again, if he wishes to logout. I.e. you cannot close a window with the “x” in the top right hand corner.

Registering, Deleting, Finding and Editing Customers or Employees:

When a new window for Customers or Employees is opened up from the main menu, the user is faced with the options of listing all, adding, editing, or deleting an instance of the chosen type from the database. The user is first instructed to fill in all the text fields and click the “add” button if he wishes to create a new customer / employee. If the user wants to delete or edit a customer / employee, he is instructed to enter the employee / customer No and then select “Delete” if deleting, or “Ok” if editing. If the user doesn’t know the customer / employee No, he can select the “list all” button, which displays a complete list of customer / employee details retrieved from the database. If the user has clicked on “OK” after selecting a customer / employee to edit, the program retrieves the object’s details from the database and places them into the text fields for the user to edit. Once the user has finished changing the desired values, he is then instructed to select the “Edit” button, which updates the data for that particular object in the database. All transactions are confirmed with written text which displays the newly edited, deleted or added object/s in a results text area. This also gives the user notification of any errors that occurred while performing the transaction.

Registering, Deleting, and Finding Item Locations of a Consignment

When the new window for consignments is opened up from the main menu, the user has the option of creating a new consignment, deleting a consignment, or finding Item locations for a particular consignment. To register a new consignment, the user fills in the required information into the text fields and selects “Create”. To delete a consignment, the user must insert the consignment No. into the text field and select “Delete”. To find the locations of items in a particular consignment, the user must enter the consignment No. into the number text field and select “List Item Locations”. The item locations are retrieved from the database before being displayed in the results text area for the user. It should be noted that the “Delete” and “Find Item Location” functions are available on the premise that the user already knows the consignment No. in question.

Screen shots from the prototype

	[image: image30.png]
	[image: image31.png]

	[image: image32.png]
	[image: image33.png]

Evaluation of Critical Success Factors

We have successfully translated our designs into a working prototype that meets the Critical Success Factors (CSF) as can be seen in the Business Analysis section 2.12. The prototype will simulate the functions from the model that will address the following CSF’s. The following is the list of CSF’s and the way that our prototype has addressed each of them:

1) To provide measurable timesaving in the finding of goods within the warehouse.

The prototype will provide a function to give the locations of any items belonging to an individual consignment.

2) To simplify the procedure for placing items in the warehouse, saving time.

The systems ability to return the location of items allows items to be placed where there is space without considering having to find the items.

3) To enable better management of the space within the warehouse meaning more items can be placed with the warehouse without a loss of efficiency.

The Locate Consignments facility will allow items to be packed more closely as a precise description can be returned by the system to find consignments.

4) To enable the generation of useful information and statistics about the warehouse inventory when requested. The database we have created allows the data to be collated and presented to the user. We have not implemented this within our prototype due to time constraints.

Conclusion on Prototype

We have thoroughly tested the prototype that we designed and matched its performance with the critical success factors. From this we have concluded that it successfully represents the designs outlined in the system definition chosen by Mr.Johansen. It also meets all but one of the critical success factors, which is the facility of generating reports on information about the Inventory Management System. Although this functionality is missing from the prototype, the database created allows for these queries to be made. Therefore we feel that it was addressed sufficiently and the prototype is still a success without this functionality. The main factor for the success of this prototype was to provide a facility that speeded up the process of finding items of a particular consignment in the warehouse. We feel that the prototype has accomplished this and expect that the users will be more than satisfied with the results.

6.0

Conclusion and Evaluation

6.1

Evaluation

We identified our main objective in the beginning of our project establishment. It was to identify a logistical problem within Norddistribution, and then design and implement a BIS that could solve this problem using a relational database. We were also to utilize our training in system development using OOA and OOD, programming in Java and using SQL as well as our lessons in MAO.
Pre Analysis

We have selected a logistical problem and analyzed ND, its environment, its business model and the strategies Mr Johansen has in place. We have used the tools and methods learned in MAO that we have been introduced to in both first and second semesters. Using the insight gained from the activities associated with these methods, we have made some recommendations as to what solutions could be suitable to ND and its needs, both at present and in the future. We assessed the project and risks involved with it and concluded that the project was feasible.

This phase of the project went quite smoothly as ND has a very simple and successful business model. The greatest concern to us was the simplicity of the business and ND’s “no growth” policy. We worried that this would cause difficulties in finding a problem that would be suitable for our school project. We were concerned, that we would not be able to implement the methods from our tuition. Making a recommendation that included not only ND’s limited requirements for the present, but also some functionality that may be useful in the future averted this fear.

OOA
Using the knowledge from this pre analysis and the recommendations made, we have used the OOA methodologies to analyze both the problem and application domains. Three possible system definitions were offered to ND and the most suitable one selected for implementation. We identified the classes and objects involved and the structures and relationships between these classes and objects. Utilising state chart diagrams and use cases examined the behaviour of these classes. The necessary attributes and functions were identified and defined. The OOA was concluded with our first attempt at a possible user interface for the target system.

This was the most difficult and time consuming part of the project. It was also the only time that we fell behind the schedule we had outlined in our project establishment. We had some confusion about providing the system that ND would use at present, and one that would fulfil our requirements. We felt, that the system required by ND would not give us the experience in system development and programming that we were aiming for. We had some fears that we would be implementing a 2 class model that would not contain any challenging structures. This problem was averted after much consternation by the selection of a system definition, which included some other subsystems that would be useful to ND in the future.

We had some confusion during the inclusion of these subsystems as to how much of these subsystems would be implemented. We had included the facility to generate some employee performance statistics and were yet to realise the ramifications of that this selection would have on our design. This was also the period where the discussions of exactly how to define the relationships in the model were the most heated. These long and animated discussions provided some deeper insights. We discovered some aspects of the model that would not normally be considered until much later in the process. E.g. there were some discussions on the physical aspects of a database that would implement the system applicable to our model. Another example of this was the use of foreign keys in the attribute table.

OOD

In the OOD phase of our project we determined the design criteria that would define the priorities of our design. The model defined in OOA was used to design the classes in our model using the ”Generic Architecture Pattern”. We designed the necessary components and modelled the relevant structures. This included some classes we realised had been missed in OOA, or we felt would be necessary. We have re-examined the important events and reviewed the function list created in OOA.

The various layers of our model have been designed into the PDC, FMC, HIC and EIC layers. The new relationships and classes have been integrated into this model and a further attempt to describe a possible interface was attempted.

As a result of the in depth discussions that had taken place in OOA, we were already considering the consequences of our design on the physical implementation of the model. We discovered the Activity Summary class in this section when it normally would not have been discovered until Physical Database Design. The inclusion of this in our diagrams could be seen as deviating from the OOD guidelines provided by Lek. Cand. Scien. Michael Claudius. The OOD proceeded more smoothly than OOA and this enabled us to return to our scheduled timetable. The time spent on passionate discussion of ideas was again more than we had expected, but important insights were gained from these discussions.

Logical Database Design

The model developed in OOD has been implemented using a relational database following the methods outlined in our lessons in logical database design and following the methodology described in ”Database Solutions”. We have modelled the relationships between entities using ER and EER diagrams. The details of the required attributes and domains have been defined and the primary and foreign keys selected. The designed tables have been checked by using transaction pathways to ensure the correct modelling of the new system and that the required user transactions are supported. We have normalized the tables and introduced constraints to improve relational integrity of the tables.

In this section we had some problems with the complexity of relationships surrounding our Storage Activity Class. This created some problems with attempts to normalize the tables we had designed. We also discovered some problems in attempting to use Date values with defaults as primary keys within Interbase 6.0. The resulted in the selection of single ID keys for all of our main entities except Item, which used a composite primary key containing an ID and foreign key. The lack of database experience also meant that more time than expected was used in creating the database structures.

Physical Database design

In physical database design we have taken the tables defined in LDD and applied them to the relational database we will use. We have modified them to provide the integrity and efficiency specified in the design criteria in OOD. Some tables have been denormalized and columns duplicated to provide better performance and savings in the data storage resources required by the system. Indexes have been created where the performance improvements will outweigh the extra demands on the system resources.

This section was helped by our discussions in OOD were we had considered some of the physical constraints of the system and the likely frequency of the critical transactions. We decided to denormalize some parts of the data model and loosen some of the relational integrity constraints based on this analysis.

The final database design has been created using SQL statements and Java programming in the manner that we were instructed in our programming lessons. This has resulted in a prototype containing the most important functionality that the fully implemented system would require.

This was perhaps the most frustrating part of the project. We discovered that some very small errors in either the creation of our database structure or Java coding could lead to extended periods of debugging. This period also included some heated discussions into the correct method to implement Object Orientated Programming in connection with a relational database. Despite these challenges team “Fun Factory” successfully created a functional prototype.

The iterative process has been one in which our indirect objectives have certainly been met. We have all gained a much deeper and clearer understanding of all of the disciplines of our course. The 7 week period of working together as a team has improved our group work and communication skills immensely. It has been a challenging, occasionally frustrating but ultimately very rewarding experience. We have all learned a great deal about our subjects, each other and ourselves. We are satisfied with the result of our labours and in some ways surprised with how much we have gained form the experience.

6.2

Personal Comments

Chris McCombe

The group work element of the project was again the most important element of what I learned during this project. Communicating between the group members when we had different viewpoints and fighting for our perspectives while at the same time listening carefully and with an open mind to what the other members have to say. This was my biggest challenge and lesson learnt during this intense period of working together with my classmates. The iterative process of the project was both helpful in reaching a detailed and in depth understanding of the situation and model but frustrating at the same time.

Of the particular fields of study it was the database design and implementation that I found most interesting. The programming was the least important to me as it was the understanding of the entire process that was most important to me.

Thabet Al-Assadi

For me, starting a real word project was an interesting thing to do. It was an opportunity to apply what we have heard in the classroom and what we have read in the textbooks. In the beginning the uncertainty and lack of clarity was reasonably high. It was very hard to judge whether we were on the right path or not.

I have learned how to investigate a problem by understanding the organization working procedures (process), applying system development methodologies and implement our design using tools learned from programming and database. This has been achieved with the help of the project group and subject advisors.

Defining and solving a real life problem has made me realize that compromising is a necessity for a smooth working flow. Not only between the possible and achievable target system but also between the group members themselves. Through this project I gained a lot about the first and second semester subjects. It was also a good opportunity and pleasant experience to work closer with people from different cultures and backgrounds.

Jakob Kierkegaard

Because I was doing a project of this size for the first time, I was looking forward to see how it would turn out to be. I have never been a great believer in the “learning by group work” style of teaching, and a project of this size did not make me less sceptical. But now, almost 8 weeks later, I have realized that the experience was not so bad after all. Even though we have had our fights over topics throughout the project, we have always been able to agree in the end, and at this point I feel that we all are more or less satisfied with what the project has become.

By using the methodologies and tools we have been learning during the first two semesters, and mixing them with a real life situation, it has helped me understanding the various topics in the different subjects. Also it has helped me see the point of connecting the subjects, because they in the beginning seemed very far apart.

Even though I must admit that I was not always present mentally, I feel that the patience of my fellow group members has been overwhelming in moments where I should have known what they have been talking about.

Mark Ryan

On commencing this project, I admittedly felt a bit sceptical about what benefits we would actually gain from pursuing such a venture. Much of the school tuition that I have received in the past, has come directly from the “old school” methods of teaching where one is constantly in a class room listening to a teacher regurgitate words from a text book. Although this method is effective to a degree, I am now thoroughly convinced that there are better ways of teaching, and completing this project has helped me realize this. The group work associated with the project has not only helped us acquire a better understanding of the subjects involved in the course, but also reinforced our skills of working together with other people, who may see things from a different point of view.

Altogether, the project provided me with a more concrete understanding of the theories that we have learned in class, especially those associated with Systems Development.

7.0

Appendixes

7.1

Appendix A

[image: image34.jpg]
Fig 25

Company Contract with ND

7.2

Appendix B

[image: image40.wmf]-Name

-Address

-Phone Number

-Mobile Number

-Date of Birth

-Staff ID

-Status

-Date Employed

-Type

Staff

-Activity ID

-Time

-Activity Type

-Date

Storage Activity

-Number of Consignments

-Number of Activities per Employee

-Number of Consignments per Customer

-Date

Activity Summary

0..*

1..1

1..1

0..*

0..*

1..1

1..1

0..*

1..*

1..1

updates

records

updates

has

issues

1..1

1..*

has

-Location ID

-Location Description

-Location Status

Location

-Item ID

-Type

Item

-Consignment ID

-Check In Time

-Total Items

-Items stored

Consignmnet

-Name

-Address

-Phone Number

-Fax Number

-E-Mail

-Date Registered

-Customer Status

-Customer ID

Customer

Sub Contractor

Warehouse Employee

Manager

Driver

{Mandatory, Or}

Subcontractor Item

Regular Item

{Mandatory, Or}

1..1

0..*

updates

Fig 26

An example of a Delivery Document

[image: image35.jpg]
Fig 27

An example of a Consignment

7.3

Appendix C

The two FACTOR tables for the systems not chosen for the final prototype.

	System: BIS
	No. 1
	Version 3
	Date 18.4.2002

	Functionality:

	An administrative tool to assist in the control of material and human resources. It will provide reports on the state of resources and help with planning and decision-making. The movement of items in and out of the warehouse will be recorded and the locations of the items will be accessible by using Consignment documents. All staff and sub contractors will be registered by the system.

	Application domain:
	Managing Director, warehouse employees, sub contractors and drivers.

	Conditions:
	We will develop most of the system with limited contact to the prospective users. Must use a user-friendly interface for non-IT trained users. The contact with ND will provide input to assist in the selection of system choice, interface and in testing of the prototype. This project has a time span of 8 weeks.

	Technology:

	The prototype is to be a stand-alone system running a PC. It is to be created on PC’s and laptops using software specified in our Project Establishment.

	Objects
	Customers, items, locations, trucks, sub contractors, financial results and employees.

	Responsibility
	An administrative tool that monitors and controls resources and items.

	System: Inventory
	No. 2
	Version 3
	Date 18.4.2002

	Functionality:

	The control of Consignments within the warehouse. It will control the times that Consignments arrive and the time that they leave the warehouse. It will control the placement of the items and will prioritise the Consignments to be made and where they should be placed. This will include all items including those that are connected to sub contractors.

	Application domain:
	Sub contractors, Managing Director, Consignment documents, warehouse employees and drivers.

	Conditions:
	Must use a user-friendly interface for non IT trained users. We will develop most of the system with limited contact to the prospective users. The contact with ND will provide input to assist in the selection of system choice, interface and in testing of the prototype. This project has a time span of 8 weeks.

	Technology:

	The prototype is to be a stand-alone system running on a PC. It is to be created on PC’s and laptops using software specified in our Project Establishment.

	Objects
	Customers, Consignments, delivery times, items, locations, sub contractors and drivers.

	Responsibility
	A delivery administration tool that monitors and controls Consignments, items and their movements within the warehouse.

The Function Specification for the function Register Employee.

	Function Name: Register Employee
	No. 1
	Version 1
	Date: 21.04.2002

	Purpose: Entering staff member data to the system and give it a unique ID.

	Preconditions: Valid Name and address of the new employee must be available.

	Post conditions (effect): Employee object with authorised ID is created.

	Trigger events: New staff employed

	Type: Active function

	Frequency: Once

	Input: Employees’ name, address, phone, mobile, DoB.

	Output: Employee ID and status generated or Error massages (missing/invalid data)

	Algorithm:

	1. An actor enters administration ID and click “Log-In”.

2. Main Menu window pops up. Click on “Employee” button.

3. Employee window will show up. Employees’ data entered.

4. Actor clicks “Add Employee”.

5. Validate data. Create Employee ID or return error massage.

6. Actor clicks “Return Main Menu”.

	Placement: FMC-Admin class or HIC-Admin.

	Use Cases: Register Person.

	Objects: Employee

	Preliminary Data structure:

	Remarks:

The Function Specification for the function Register Consignment.

	Function Name: Register Consignment
	No. 1
	Version 2
	Date 23.04.2002

	Purpose: This function is supposed to register the Consignments as they come into the warehouse.

	Preconditions: The consignment must arrive to the warehouse.

	Post conditions (effect): The consignment is registered in the system, and the items are ready to be placed in the warehouse (checked in)

	Trigger events: Register_Consignment

	Type: Update

	Frequency: More than 30 times a day, and often not below 50 times a day

	Input: Consignment ID, Customer ID, No. of Items, Date

	Output: Confirmation / Errors

	Algorithm:

1. The user enters the staff ID at the log in screen

2. The user enters the Main menu, and selects the Consignment option.

3. The user enters the consignment menu.

4. The data of the consignment is entered where necessary.

5. The data is confirmed by clicking Create.

	Placement: FMC_Consignment

	Use Cases: Register Consignment.

	Objects: Consignment

	Preliminary Data structure: RDB

	Remarks:

The Function Specification for the function Store Item.

	Function Name: Store Item
	No.1
	Version 2
	Date 23-04-02

	Purpose: To allow quick and easy storage of items in the warehouse system.

	Preconditions: An item must have a Consignment ID. There must also be an available location in the warehouse.

	Post conditions (effect): An item is placed in a location and assigned to the location’s ID in the system, via the use of a scanner.

	Trigger events: A consignment is delivered to the warehouse and registered in the system.

	Type: Update and active

	Frequency: Very often used, multiple times per day

	Input: Consignment ID, Location ID, Employee ID

	Output: New Item object with Consignment ID, Location ID, Location description as attributes. Stored confirmation.

	Algorithm:

1. Employee enters staff ID into scanner.

2. Employee selects “Store Item” from menu.

3. Employee scans item.

4. Employee scans location.

	Placement: FMC_Item class in the FMC_Model Holder

	Use Cases: Register Assignment, Check in Item.

	Objects: Item, Employee, Location, Consignment

	Preliminary Data structure: Type of structure on which the function is operating might be changed later in the implementation

	Remarks: None

The Use Case for the user case Register Consignment.

	Use Case name: Register Consignment
	No. 1
	Version 2
	Date 23.04.2002

	Purpose: To register a consignment.

	Preconditions: The consignment must arrive to the warehouse with a readable barcode.

	Post conditions: The consignment is registered in the system, and it is ready to be placed somewhere in the warehouse.

	Frequency: More than 30 times a day, and often not below 50 times a day

	Primary Actor: Scanner

	Secondary Actors: List of actors, who might be involved Driver or Warehouse employee

	Descriptions:

Actions
	System response

	1. The employee logs into the scanner by using his employee number.

3. The user chooses the option “Register Consignment”

5. The employee scans the delivery document, enters how many items there are in the consignment, and then finds the customer on the list. This is ended by a click on C
	2. The employee is presented to the main menu.

4. The user is presented to the Register consignment screen in the scanner display.

6. The consignment is registered, and the employee is brought back to the main menu.

	Secondary Use Cases: Delete Consignment (the opposite of this)

	Exceptions: If the barcode is not readable.

	Preliminary Objects: Consignment, Employee.

	Preliminary Functions: Register_Consignment.

	Remarks:

General Types Class Table

	Subsystem: Inventory Management
	No. 1
	Version 2
	Date 16-04-02

	General Type
	Classes

	Things
	Truck, Pallet, Items Invoice, Delivery document.

	People and roles
	Managing director, Customer, Employee, Subcontractor, Staff, Driver.

	Organization
	Danske Fragtmænd (DF), Texaco, ND.

	Places
	Location.

	Concepts
	Delivery, Check in, Check out, Enquiry, Complaint, Inventory database.

	Descriptions
	Item barcode, Consignment document

	Resources
	Money, Time, Warehouse,

	Devices
	Scanner, Printer, PC, Telephone, fax.

	Systems
	DF’s system.

7.4

Appendix D

[image: image36.emf]Main Menu

1. Register Consignment

2. Store Item

3. Relocate Item

4. Locate Consignment

5. Check Out Item

6. Register Location

7. Delete Location

Log in

1

a b c

7

s t u

6

p q r

5

m n o

4

j k l

3

g h i

2

d e f

OKC0

9

y z

8

v w x

Store Item

Scan Item

Return to Main Menu by

pressing C

Scan Location

Check Out Item

Scan Item

Return to Main Menu by

pressing C

Locate Consignment

Scan Document

Return to Main Menu by

pressing C

Location

C36

Register Consignment

Scan Document

Enter no. of Items

Confirm with OK

4

Return to Main Menu by

pressing C

Register Location

Scan Location Barcode

Return to Main Menu by

pressing C

Enter Name

of Location

G25

Confirm with OK

Delete Location

Scan Location

Return to Main Menu by

pressing C

Location

B24

Confirm with OK

8. Log off

Enter or Find Customer no.

Danske Fragtmænd 67

Pampers 68

Relocate Item

Scan Item

Return to Main Menu by

pressing C

Scan New Location

Fig 28

Navigation Diagram for the handheld scanner

We have selected a menu selection interface style
 for the scanner. In creating this interface, it clarified the functional aspect of the AD, and exactly how the user would operate them. It also revealed how the user would interact with these functions. In doing this, we realised the possible complexities in involving the selection of customers, adding a higher level of uncertainty in the Registration of Consignment.

7.5

Appendix E

Table of Transactions

	User Transaction Check
	Version 1
	Date 01.05.2002

	Transaction
	Table(s) required

	Register Staff
	Staff (staffID, cPR-No)

Staff Details (firstName, lastName, address, staffPhoneNo, mobileNo, cPR-No, status, dateEmployed, staffType)

	Register Consignment
	Consignment (consignmentID, timeRegistered, total Items, customerID, itemsStored)

Item (itemID, consignmentID, itemLocationID, itemType)

Customer (customerID, firstName, lastName, address, postcode, phoneNo, faxNo, eMail, dateRegistered, status)

	Store Item
	StorageActivity (consignmentID, summaryID, storageActivityID, staffID, locationID, activityTime, activityDate, itemID, activityType)

Consignment (consignmentID, timeRegistered, total Items, customerID, itemsStored)

Item (itemID, consignmentID, itemLocationID, itemType)

Location (locationID, locationStatus)

Staff (staffID, cPR-No.)

	Locate Consignment
	Consignment (consignmentID, timeRegistered, total Items, customerID, itemsStored)

Item (itemID, consignmentID, itemLocationID, itemType)

Location (locationID, locationStatus)

	Remove Item
	Item (itemID, consignmentID, itemLocationID, itemType)

Location (locationID, locationStatus)

StorageActivity (consignmentID, summaryID, storageActivityID, staffID, locationID, activityTime, activityDate, itemID, activityType)

Staff (staffID, cPR-No.)

Consignment (consignmentID, timeRegistered, total Items, customerID, itemsStored)

	Create report of number of activities for an employee
	StorageActivity (consignmentID, summaryID, storageActivityID, staffID)

Staff (staffID, cPR-No.)

ActivitySummary (noOfConsignments, noOfActivitiesPerStaff, noOfConsignmentsPerCustomer, summaryDate, summaryID)

	Check warehouse capacity
	Location (locationID, locationStatus)

Used foreign keys in bold and italic

[image: image37.wmf]-Name

-Address

-Phone Number

-Mobile Number

-Date of Birth

-Staff ID

-Status

-Date Employed

-Type

Staff

-Item ID

-Consignment ID

-Staff

-Location

-Time

-Type

-Date

Storage Activity

-Number of Consignments

-Number of Activities per Employee

-Number of Consignments per Customer

-Date

Activity Summary

0..*

1..1

1..1

0..*

0..*

1..1

1..1

0..*

1..*

1..1

initiates

records

updates

updates

issues

1..1

1..*

has

-Status

-Location Description

-Location ID

Location

-Item ID

-Consignment ID

-Location ID

-Type

Item

-Consignment ID

-Check In Time

-Number of Items

-CustomerID

-Status

Consignmnet

-Name

-Address

-Phone Number

-Fax Number

-E-Mail

-Date Registered

-Status

-Customer ID

Customer

Sub Contractor

Warehouse Employee

Manager

Driver

{Mandatory, or}

-Post Code

Subcontractor Item

Regular Item

{Mandatory, Or}

1..1

0..*

updates

Fig 29

Optional EER Diagram

[image: image38.emf]-Staff ID

Staff

-Staff ID

-Time

Storage Activity

-Date

Activity Summary

0..*

1..2

1..11..*0..*1..1

1..10..*

1..*

1..1

has

records

has

has

issues

1..1

1..*

has

-Location ID

Location

-Consignment ID

-Item ID

Item

-Consignment ID

Consignmnet

-Customer ID

Customer

Fig 30

ER showing Primary Keys

7.6

Appendix F – Source Code for Java

/* The following 13 classes contain the Java code which makes up the programming part of the prototype. We have implemented this as part of the 2nd Semester Project work for the datamatiker course at Roskilde Business College.

We have not included all 17 (HIC_Employee, FMC_Employee, Employee and LogoutDialog are the 4 not included), because the last 4 are more or less copies of already included classes. The Employee classes are the same as the Customer classes, with the exception of the attributes, and the LogoutDialog is almost the same as the LoginDialog class.*/

/*
Java code for 2nd Semester Project work.

*
Completed by Group 5: Chris McCombe, Jakob Kierkegaard, Thabet Al-

*
Assadi & Mark Ryan.

 *
==

 */

/*
This class is the PDC Class for Consignment. Whenever a new object of this class is instantiated, the constructor copies the initial values into the object variables. The get/set and toString methods allow us to gather the object's values and insert them into a database or print them to the screen for the user. */

public class Consignment {

//
the members are declared private as it is only this class that needs

//
access to them.

private String consignmentID,dateRegistered,totalNoOfItems,customerNo,noOfItemsStored;

// The constructor copies the initial values into the object variables.

public Consignment(String c, String t , String d, String cn, String n) {

consignmentID

= c;

totalNoOfItems
= t;

dateRegistered
= d;

customerNo

= cn;

noOfItemsStored
= n;

}
// ends constructor

// the following 6 methods are get and set methods. They allow us to collect //
each value of the object for insertion into a database or change one of

//
the values.

public String getConsignmentID() {

return consignmentID;

}

public String getDateRegistered() {

return dateRegistered;

}

public String getTotalNoOfItems() {

return totalNoOfItems;

}

public String getCustomerNo() {

return customerNo;

}

public String getNoOfItemsStored() {

return noOfItemsStored;

}

public void setNoOfItemsStored(String s) {

noOfItemsStored = s;

}

// The toString method adds the values from an object to the return statement // for use by the caller.

public String toString() {

return "ConsignmentID:\t" + consignmentID + "\n" + "DateRegistered:\t"+dateRegistered+"\n"+ "Total no of Items:\t" + totalNoOfItems + "\n" + "No of Items Stored:\t" + noOfItemsStored + "\n";

}
// ends toString

} // ends class Consignment

//===

/* This class is the PDC Class for Item. Whenever a new object of this class is instantiated, the constructor copies the initial values into the object variables. The get/set and toString methods allow us to gather the object's values and insert them into a database or print them to the screen for the user. */

public class Item {

//
The members are declared private as it is only this class that needs

//
access to them.

private String itemType, locationDescription, locationID;

private int itemID;

//
The constructor copies the initial values into the object variables.

public Item(int id,String type, String l, String li) {

itemID

= id;

itemType

= type;

locationDescription
= l;

locationID

= li;

} // ends constructor

 // the following 4 methods are get methods. No set methods are required as

//
an Item object does not change in it's lifetime.

public int getItemID() {

return itemID;

}

public String getItemType() {

return itemType;

}

public String getLocationDescription() {

return locationDescription;

}

public String getLocationID() {

return locationID;

}

//
The toString method adds the values from an object to the return statement

//
for use by the caller.

public String toString() {

return "Item ID:\t" + itemID + "\n" + "Item Type:\t\t" + itemType + "\n" +

 "Location Description:\t" + locationDescription + "\n" +

 "Location ID:\t" + locationID + "\n";

} // ends toString
} // ends class Item

//===

//
Import java sql package to access the methods necessary for connecting to

//
and querying the database

import java.sql.*;

/* This class acts as the functional component for the PDC of Consignments. It holds all the required methods used to insert,edit,find and delete data on any given object of the Consignment type. It also holds a method from which it gains access to the database using the jdbc/odbc connection.*/

public class FMC_Consignment {

// Declaring all the required variables for the DB connection and queries at

//
the class level.

String username = "SYSDBA";

String password = "masterkey";

String URL

= "jdbc:odbc:Norddistribution";

Statement stmt
= null;

Connection con
= null;

ResultSet result = null;

String line1,line2,consignmentID,totalNoOfItems,date,customerID,itemsStored;

// Declaring the object variables of the PDC Classes at the class level

Consignment aConsignment;

FMC_Item fmc_item;

/*
The use of overloading can be seen here with the constructor. This was

implemented because we chose to create objects of the FMC classes in the initiating class and pass them to the HIC classes where the following methods could be accessed.*/

public FMC_Consignment() {

}

//
The 2nd constructor copies the initial value that was passed from the

//
HIC_Consignment class into the object variables.

public FMC_Consignment(Consignment myConsignment) {

//
The object variable is assigned to the initial value to use as a

//
reference in this class.

aConsignment = myConsignment;

//
The "line" String collects the required values for a consignment

//
object and is used by registerConsignment() for inserting the data into //
the database.

line1 = "\'" + aConsignment.getConsignmentID() + "\',\'" + aConsignment.getTotalNoOfItems() +
 "\',\'" + aConsignment.getDateRegistered() + "\',\'" + aConsignment.getCustomerNo() + "\',\'" + aConsignment.getNoOfItemsStored() + "\'";

} // ends constructor
// The following method is used to collect every customer Name and No. in the //
database. This is required for the drop-down Choice menu in the

//
HIC_Consignment class.

public String getCustomerNames() {

 // Declaring the local variables

String name

= "";

String customerNo

= "";

String customerNames = "";

// opens the connection to the database via getConnection().

getConnection();

try {

// selects the required values from the Customer table

result = stmt.executeQuery("SELECT Name,CustomerID from Customer;");

// iterates through the selected column values until there are no more

//
left. We use the '*' here as the separating delimiter for the tokenizer //
when the String has been returned to the HIC_Consignment class.

while (result.next()) {

name = result.getString(1);

customerNo = result.getString(2);

customerNames += customerNo+" "+name+"*";

}

// close the database connection

con.close();

}

catch(SQLException e) {

System.out.println(e.getMessage());

}

// returns the String of customer No's and names to the caller in the HIC

//
class.

return customerNames;

}

public String deleteConsignment(String n) {

String error = "";

getConnection();

try {

//
Deleting the values in the database using the string "line" as a

//
helper.

stmt.executeUpdate("delete from consignment where consignmentID = " + "'" + n + "';");

con.close();

}

catch (SQLException e) {

error = e.getMessage();

System.out.println(error);

}

// The return statement here returns any error encountered while performing

//
the transaction.

return error;

}

public Consignment findConsignment(String n) {

getConnection();

try {

// selects the required values from the Consignment table

result = stmt.executeQuery("select * from Consignment where ConsignmentID = " + "'" + n + "'" + ";");

// iterates through the row's values until there are no more left

while (result.next()) {

consignmentID
= result.getString(1);

totalNoOfItems
= result.getString(2);

date

= result.getString(3);

customerID
= result.getString(4);

itemsStored

= result.getString(5);

}

// Instantiate a new object using the data retrieved from each row of the

//
database

aConsignment = new Consignment(consignmentID,totalNoOfItems,date,customerID,itemsStored);

// close the database connection

con.close();

}

catch(SQLException e) {

System.out.println(e.getMessage());

}

// returning the consignment object to the caller in the HIC Class

return aConsignment;

}

public String registerConsignment() {

String error = "";

getConnection();

try {

// inserting the values into the database using the string "line" as a

//
helper.

stmt.executeUpdate("insert into Consignment values (" +line1+ ");");

con.close();

}

catch (SQLException e) {

error = e.getMessage();

}

// The return statement here returns any error encountered while performing

//
the transaction.

return error;

}

// This method loads the jdbc/odbc driver and makes the connection to the

//
database

public void getConnection() {

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception e) {

System.out.println("Failed to load JDBC/ODBC driver.");

return;

}

try {

con = DriverManager.getConnection(URL,username,password);

stmt = con.createStatement();

}

catch(Exception e) {

System.err.println("problems connecting to "+URL);

}

}

} //ends class FMC_Consignment
//===

//
Import java sql package to access the methods neccessary for connecting to

//
and querying the database

import java.sql.*;

/* This class acts as the functional component for the PDC of Items. It holds all the required methods used to insert, retrieve and find data on any given object of the Item type. It also holds a method from which it gains access to the database using the jdbc/odbc connection.*/

public class FMC_Item {

//
Declaring all the required variables for the DB connection and queries at //
the class level.

String username
= "SYSDBA";

String password
= "masterkey";

String URL

= "jdbc:odbc:Norddistribution";

Statement stmt

= null;

Connection con

= null;

ResultSet result
= null;

// Declaring the object variables of the PDC Classes at the class level

Item anItem;

Consignment aConsignment;

// Declaring variables for some of the methods at the class level.

String itemLocationID,itemLocationDescription,line,itemID,itemType;

 int totalNoOfItems,counter;

/*
The use of overloading can be seen here with the constructor. This was

implemented because we chose to create objects of the FMC classes in the initiating class and pass them to the HIC classes where the following methods could be accessed.*/

public FMC_Item() {

}

//
The 2nd constructor copies the initial value that were passed from the

//
FMC_Consignment class into the object variables.

public FMC_Item(String t,Consignment myConsignment) {

// the object variable is assigned to the initial value to use as a

//
reference in this class.

aConsignment = myConsignment;

// The total numberOfItems is turned into an integer, as we need to count

//
how many there are in the consignment and make a new Item object for

//
each one.

totalNoOfItems = Integer.parseInt(t);

// The forloop repeats the process for creating an object for each item.

//
At the same time it gives each object an ID No, via the use of the

//
"counter" variable.

for(int i=0;i<totalNoOfItems;i++) {

counter++;

// As the values for "locationDescription and "locationID" are not

//
implemented in this prototype, we give them null values here.

anItem = new Item(counter,"Regular","null","null");

// The "line" String collects the required values for an item object and

//
is used by registerItem() for inserting the data into the database.

line = "\'" + aConsignment.getConsignmentID() + "\',\'" + anItem.getItemID() + "\',\'" + anItem.getItemType() + "\'";

registerItem();

} // ends forloop

} // ends 2nd constructor

public void registerItem() {

// opens the connection to the database via getConnection().

getConnection();

try {

// Inserting the values into the database using the string "line" as a

//
helper.

stmt.executeUpdate("insert into Item (ConsignmentID, ItemID, ItemType) values (" +line+ ")");

con.close();

}

catch (SQLException e) {

System.out.println(e.getMessage());

}

} // ends registerItem()
// This method loads the jdbc/odbc driver and makes the connection to the

//
database

public void getConnection() {

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception e) {

System.out.println("Failed to load JDBC/ODBC driver.");

return;

}

try {

con = DriverManager.getConnection(URL,username,password);

stmt = con.createStatement();

}

catch(Exception e) {

System.err.println("problems connecting to "+URL);

}

} // ends getConnection()
/*
Using the Sring "consignmentID" passed from the HIC_Consignment class, the getItemLocations() retrieves the itemLocations and their descriptions and adds them to the "data" String, before returning it back to the HIC caller.*/

public String getItemLocations(String g) {

String data = "";

// opens the connection to the database via getConnection().

getConnection();

try {

result = stmt.executeQuery("select ItemLocationID, ItemLocationDescription from Item" + " where ConsignmentID = '" + g + "';");

// iterates through the columns values until there are no more left.

while (result.next()) {

itemLocationID

= result.getString(1);

itemLocationDescription
= result.getString(2);

data += "Item Location ID:\t" + itemLocationID + "\tItem Location Description:\t" + itemLocationDescription + "\n";

}

// closes the connection to the database

con.close();

}

catch(SQLException e) {

System.out.println(e.getMessage());

}

// returns the "data" String back to the caller from the HIC_Consignment.

 return data;

} // ends getItemLocations()
} // ends class FMC_Item
//===

// import java awt and event to access methods needed for GUI building & event

//
listening. java util is imported to access the methods needed for the

//
Tokenizer

import java.awt.*;

import java.awt.event.*;

import java.util.*;

/* The HIC_Consignment class sets up the frame which serves as the window for handling Consignments. It creates textfields & buttons and adds them to the frame for the user to use. When text is typed into the fields and a button pressed, it will display the results in a textArea. It should be noted that as this is a protoype, only limited functionality is available. */

public class HIC_Consignment extends Frame implements ActionListener {

// Frame components are declared at the class level

TextField consignmentIDField,noOfItemsField;

Panel northPanel,panel1,southPanel,panelResults,buttonPanel;

TextArea results;

Button delete,create,listItemLocations,listInvolved,print,back;

Choice customerChoice;

String customerNo,itemCount;

 // Declaring the object variables for the FMC and PDC Classes

FMC_Consignment fmc;

FMC_Item fmc_item;

Consignment aConsignment;

//
The constructor copies the initial values that were passed from the

//
Main_menu class into the object variables.

public HIC_Consignment(FMC_Consignment command,FMC_Item command2) {

//
The object variables are assigned to the initial values passed from the

//
Main_Menu to use as a reference in this class.

fmc

= command;

fmc_item
= command2;

// gives the frame an outside margin which is reserved as free space.

setLayout(new BorderLayout(30,30));

// The rest of the constructor block instantiates component objects and adds //
them to the frame or to other panels. Empty labels are added to the panels //
for a more symetrical appearance.

northPanel = new Panel();

this.add(northPanel);

panel1 = new Panel();

panel1.setLayout(new GridLayout(0,2));

northPanel.add(panel1);

this.add("North",northPanel);

consignmentIDField
= new TextField(20);

noOfItemsField

= new TextField(20);

/* To insert all the current customers and their numbers into the choice

list, we call the getCustomerNames method from the FMC. This method

returns a String of customer names with their numbers. To separate each

customer in the list, we use a sting tokenizer with the delimiter of

"*".*/

customerChoice = new Choice();

String nameList = fmc.getCustomerNames();

StringTokenizer T = new StringTokenizer(nameList,"*",false);

while(T.hasMoreTokens()) {

customerChoice.add(T.nextToken());

}

delete = new Button("Delete");

create = new Button("Create");

listItemLocations = new Button("List Item Locations");

listInvolved = new Button("List Employees Involved");

print = new Button("Print details");

back = new Button("Return to main Menu");

delete.addActionListener(this);

create.addActionListener(this);

listItemLocations.addActionListener(this);

listInvolved.addActionListener(this);

print.addActionListener(this);

back.addActionListener(this);

panel1.add(new Label("Consignment No"));

panel1.add(consignmentIDField);

panel1.add(new Label("No. of tems"));

panel1.add(noOfItemsField);

panel1.add(new Label("Choose customer"));

panel1.add(customerChoice);

panelResults = new Panel();

panelResults.setLayout(new FlowLayout());

results = new TextArea("Results",10,60);

panelResults.add(results);

this.add(panelResults);

buttonPanel = new Panel();

buttonPanel.setLayout(new GridLayout(0,5));

panelResults.add(buttonPanel);

buttonPanel.add(new Label());

buttonPanel.add(delete);

buttonPanel.add(new Label());

buttonPanel.add(create);

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(listItemLocations);

buttonPanel.add(new Label());

buttonPanel.add(listInvolved);

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(new Label());

buttonPanel.add(print);

buttonPanel.add(new Label());

buttonPanel.add(back);

} // ends constructor
/* The actionPerformed method reacts to an event within the frame. Depending on which button was clicked, and what information was inserted by the user, the method reacts by telling the user that either an error has occurred, or by creating a new object and calling methods in the FMC. The method in the FMC class returns the desired information which is displayed in the textArea.*/

public void actionPerformed(ActionEvent e) {

if (e.getSource() == create) {

// checking to see that the user has filled in the correct information.

if (consignmentIDField.getText().equals("")|

 noOfItemsField.getText().equals("")) {

resultDisplay("No Consignment was added. You must fill out all fields!");

}

else {

// As the customer choice list contains the customer No. & name, we //
use the StringTokenizer to seperate the two, retrieving the

//
customer No. as the first token in the String.

StringTokenizer T = new StringTokenizer(customerChoice.getSelectedItem()) ;

customerNo

= T.nextToken();

itemCount

= "0";

// instantiating the object by gathering the information from the

//
textFields.

aConsignment = new Consignment(consignmentIDField.getText(), noOfItemsField.getText(), Date_today.getDate(),customerNo,"0");

// instantiating an object of the FMC class and passing the newly

//
created
consignment object. This gives the FMC class access to the

//
object for
operations at that level.

fmc = new FMC_Consignment(aConsignment);

/*
If no error is returned from interbase while inserting the values of the object, in other words, if the return value is an empty String, then the object has been successfully inserted and the user is informed and shown the object's details via the toString method.*/

if(fmc.registerConsignment().equals("")) {

fmc_item = new FMC_Item(aConsignment.getTotalNoOfItems(), aConsignment);

resultDisplay("The following consignment was added:\n\n" +

fmc.findConsignment(consignmentIDField.getText()).toString());

}

else {

// If an error occurs while inserting the object's values, the

//
problem is that the user has used an already existing

//
consignmentID and is told so.

resultDisplay("This consignment ID already exists. Please try again.");

}

}

}

else if (e.getSource() == delete) {

// checking to see that the user has filled in the correct information.

if(consignmentIDField.getText().equals("")) {

resultDisplay("You must insert a consignment No. then select \"delete\"");

}

else {

/*
The customer is found using the findConsignment method in the FMC.

It returns an consignment object and is then passed to the constructor of the FMC class. This allows the other FMC methods access to the same object. The consignmentID is passed as a parameter for identifying the correct consignment.*/

aConsignment = fmc.findConsignment(consignmentIDField.getText());

fmc = new FMC_Consignment(aConsignment);

// checking for returned error messages from interbase.

if (fmc.deleteConsignment(consignmentIDField.getText()).equals("")) {

resultDisplay("The following consignment has been deleted:\n\n"+ aConsignment.toString());

}

else {

/*
The error that can occur is the violation of primary/foreign key

constraints. This happens when the user trys to delete a consigment who's ID is seen in another table.The user is told of the error via the resultDisplay method.*/

resultDisplay("This consignment cannot be deleted as the items are still" + " in storage.");

}

}

}

else if (e.getSource() == listItemLocations) {

// checking to see that the user has filled in the correct information.

if (consignmentIDField.getText().equals("")) {

resultDisplay("No ID entered - Please retry");

}

else{

// This method calls the getItemLocations() method in the FMC which

//
returns a list of locations (String) that is then displayed in the

//
results textArea.

resultDisplay("The Consignment's item/s can be found at the following locations:\n\n" + fmc_item.getItemLocations(consignmentIDField.getText()));

}

}

else if (e.getSource() == print | e.getSource() == listInvolved) {

// Showing the user that not all functions are available.

resultDisplay("This function is unavailable for the prototype");

}

else if(e.getSource() == back) {

//closes this frame to bring the user back to the Main menu.

setVisible(false);

}

} // ends actionPerformed method
// This method takes any String that is passed to it and displays it in the

// results textArea.

public void resultDisplay(String c) {

results.setText(c);

}

} // ends class HIC_Consignment

//===

// import java awt and event to access methods needed for GUI building & event

//
listening.

import java.awt.*;

import java.awt.event.*;

/* The Main menu class sets up the frame which serves as the main window for the user. It creates 6 buttons and adds them to the frame for the user to choose from. When a button is pressed, it will open a new frame which will serve as the HIC component for the particular type of PDC that was chosen. It should be noted that as this is a prototype, only limited functionality will be available. */

public class HIC_Main_Menu extends Frame implements ActionListener {

 // Declaring the component objects at the class level

Panel empty1,empty2,empty3,title,buttons;

 Button consignments,employees,customers,locations,reports,logout;

 // Declaring the object variables for the FMC Classes

 FMC_Customer aCustomer;

 FMC_Employee aEmployee;

 FMC_Consignment aConsignment;

 FMC_Item anItem;

// The constructor copies the initial values that were passed from the

//
initiator class into the object variables.

public HIC_Main_Menu(FMC_Customer command1, FMC_Employee command2, FMC_Consignment command3, FMC_Item command4) {

// the object variables are assigned to the values to use as a reference in

//
this class.

aCustomer

= command1;

aEmployee

= command2;

aConsignment = command3;

anItem

= command4;

// gives the frame an outside margin which is reserved as free space.

setLayout(new BorderLayout(50,50));

// The following 2 blocks create the Panel objects, adds them to the frame //
and while also adding empty panels to the frame for a more symmetrical

//
appearance.

empty1 = new Panel();

empty2 = new Panel();

empty3 = new Panel();

this.add("West",empty1);

this.add("East",empty2);

this.add("South",empty3);

// creates a panel with the welcome label adding it to the top of the

//
frame.

title = new Panel();

title.setLayout(new FlowLayout());

title.add(new Label("WELCOME TO NORDDISTRIBUTION INVENTORY MANAGEMENT SYSTEM"));

this.add("North",title);

//
creating a button panel and adding it to the centre of the frame

buttons = new Panel();

buttons.setLayout(new GridLayout(6,5));

this.add("Center",buttons);

 // creating button components and labeling them accordingly

consignments = new Button("Consignments");

employees

= new Button("Employees");

customers

= new Button("Customers");

locations

= new Button("Locations");

reports

= new Button("Reports");

logout

= new Button("Log out");

// adding the created buttons to the button Panel, along with empty labels

//
for a more symmetrical appearance

buttons.add(consignments);

buttons.add(new Label());

buttons.add(locations);

buttons.add(new Label());

buttons.add(new Label());

buttons.add(new Label());

buttons.add(customers);

buttons.add(new Label());

buttons.add(employees);

buttons.add(new Label());

buttons.add(new Label());

buttons.add(new Label());

buttons.add(reports);

buttons.add(new Label());

buttons.add(logout);

buttons.add(new Label());

buttons.add(new Label());

buttons.add(new Label());

// adding the actionlistener to the buttons allowing the actionperformed //
method to react accordingly.

consignments.addActionListener(this);

employees.addActionListener(this);

customers.addActionListener(this);

locations.addActionListener(this);

reports.addActionListener(this);

logout.addActionListener(this);

} // ends constructor

// This method is activated by the initiator class and opens a dialog box

//
which serves as the login window.

public void login() {

// creating a new dialog box passing the necessary parameters to open the //
box.

LoginDialog li = new LoginDialog(this,"Login",true);

li.setSize(500,250);

li.setTitle("Log in");

li.setLocation(240,180);

 li.setVisible(true);

} // ends login

/* The action performed method reacts to an event within the frame. In this case its reacting to buttons being clicked on by the user. Each button creates an object of a new HIC Class which passes the object reference as a parameter to the constructor of the new class. This will allow us to access the methods in the FMC Class from the new HIC Class. */

public void actionPerformed(ActionEvent e) {
if(e.getSource() == consignments) {

HIC_Consignment consignment = new HIC_Consignment(aConsignment, anItem);

consignment.setSize(600,450);

consignment.setLocation(200,100);

consignment.setVisible(true);

 consignment.setTitle("Consignments");

 }

 else if (e.getSource() == employees) {

HIC_Employee employee = new HIC_Employee(aEmployee);

employee.setSize(600,600);

employee.setLocation(200,100);

employee.setVisible(true);

 employee.setTitle("Employees");

 }

else if (e.getSource() == customers) {

HIC_Customer customer = new HIC_Customer(aCustomer);

customer.setSize(600,600);

customer.setLocation(200,100);

customer.setVisible(true);

 customer.setTitle("Customers");

 }

else if (e.getSource() == reports | e.getSource() == locations) {

System.out.println("This facility is not avaialable for the prototype.");

}

// this method opens a new dialog box which serves as the log out window //
for the user.

else if (e.getSource() == logout) {

LogoutDialog lo = new LogoutDialog(this,"Logout",true);

lo.setSize(500,250);

lo.setLocation(240,180);

lo.setVisible(true);

 }

 } // ends actionPerformed

} // ends class Main_menu

//===

/* This class is the PDC Class for Customer. Whenever a new object of this class is instantiated, the constructor copies the initial values into the object variables. The get/set and toString methods allow us to gather the object's values and insert them into a database or print them to the screen for the user. */

public class Customer {

// the members are declared private as it is only this class that needs

// access to them.

private String name,postcode,address,phone,faxNo,email,status,customerNo; private String dateRegistered;

// The constructor copies the initial values into the object variables.

public Customer(String n,String a,String pc,String p,String f, String e,String st,String c,String d) {

name

= n;

address

= a;

postcode

= pc;

phone

= p;

faxNo

= f;

email

= e;

status

= st;

customerNo

= c;

dateRegistered
= d;

}
// ends constructor

// the following 16 methods are get and set methods. They allow us to collect

// each value of the obect for insertion into a database or change one of the

// values.

public String getName() {

return name;

}

public String getAddress() {

return address;

}

public void setAddress(String s) {

address = s;

}

public String getPostcode() {

return postcode;

}

public void setPostcode(String s) {

postcode = s;

}

public String getPhoneNo() {

return phone;

}

public void setPhone(String s) {

phone = s;

}

public String getFaxNo() {

return faxNo;

}

public void setFaxNo(String s) {

faxNo = s;

}

public String getEmail() {

return email;

}

public void setEmail(String s) {

email = s;

}

public String getStatus() {

return status;

}

public void setStatus (String s) {

status = s;

}

public String getCustomerNo() {

return customerNo;

}

public void setCustomerNo(String s) {

customerNo = s;

}

public String getDateRegistered() {

return dateRegistered;

}

// The toString method adds the values from an object to the

// return statement for use by the caller.

public String toString() {

return "CustomerNo:\t" + customerNo + "\n" + "Name:\t\t" + name + "\n" + "Address:\t\t" + address + "\n" + "Postcode:\t\t" + postcode + "\n" + "Phone:\t\t" + phone + "\n" + "Fax:\t\t" + faxNo + "\n" + "E-Mail:\t\t" + email + "\n" + "Status:\t\t" + status + "\n" + "Date Registered:\t" + dateRegistered + "\n";

} // ends toString

} // ends class Customer
//===

//
import java text and util packages to access methods necessary for Date

//
DateFormat.

import java.text.*;

import java.util.*;

public class Date_today {

/* This static method returns the current date and can be accessed from anywhere in the program classes by the call "Date_today.getDate();"*/

public static String getDate() {

Date todays = new Date();

DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);

// converting the Date type to a string and returning it to the caller.

return String.valueOf(df.format(todays));

} // ends getDate

} //ends class Date_today
//===

// import java sql package to access the methods neccessary for connecting to //
and querying the database

import java.sql.*;

/* This class acts as the functional component for the PDC of Customers. It holds all the required methods used to insert, edit, find and delete data on any given object of the Customer type. It also holds a method from which it gains access to the database using the jdbc/odbc connection.*/

public class FMC_Customer {

//
Declaring all the required variables for the DB connection and queries at //
the class level.

String username
= "SYSDBA";

String password
= "masterkey";

String URL

= "jdbc:odbc:Norddistribution";

Statement stmt

= null;

Connection con

= null;

ResultSet result
= null;

String line,set,date;

// Declaring the object variables of the PDC Classes at the class level

Customer aCustomer;

// the members are declared private as it is only this class that needs

//
access to them.

private String name,address,postcode,email,dateRegistered,status,phone,faxNo; private String customerNo;

/* The use of overloading can be seen here with the constructor. This was implemented because we chose to create objects of the FMC classes in the initiating class and pass them to the HIC classes where the following methods could be accessed.*/

public FMC_Customer () {

}

// The 2nd constructor copies the initial value that was passed from the

//
HIC_Customer class into the object variables.

public FMC_Customer (Customer myCustomer) {

//
The object variable is assigned to the initial value to use as a

//
reference in this class.

aCustomer = myCustomer;

// The "line" Strings collects the required values for a customer object

//
and is used by registerCustomer() for inserting the data into the

//
database.

line = "\'" + aCustomer.getName() + "\',\'" + aCustomer.getAddress() + "\',\'" + aCustomer.getPostcode() + "\',\'" + aCustomer.getPhoneNo() + "\',\'" + aCustomer.getFaxNo() + "\',\'" + aCustomer.getEmail() + "\',\'" + aCustomer.getDateRegistered() + "\',\'" + aCustomer.getStatus() + "\',\'" + aCustomer.getCustomerNo() + "\'";

// The "set" Strings also collect the required values to insert into the

//
database, only here it includes the column names as they are required

//
for updating a value.

set = "Name = '" + aCustomer.getName() + "', Address = '" + aCustomer.getAddress() + "', Postcode = '" + aCustomer.getPostcode() + "', PhoneNo = '" + aCustomer.getPhoneNo() + "', FaxNo = '" + aCustomer.getFaxNo() + "', Email = '" + aCustomer.getEmail() + "', Status = '" + aCustomer.getStatus() + "'";

} // ends 2nd constructor

public Customer findCustomer(String n) {

// opens the connection to the database via getConnection().

getConnection();

try {

// selects the required values from the Customer table

result = stmt.executeQuery("SELECT * from Customer WHERE customerID = " + "'" + n + "'" + ";");

// iterates through the row's values until there are no more left

while (result.next()) {

name

= result.getString(1);

address

= result.getString(2);

postcode

= result.getString(3);

phone

= result.getString(4);

faxNo

= result.getString(5);

email

= result.getString(6);

dateRegistered
= result.getString(7);

status

= result.getString(8);

customerNo

= result.getString(9);

// instantiate a new object using the data retrieved from each row of

//
the database

aCustomer = new Customer(name,address,postcode,phone,faxNo,email,

 status,customerNo,dateRegistered);

}

// close the database connection

con.close();

}

catch(SQLException e) {

System.out.println(e.getMessage());

}

// returning the customer object to the caller in the HIC Class

return aCustomer;

}

public String getAllCustomers() {

String data = "";

getConnection();

try {

// selects the required values from customer table.

result = stmt.executeQuery("select * from Customer");

while (result.next()) {

name

= result.getString(1);

address

= result.getString(2);

postcode

= result.getString(3);

phone

= result.getString(4);

faxNo

= result.getString(5);

email

= result.getString(6);

dateRegistered
= result.getString(7);

status

= result.getString(8);

customerNo

= result.getString(9);

// creating a new customer object for every row taken from the

//
database

aCustomer = new Customer(name,address,postcode,phone,faxNo,email,

 status,customerNo,dateRegistered);

// using each object's toString method, we add the employee details

//
to the "data" String

data += aCustomer.toString()+"\n";

}

// close the connection to the database

con.close();

}

catch(SQLException e) {

System.out.println(e.getMessage());

}

// return the collected data to the caller in the HIC_Customer

return data;

}

public String registerCustomer() {

String error = "";

getConnection();

try {

// Inserting the values into the database using the string "line" as a

//
helper.

stmt.executeUpdate("insert into Customer values (" +line+ ")");

con.close();

}

catch (SQLException e) {

error = e.getMessage();

System.out.println(error);

}

// The return statement here returns any error encountered while

//
performing the transaction.

return error;

}

public Customer editCustomer(String n) {

getConnection();

try {

// updating the values in the database using the string "set" as a

//
helper.

stmt.execute("UPDATE Customer SET "+set+" WHERE CustomerID = " + "'" + n + "';");

con.close();

}

catch (SQLException e) {

System.out.println(e.getMessage());

}

// returns the employee object to the caller in the HIC_Employee class.

return aCustomer;

}

public String deleteCustomer(String n) {

String error = "";

getConnection();

try {

// deleting the values in the database using the string "line" as a

// helper.

stmt.executeUpdate("delete from Customer where customerID = " + "'" + n + "';");

con.close();

}

catch (SQLException e) {

error = e.getMessage();

System.out.println(error);

}

// The return statement here returns any error encountered while

// performing the transaction.

return error;

}

// This method loads the jdbc/odbc driver and makes the connection to the

//
database

public void getConnection() {

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception e) {

System.out.println("Failed to load JDBC/ODBC driver.");

return;

}

try {

con = DriverManager.getConnection(URL,username,password);

stmt = con.createStatement();

}

catch(Exception e) {

System.err.println("problems connecting to "+URL);

}

}

} // ends class FMC_Customer

//===

// import java awt and event to access methods needed for GUI building & event //
listening.

import java.awt.*;

import java.awt.event.*;

/* The HIC_Customer class sets up the frame which serves as the window for handling Customers. It creates textfields & buttons and adds them to the frame for the user to use. When text is typed into the fields and a button pressed, it will display the results in a textArea. It should be noted that as this is a protoype, only limited functionality is available. */

public class HIC_Customer extends Frame implements ActionListener {

// Frame components are declared at the class level

Panel northPanel, panel1, panelResults, centrePanel, southPanel;

TextField nameField, addressField, postcodeField, phoneField, faxField;

TextField emailField, custNoField;

Button list,addCustomer,editCustomer,deleteCustomer,print,ok,clear,back;

TextArea results;

Choice statusChoice;

// Declaring the object variables for the FMC and PDC Classes

Customer aCustomer;

FMC_Customer fmc;

// The constructor copies the initial value that was passed from the Main

//
menu class into the object variable.

public HIC_Customer(FMC_Customer command) {

// The rest of the constructor block instantiates component objects and

//
adds them to the frame or to other panels. Empty labels are added to the //
panels for a more symmetrical appearance.

northPanel = new Panel();

this.add(northPanel);

panel1 = new Panel();

panel1.setLayout(new GridLayout(0,2));

northPanel.add(panel1);

this.add("North",northPanel);

nameField

= new TextField(20);

addressField

= new TextField(20);

postcodeField
= new TextField(20);

phoneField

= new TextField(20);

faxField

= new TextField(20);

emailField

= new TextField(20);

custNoField

= new TextField(20);

statusChoice

= new Choice();

statusChoice.add("Active");

statusChoice.add("Passive");

list

= new Button("List All");

addCustomer

= new Button("Add Customer");

editCustomer

= new Button("Edit Customer");

deleteCustomer
= new Button("Delete Customer");

print

= new Button("Print Details");

ok

= new Button("OK");

clear

= new Button("clear fields");

back

= new Button("Return to Main Menu");

list.addActionListener(this);

addCustomer.addActionListener(this);

editCustomer.addActionListener(this);

deleteCustomer.addActionListener(this);

print.addActionListener(this);

ok.addActionListener(this);

clear.addActionListener(this);

back.addActionListener(this);

panel1.add(new Label("Name"));

panel1.add(nameField);

panel1.add(new Label("Address"));

panel1.add(addressField);

panel1.add(new Label("Postcode"));

panel1.add(postcodeField);

panel1.add(new Label("Phone No."));

panel1.add(phoneField);

panel1.add(new Label("Fax No."));

panel1.add(faxField);

panel1.add(new Label("email"));

panel1.add(emailField);

panel1.add(new Label("Status"));

panel1.add(statusChoice);

panel1.add(new Label("Customer No."));

panel1.add(custNoField);

panelResults = new Panel();

panelResults.setLayout(new FlowLayout());

results = new TextArea("Results",10,60);

panelResults.add(results);

this.add(panelResults);

centrePanel = new Panel();

centrePanel.setLayout(new GridLayout(0,5));

panelResults.add(centrePanel);

centrePanel.add(new Label());

centrePanel.add(list);

centrePanel.add(new Label());

centrePanel.add(addCustomer);

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(editCustomer);

centrePanel.add(new Label());

centrePanel.add(deleteCustomer);

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(print);

centrePanel.add(new Label());

centrePanel.add(ok);

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(new Label());

centrePanel.add(clear);

centrePanel.add(new Label());

centrePanel.add(back);

// the object variables are assigned to the values to use as a reference

//
in this class.

fmc = command;

} // ends constructor
// This method takes any String that is passed to it and displays it in the

// results textArea.

public void resultDisplay(String c) {

results.setText(c);

}

/* The actionPerformed method reacts to an event within the frame. Depending on which button was clicked, and what information was inserted by the user, the method reacts by telling the user that either an error has occurred, or by creating a new object and calling methods in the FMC. The method in the FMC class returns the desired information which is displayed in the textArea.*/

public void actionPerformed(ActionEvent e) {

if (e.getSource() == addCustomer) {

// checking to see that the user has filled in the correct information.

if (nameField.getText().equals("")| addressField.getText().equals("")|

 postcodeField.getText().equals("")| phoneField.getText().equals("")|

 statusChoice.getSelectedItem().equals("")| custNoField.getText().equals("")) {

resultDisplay("No Customer was added. You must fill out all fields.");

}

else {

// instantiating the object by gathering the information from the

//
textFields

aCustomer = new Customer(nameField.getText(),addressField.getText(), postcodeField.getText(),phoneField.getText(),faxField.getText(),emailField.getText(),statusChoice.getSelectedItem(),custNoField.getText(),Date_today.getDate());

// instantiating an object of the FMC class and passing the newly

//
created customer object. This gives the FMC class access to the

// object for operations at that level.

fmc = new FMC_Customer(aCustomer);

/* If no error is returned from interbase while inserting the values of the object, in other words, if the return value is an empty String, then the object has been successfully inserted and the user is informed and shown the object's details via the toString method.*/

if (fmc.registerCustomer().equals ("")) {

resultDisplay("The following customer was added:\n\n" + aCustomer.toString());

}

else {

// If an error occurs while inserting the object's values, the

//
problem is that the user has used an already existing customer

//
No. and is told so.

resultDisplay("This Customer No. already exists. Please try another");

}

}

 }

else if (e.getSource() == deleteCustomer) {

// checking to see that the user has filled in the correct information.

if(custNoField.getText().equals("")) {

resultDisplay("You must insert a customer No. then select \"delete Customer\"");

}

else {

/* The customer is found using the findCustomer method in the FMC. It returns an customer object and is then passed to the constructor of the FMC class. This allows the other FMC methods access to the same object. The customerNo is passed as a parameter for identifying the correct customer.*/

aCustomer = fmc.findCustomer(custNoField.getText());

fmc = new FMC_Customer(aCustomer);

// checking for returned error messages from interbase.

if(fmc.deleteCustomer(custNoField.getText()).equals("")) {

resultDisplay("The following customer has been deleted:\n\n" + aCustomer.toString());

}

else {

/*
The error that can occur is the violation of primary/foreign

key constraints. This happens when the user tries to delete a customer whose ID is seen in another table. The user is told of the error via the resultDisplay method.*/

resultDisplay("This customer cannot be deleted while there are consignments " + "pending.");

}

}

}

else if (e.getSource() == list) {

// This method calls the FMC getAlLCustomers() which retreives all the // information from the database, creates the objects and returns them // here where they are shown to the user in the results textArea.

resultDisplay("This is the current list of customers.\n" +

 "To delete a customer, enter the customerNo" +

 " and select \"Delete\"\n" +

"To edit a customer, enter the customerNo and select \"OK\"\n\n" + fmc.getAllCustomers());

}

else if (e.getSource() == ok) {

// checking to see that the user has filled in the correct information.

if (custNoField.getText().equals("")) {

resultDisplay("You must first insert a customerNo. then select \"OK\"");

}

else {

// This method finds and creates the employee object via the FMC. It //
then puts the values in the text fields for the user to edit the //
chosen one(s).

aCustomer = fmc.findCustomer(custNoField.getText());

nameField.setText(aCustomer.getName());

addressField.setText(aCustomer.getAddress());

postcodeField.setText(aCustomer.getPostcode());

phoneField.setText(aCustomer.getPhoneNo());

faxField.setText(aCustomer.getFaxNo());

emailField.setText(aCustomer.getEmail());

custNoField.setText(aCustomer.getCustomerNo());

resultDisplay("Change the values you want and then select \"Edit\"");

}

}

else if (e.getSource()== editCustomer) {

// checking for returned error messages from interbase.

if (nameField.getText().equals("")| addressField.getText().equals("")|

 postcodeField.getText().equals("")| phoneField.getText().equals("")|

statusChoice.getSelectedItem().equals("")| custNoField.getText().equals("")) {

resultDisplay("You must fill all fields first then select \"Edit\"");

}

else {

// instantiating a new Customer object by gathering the info from the

//
textfields.

aCustomer = new Customer(nameField.getText(),addressField.getText(), postcodeField.getText(),phoneField.getText(), faxField.getText(),emailField.getText(), statusChoice.getSelectedItem(), custNoField.getText(),"");

//
Passing the newly created object to the FMC class for access by the //
other methods there in.

fmc = new FMC_Customer(aCustomer);

// The customerNo. is passed as a parameter for identifying the correct //
customer.

fmc.editCustomer(custNoField.getText());

resultDisplay("The follwing customer has been updated to:\n\n"+

fmc.findCustomer(custNoField.getText()));

}

}

 else if(e.getSource() == clear) {

// clears all the fields for the user to start with empty spaces.

nameField.setText("");

addressField.setText("");

postcodeField.setText("");

phoneField.setText("");

faxField.setText("");

emailField.setText("");

custNoField.setText("");

resultDisplay("Results");

}

else if(e.getSource() == back) {

//closes this frame to bring the user bacK to the Main menu

setVisible(false);

}

else if(e.getSource()== print) {

// Showing the user that not all functions are available.

resultDisplay("This function is not available in the prototype");

}

} // ends actionPerformed()

} // ends class HIC_Customer

//===

/* This class is the PDC Class for Location. Whenever a new object of this class is instantiated, the constructor copies the initial values into the object variables. The get/set and toString methods allow us to gather the object's values and insert them into a database or print them to the screen for the user. */

public class Location {

// the members are declared private as it is only this class that needs

//
access to them.

private String locationID,locationStatus;

// The constructor copies the initial values into the object variables.

 public Location(String id,String status) {

locationID
= id;

 locationStatus = status;

 } // ends constructor

// the following 3 methods are get and set methods. They allow us to collect //
each value of the object for insertion into a database or change one of

//
the values.

 public String getLocationID() {

 return locationID;

 }

 public String getLocationStatus() {

 return locationStatus;

 }

 public void setLocationStatus(String s) {

 locationStatus = s;

 }

// The toString method adds the values from an object to the return statement //
for use by the caller.

 public String toString() {

return "Location ID:\t" + locationID + "\n" + "Location Status:\t" + locationStatus + "\n";

} //ends toString
} // ends class Location

//===

// import java awt and event to access methods needed for GUI building & event

//
listening.

import java.awt.*;

import java.awt.event.*;

/* The loginDialog class sets up a frame which serves as the login window for the user. The constructor creates a textfield and adds a login and exit button to the frame.*/

class LoginDialog extends Dialog implements ActionListener,WindowListener {

// Frame components are declared at the class level

Button exit,login;

Panel panel1,centerPanel,southPanel;

TextField password;

// integer count is declared for counting the amount of trys to login.

int count = 0;

public LoginDialog (HIC_Main_Menu li,String s,boolean modal) {

// The super constructor allows the call to the parent class

// to perform initialization on the variables for which the parent

// class is responsible.

super(li,s,modal);

// adding the windowListener to this frame allows reactions to the

//
window's events.

this.addWindowListener(this);

// The rest of the constructor block instatiates the component objects and //
adds them to the frame.

centerPanel = new Panel();

 this.add(centerPanel);

panel1 = new Panel();

panel1.setLayout(new GridLayout(0,1));

centerPanel.add(panel1);

this.add("Center",centerPanel);

panel1.add(new Label());

panel1.add(new Label());

panel1.add(new Label("Please enter your password for log in ('1234' for prototype)"));

panel1.add(new Label());

panel1.add(new Label());

password = new TextField(5);

panel1.add(password);

southPanel = new Panel();

southPanel.setLayout(new FlowLayout());

this.add("South",southPanel);

southPanel.add(new Label());

login = new Button("Login");

southPanel.add(login);

login.addActionListener(this);

southPanel.add(new Label());

exit = new Button("Exit");

southPanel.add(exit);

exit.addActionListener(this);

southPanel.add(new Label());

} // ends constructor

// The windowOpened method is implemented here to sound a "beep" when the

//
frame has been opened.

public void windowOpened(WindowEvent w) {

if(w.getSource() == this) {

this.getToolkit().beep();

}

} // ends windowOpened

// These methods have to be included when using the windowlistener interface.

public void windowClosed(WindowEvent e) {

}

public void windowClosing(WindowEvent c) {

}

public void windowIconified(WindowEvent f) {

}

public void windowDeiconified(WindowEvent d) {

}

public void windowActivated(WindowEvent a) {

}

public void windowDeactivated(WindowEvent da) {

}

// The action performed method allows a reaction to an event within the

//
frame.

public void actionPerformed(ActionEvent e) {

if(e.getSource()== login) {

if (password.getText().equals("1234")) {

// closing this frame so the user has access to the main menu.

this.setVisible(false);

}

else {

password.setText("Invalid password - please try again");

// for loop used as a time delay here.

for (int i=0;i<222222222;i++) {

}

password.setText("");

count++;

if (count == 3) {

password.setText("You failed to log in");

// for loop used as a time delay here.

for (int i=0;i<555555555;i++) {

}

this.setVisible(false);

// closing the program so the user has to start again.

System.exit(0);

}

}

}

else if(e.getSource()== exit) {

 // closing the program on the user's request.

 System.exit(0);

}

} // ends actionPerformed method

} // ends class loginDialog

//===

public class Norddistribution {

/*
This class is the initiator class that begins the program. It holds the main method, creates objects of the FMC classes, and passes the objects to the Main menu's constructor. These objects are then used for gaining access to all the methods in the FMC classes from the HIC Classes. */

public static void main(String[] args) { // the main method
// Creating the objects of the FMC classes

FMC_Customer fmcCus

= new FMC_Customer();

FMC_Employee fmcEmp

= new FMC_Employee();

FMC_Consignment fmcCon
= new FMC_Consignment();

FMC_Item fmcItm

= new FMC_Item();

// Creating an object of the Main menu which opens up the starting

//
window for the user. It passes the FMC objects as parameters to the

//
HIC_Main_Menu's constructor.

HIC_Main_Menu nd = new HIC_Main_Menu(fmcCus, fmcEmp, fmcCon, fmcItm);

// These methods set up the physical size and shape of the Main_menu

//
frame including title.

nd.setSize(600,400);

nd.setLocation(200,100);

nd.setVisible(true);

nd.setTitle("Main Menu");

// This method opens up a dialog box from the Main menu which serves as

//
the login window for the user.

nd.login();

}

}

7.7

Appendix G – Source Code for SQL

/* ----- THE DOMAINS USED IN THE DATABASE ----- */

/* The Customer */

CREATE DOMAIN Name AS VARCHAR(40);

CREATE DOMAIN Address AS VARCHAR(30) NOT NULL;

CREATE DOMAIN PostCode AS CHAR(4) NOT NULL;

CREATE DOMAIN PhoneNo AS VARCHAR(11) NOT NULL;

CREATE DOMAIN FaxNo AS VARCHAR(11);

CREATE DOMAIN EMail AS VARCHAR(40);

CREATE DOMAIN DateRegistered AS varchar(10) NOT NULL;

CREATE DOMAIN PersonStatus AS VARCHAR(7) DEFAULT 'Active'

CHECK(VALUE IN('Active', 'Passive')) NOT NULL;

CREATE DOMAIN CustomerID AS VARCHAR(4) NOT NULL;

/* The Consignment */

CREATE DOMAIN ConsignmentID AS VARCHAR(20) NOT NULL;

CREATE DOMAIN TotalItems AS SMALLINT NOT NULL;

CREATE DOMAIN TimeRegistered AS TIME NOT NULL;

CREATE DOMAIN ItemsStored AS SMALLINT DEFAULT '0' NOT NULL;

/* Location */

CREATE DOMAIN LocationID AS VARCHAR(10) NOT NULL;

CREATE DOMAIN LocationStatus AS VARCHAR(5) DEFAULT 'Empty'

CHECK (VALUE IN ('Full', 'Empty')) NOT NULL;

/* Location Details */

/* Missing domains can be found under Location */

CREATE DOMAIN LocationDescription AS VARCHAR(10) NOT NULL;

/* Item */

CREATE DOMAIN ItemID AS VARCHAR(4) NOT NULL;

CREATE DOMAIN ItemType AS VARCHAR(13) DEFAULT 'Regular'

CHECK (VALUE IN('Regular', 'Subcontractor')) NOT NULL;

/* Staff */

CREATE DOMAIN StaffID AS VARCHAR(6) NOT NULL;

CREATE DOMAIN CPRNo AS CHAR(11) NOT NULL;

CREATE DOMAIN SummaryDate AS DATE NOT NULL;

/* Staff Details */

/* Missing domains can be found under customer */

CREATE DOMAIN FirstName AS VARCHAR(15) NOT NULL;

CREATE DOMAIN LastName AS VARCHAR(30) NOT NULL;

CREATE DOMAIN DateEmployed AS VARCHAR(10) NOT NULL;

CREATE DOMAIN StaffType AS VARCHAR(18)

CHECK (VALUE IN ('Manager','Driver','Warehouse Employee','Subcontractor')) NOT NULL;

CREATE DOMAIN StaffPhoneNo AS VARCHAR(11);

CREATE DOMAIN MobilePhoneNo AS VARCHAR(11) NOT NULL;

/* Activity Summary */

CREATE DOMAIN SummaryResults AS SMALLINT DEFAULT '0' NOT NULL;

CREATE DOMAIN SummaryID AS SMALLINT NOT NULL;

/* Storage Activity */

/* Missing domains can be found under customer, staff, consignment etc */

CREATE DOMAIN ActivityType AS VARCHAR(6)

CHECK (VALUE IN ('Remove','Store')) NOT NULL;

CREATE DOMAIN StorageActivityID AS SMALLINT NOT NULL;

/* ----- THE TABLES USED IN THE DATABASE ----- */

/* The Customer Table */

CREATE TABLE Customer(

 name Name,

 address Address,

 postCode PostCode,

 phoneNo PhoneNo,

 faxNo FaxNo,

 eMail EMail,

 dateRegistered DateRegistered,

 status PersonStatus,

 customerID CustomerID,

 PRIMARY KEY(CustomerID));

/* The Consignment Table */

CREATE DOMAIN CheckCustomerID AS VARCHAR(4)

CHECK (VALUE IN(SELECT CustomerID FROM Customer));

CREATE TABLE Consignment(

 consignmentID ConsignmentID,

 totalItems TotalItems,

 dateRegistered DateRegistered,

 customerID CheckCustomerID,

 itemsStored ItemsStored,

 PRIMARY KEY(ConsignmentID),

FOREIGN KEY(CustomerID) REFERENCES Customer(CustomerID) ON UPDATE CASCADE ON DELETE NO ACTION);

/* The Location Table */

CREATE TABLE Location (

 locationID LocationID,

 locationStatus LocationStatus,

 PRIMARY KEY (locationID));

/* The LocationDescription Table */

CREATE DOMAIN CheckLocationID AS VARCHAR(10)

CHECK (VALUE IN(SELECT LocationID FROM Location));

CREATE TABLE LocationDescription(

 locationDescription LocationDescription,

 locationID CheckLocationID,

 PRIMARY KEY (locationDescription),

 FOREIGN KEY (locationID) REFERENCES Location(LocationID) ON UPDATE CASCADE ON DELETE CASCADE);

 /* The Item Table */

CREATE DOMAIN ItemLocationID AS VARCHAR(10) DEFAULT NULL;

CREATE DOMAIN CheckConsignmentID AS VARCHAR(20) NOT NULL

CHECK (VALUE IN(SELECT ConsignmentID FROM Consignment));

CREATE DOMAIN ItemLocationDescription AS VARCHAR(10) DEFAULT NULL;

CREATE TABLE Item(

 consignmentID CheckConsignmentID,

 itemID ItemID,

 ItemLocationID ItemLocationID,

 itemType ItemType,

 ItemLocationDescription ItemLocationDescription,

PRIMARY KEY(ItemID, ConsignmentID),

FOREIGN KEY(ItemLocationID) REFERENCES Location(LocationID) ON UPDATE

CASCADE ON DELETE NO ACTION,

FOREIGN KEY(ItemLocationDescription) REFERENCES LocationDescription(LocationDescription) ON UPDATE CASCADE ON DELETE NO ACTION,

FOREIGN KEY(ConsignmentID) REFERENCES Consignment(ConsignmentID) ON UPDATE CASCADE ON DELETE CASCADE);

/* The StaffDetails Table */

CREATE TABLE StaffDetails (

 firstName FirstName,

 lastName LastName,

 address Address,

 staffPhoneNo StaffPhoneNo,

 mobilePhoneNo MobilePhoneNo,

 cPRNo CPRNo,

 dateEmployed DateEmployed,

 personStatus PersonStatus,

 staffType StaffType,

 PRIMARY KEY (CPRNo));

/* The Staff Table */

CREATE DOMAIN CheckCPRNo AS CHAR(11)

CHECK (VALUE IN(SELECT CPRNo FROM StaffDetails));

CREATE TABLE Staff(

 staffID StaffID,

 cPRNo CPRNo,

 PRIMARY KEY(StaffID),

FOREIGN KEY(CPRNo) REFERENCES StaffDetails(CPRNo) ON UPDATE CASCADE ON DELETE CASCADE);

/* The ActivitySummary Table */

CREATE TABLE ActivitySummary(

 noOfConsignments SummaryResults,

 noOfActivitiesPerEmployee SummaryResults,

 noOfConsignmentsPerCustomer SummaryResults,

 summaryDate SummaryDate,

 SummaryID SummaryID,

 PRIMARY KEY (SummaryID));

/* The StorageActivity Table */

CREATE DOMAIN CheckItemID AS VARCHAR(4)

CHECK (VALUE IN(SELECT ItemID FROM Item));

 CREATE DOMAIN CheckStaffID AS VARCHAR(6)

CHECK (VALUE IN(SELECT StaffID FROM Staff));

CREATE DOMAIN CheckSummaryID AS SMALLINT

CHECK (VALUE IN(SELECT SummaryID FROM ActivitySummary));

CREATE TABLE StorageActivity(

 itemID CheckItemID,

 consignmentID CheckConsignmentID,

 staffID CheckStaffID,

 locationID CheckLocationID,

 activityTime TimeRegistered DEFAULT CURRENT_TIMESTAMP,

 activityDate DateRegistered Default CURRENT_DATE,

 activityType ActivityType,

 storageActivityID StorageActivityID,

 summaryID CheckSummaryID,

 PRIMARY KEY (StorageActivityID),

FOREIGN KEY (StaffID) REFERENCES Staff(StaffID)ON UPDATE CASCADE ON DELETE NO ACTION,

FOREIGN KEY (LocationID) REFERENCES Location(LocationID)ON UPDATE CASCADE ON DELETE NO ACTION,

FOREIGN KEY (ConsignmentID) REFERENCES Consignment(ConsignmentID)ON UPDATE CASCADE ON DELETE NO ACTION,

FOREIGN KEY (ItemID, ConsignmentID) REFERENCES Item(ItemID, ConsignmentID)ON UPDATE CASCADE ON DELETE NO ACTION,

 FOREIGN KEY (SummaryID) REFERENCES ActivitySummary(SummaryID)ON UPDATE CASCADE ON DELETE NO ACTION);

/* ----- THE TEST DATA FOR THE DATABASE -----*/

/* The Customer Data */

INSERT INTO Customer (Name, Address, Postcode, PhoneNo, FaxNo, Email, DateRegistered, CustomerID)

VALUES ('McDonalds', 'Roskildevej 3', '4000', '12341001', '12345001', 'lars@hansen.dk', '1996-05-24', '1');

INSERT INTO Customer (Name, Address, Postcode, PhoneNo, FaxNo, Email, DateRegistered, CustomerID)

VALUES ('Anders Fogh Rasmussen', 'Istedgade 6', '2300', '12341002', '12345002', 'anders@venstre.dk', '1996-05-24', '2');

INSERT INTO Customer (Name, Address, Postcode, PhoneNo, FaxNo, Email, DateRegistered, CustomerID)

VALUES ('Silvan', 'Røglevagen 12', '4000', '12341003', '12345003', 'jkierkegaard@hotmail.com', '1996-05-24', '3');

INSERT INTO Customer (Name, Address, Postcode, PhoneNo, FaxNo, Email, DateRegistered, CustomerID)

VALUES ('DSB', 'Rådhuspladsen', '2000', '12341004', '12345004', 'super@brian.hansen.dk', '1996-05-24', '4');

INSERT INTO Customer (Name, Address, Postcode, PhoneNo, FaxNo, Email, DateRegistered, CustomerID)

VALUES ('Folketinget', 'Istedgade 6', '2300', '12341005', '12345005', 'nyrup@soc.dem.dk', '2002-02-02', '5');

/* The Staff Details Data */

INSERT INTO StaffDetails (FirstName, LastName, Address, StaffPhoneNo, MobilePhoneNo, CPRNo, DateEmployed, StaffType)

VALUES ('Henrik', 'Johansen', 'Roskildevej 35', '22341001', '22345001', '120559-2357', '1996-05-24', 'Manager');

INSERT INTO StaffDetails (FirstName, LastName, Address, StaffPhoneNo, MobilePhoneNo, CPRNo, DateEmployed, StaffType)

VALUES ('Dick', 'Hansen', 'Strandvejen 6', '22341002', '22345002', '120659-2367', '1998-05-24', 'Warehouse Employee');

INSERT INTO StaffDetails (FirstName, LastName, Address, StaffPhoneNo, MobilePhoneNo, CPRNo, DateEmployed, StaffType)

VALUES ('Jakob', 'Kierkegaard', 'Røglevagen 12', '12341003', '12345003', '231206-2367', '2002-02-24', 'Warehouse Employee');

INSERT INTO StaffDetails (FirstName, LastName, Address, StaffPhoneNo, MobilePhoneNo, CPRNo, DateEmployed, StaffType)

VALUES ('Brian', 'Laudrup', 'Rådhuspladsen', '22341004', '22345004', '231166-2365', '2002-02-21', 'Driver');

INSERT INTO StaffDetails (FirstName, LastName, Address, StaffPhoneNo, MobilePhoneNo, CPRNo, DateEmployed, StaffType)

VALUES ('Polle', 'Fiction', 'Snavevej 6', '22341005', '22345005', '031076-2365', '2002-02-02', 'Driver');

/* The Staff Data */

INSERT INTO Staff

VALUES ('1', '120559-2357');

INSERT INTO Staff

VALUES ('2', '120659-2367');

INSERT INTO Staff

VALUES ('3', '231206-2367');

INSERT INTO Staff

VALUES ('4', '231166-2365');

INSERT INTO Staff

VALUES ('5', '031076-2365');

/* The Location Data */

INSERT INTO Location (LocationID)

VALUES ('10');

INSERT INTO Location (LocationID)

VALUES ('20');

INSERT INTO Location (LocationID)

VALUES ('30');

INSERT INTO Location (LocationID)

VALUES ('40');

INSERT INTO Location (LocationID)

VALUES ('50');

/* The LocationDescription Data */

INSERT INTO LocationDescription

VALUES ('a1', '10');

INSERT INTO LocationDescription

VALUES ('b1', '20');

INSERT INTO LocationDescription

VALUES ('c1', '30');

INSERT INTO LocationDescription

VALUES ('d1','40');

INSERT INTO LocationDescription

VALUES ('e1','50');

/* The Consignment Data */

INSERT INTO Consignment (ConsignmentID, TotalItems, DateRegistered, CustomerID, ItemsStored)

VALUES ('1', '1', '2002-02-21', '1', '1');

INSERT INTO Consignment (ConsignmentID, TotalItems, DateRegistered, CustomerID, ItemsStored)

VALUES ('2', '2', '2002-02-21', '1', '2');

INSERT INTO Consignment (ConsignmentID, TotalItems, DateRegistered, CustomerID, ItemsStored)

VALUES ('3', '2', '2002-02-21', '2','0');

INSERT INTO Consignment (ConsignmentID, TotalItems, DateRegistered, CustomerID, ItemsStored)

VALUES ('4', '1', '2002-02-21', '3','1');

INSERT INTO Consignment (ConsignmentID, TotalItems, DateRegistered, CustomerID, ItemsStored)

VALUES ('5', '1', '2002-02-21', '4', '0');

/* The Item Data */

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('1','1','10','a1');

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('2','2','20','b1');

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('2','3','30','c1');

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('3','4', null, null);

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('3','5', null, null);

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('4','6', '40', 'd1');

INSERT INTO Item(ConsignmentID, ItemID, ItemLocationID, ItemLocationDescription)

VALUES ('5','7', null, null);

/* The ActivitySummary Data */

INSERT INTO ActivitySummary(SUMMARYDATE, SUMMARYID)

VALUES (Date'2002-04-26', '1');

INSERT INTO ActivitySummary(SUMMARYDATE, SUMMARYID)

VALUES (Date'2002-04-27', '2');

INSERT INTO ActivitySummary(SUMMARYDATE, SUMMARYID)

VALUES (Date'2002-04-28', '3');

INSERT INTO ActivitySummary(SUMMARYDATE, SUMMARYID)

VALUES (Date'2002-04-29', '4');

INSERT INTO ActivitySummary(SUMMARYDATE, SUMMARYID)

VALUES (Date'2002-04-30', '5');

/* The StorageActivity Data */

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('1', '1', '3', '10', 'Store', '1', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('2', '2', '5', '20', 'Store', '2', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('3', '2', '4', '30', 'Store', '3', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('4', '3', '3', '40', 'Remove', '4', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('5', '3', '1', '10', 'Remove', '5', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('6', '4', '1', '40', 'Store', '6', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('7', '5', '2', '50', 'Remove', '7', '5','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('4', '3', '3', '40', 'Store', '8', '4','2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('5', '3', '1', '10', 'Store', '9', '4', '2002-04-29');

INSERT INTO StorageActivity (ItemID, ConsignmentID, StaffID, LocationID, ActivityType, StorageActivityID, SummaryID, ActivityDate)

VALUES ('7', '5', '2', '50', 'Store', '10', '4','2002-04-29');

/* The indexes for the database */

CREATE INDEX item_consignment

ON item (consignmentID);

CREATE INDEX consignment

ON consignment (consignmentID);

CREATE INDEX location

ON location (locationID);

CREATE INDEX locationDescription

ON locationDescription(locationDescription);

CREATE INDEX storage_staff

ON storageActivity (staffID);

CREATE INDEX storage_consignment

ON storageActivity (consignmentID);

7.8

Appendix H – Diaries

7.8.1

Daily Diary

Week 12

	Date
	Events

	
	Project Establishment (Kl.9:30-16:45)

	
	Project Establishment (Kl.9:30-16:00)

	
	Project Establishment (Kl.9: 30-16:00)

	20-03-02-Wednes.
	Project Establishment (Kl.9: 30-17:00)

	21-03-02-Thurs.
	Starting Pre-Analysis: (Kl.9:30-16:00)
(MAO) Company Description.

· Contacting Mr.Henrik Norddistribution manager, and arranging a meeting on Mon.d.25-03 kl.9: 00 to observe and ask few questions.

	22-03-02-Fri.
	

Week 13

	Date
	Events

	25-03-02-Mon.
	Pre-Analysis: (Kl.9: 30-16:30)
· Kl.9.00-10.30 interviewing Henrik & observe the working process.

· Kl.11:00-16.00

	26-03-02-Tuse.
	Pre-Analysis: (kl.9:00-16:00)
· Old system rich picture.

· BIS diagram

	27-03-02-Wednes.
	Pre-Analysis: (kl.9:00-16:00)

	28-03-02- Thursday.
	Holiday

	29-03-02- Fri.
	Holiday

Week 14

	Date
	Events

	02-04-02-Tuse.
	Pre-Analysis (Kl.9:30-17:00)

· Kl.9:00-9:30 1.st meeting with Klavs

· Kl.9.30-14:30 working with:

· Recommendations

· TQM

· Resistance to change

· Critical success Factors

	03-04-02-Wednes.
	Review Project Establishment (Kl.9:30-16:45)

· Kl.10:00-10:30 1.st meeting with MC

· Project Establishment feedback

· Pre Analysis feedback

· Kl.10.30-15: 30 Editing & correcting according to MCs feedback.

* We are one day behind the schedule.

	04-04-02-Thurs.
	Pre-Analysis (Kl.9: 30-16:00)
· Kl.9:30-13:00

	05-04-02

Fri.
	Review Pre-Analysis (Kl.9:30-14:00)

Starting OOA (Kl.14:00-16:00)
· Sys. Def.1, 2 &3

Week 15

	Date
	Events

	08-04-02-Mon.
	OOA:(Kl.9: 30-17:00)

· Kl.9: 00-9:30 Reviewing!!!

· Kl.10.00-10:30 Meeting MC

· Problems: MC did not receive our work in the right time!

· The printers are not working!

· Instead, we fixed an appointment for tomorrow kl.12: 30.

	09-04-02-Tues.
	OOA: (Kl.9: 30-18:00)
· Kl.10:00-12:30 working with:
· C&O

· Reviewing Sys. Def.s

· Events

· Kl.12:45-13:30 2.st meeting with MC

· Project Establishment feedback – It is considered as (OK), but not 13 graded!

· OOA feedback

· Kl.13:30-18:00 Editing & correcting OOA according to MC feedback.

	10-04-02-Wednes.
	OOA: (Kl.9: 30-17:45)

· Meeting Claus management advisor for feedback.

	11-04-02-Thurs.
	Review OOA (Kl.9: 30-11:45)

	12-04-02-Fri.
	Review OOA (Kl.9: 30-16:00)

Group Social Arrangement- Roskilde Bowling Center

Week 16

	Date
	Events

	15-04-02-Mon.
	Review OOA (Kl.9:30-17:45)
Our feedback to Group 2 about Project establishment, Pre Analysis & OOA.

(Kl.12:30-13.15)

	16-04-02-Tues.
	Review OOA (Kl.9: 30-17:00)

· Kl.10:00-10:30 1.st meeting with MC

· Project Establishment feedback

· Pre Analysis feedback

· Kl.10.30-15:30 Editing & correcting according to MC feedback.

* We are one day behind the schedule.

	17-04-02-Wednes.
	Review OOA (Kl.9:30-16:00)

· Kl.9: 30-13:00

Review OOA

· Kl.13:00-

	18-04-02

Thurs.
	Starting OOD: (Kl.9:30-16:45)

· (Kl.12:30-13:00) Meeting MC. OOA feedback.
· (Kl.13:30-14:00) Group 2 feedback about what we have done so far.

	19-04-02-Fri.
	OOD: (Kl.9: 30-16:45)

	19-04-02-Sat.
	OOD: (Kl.9: 30-16:00)

Week 17

	Date
	Events

	22-04-02-Mon.
	OOD: (Kl.9:30-17:00)

	23-04-02-Tues.
	OOD: (Kl.9:30-16:00)

	24-04-02-Wednes.
	 Database Design: (Kl.9:30-18:45)

· Kl.9: 30-13:00

Review Pre-Analysis

· Kl.13:00-

	25-04-02-Thurs.
	Database Design: (Kl.9:30-18:45)
· EE/R diagram

 Lecture about Implementation & Java:

(Kl. 12:15-14:30)

	26-04-02-Fri.
	Holiday

	27-04-02-Sat.
	 Database Design (Kl. 10:00-17:30):

· Continuing the work in DB-design.

Implement DB-design using (Standard Query Language) SQL. Define Domains & creating tables.

Week 18

	Date
	Events

	29-04-02-Mon.
	 Programming: (Kl.9:30-16:00)
· Kl.9: 30-13:00

· E-mail Database design section to Susanne.

Database Design:

Kl.13:00-

	30-04-02-Tues.
	Programming: (Kl.9:30-16:00)
· Kl.9: 30-13:00

Database Design:

· Kl.13:00-

Kl.14.00-14:30 Meeting Susanne, Database advisor.

	01-05-02-Wednes.
	Programming: (Kl.9:30-16:00)
· Kl.9: 30-13:00

Database Design:

· Kl.13:00-

	02-05-02-Thurs.
	Review Pre-Analysis(Kl.9:30-16:00)

	03-05-02-Fri.
	Programming: (Kl.9:30-17:00)
Database Design:

· Review

Starting Project final review

	04-05-02-Sat.
	Project final review: (Kl.9:30-16:00)
· Conclusions and arranging appendixes.

Week 19

	Date
	Events

	06-05-02-Mon.
	Project final review:
·

	07-05-02-Tues.
	· The document is handled over to be copied in 6 copies.

	08-05-02-Wednes.
	· Coming to school to hand over the documents.

7.8.2
Weekly Summary

	Weeks
	Events

	Week 12

Working hr.s:

· Every day (Kl.9:30-16:45)
	· Project Establishment
· Starting Pre-Analysis:

	Week 13

Working hr.s:

· Every day (Kl.9:30-16:45)

Holiday(s) (2 days):

28 & 29-03-02
	Pre-Analysis:

· Interviewing Mr. Johansen & observe the working process.

· Old system rich picture.
BIS diagram.

	Week 14

Working hr.s:

· Every day (Kl.9:30-16:45)
	Pre-Analysis:
· 1.st meeting with Klavs

· Working with:

· Recommendations

· TQM

· Resistance to changes.

· Critical success Factors

· 1.st meeting with MC

· Project Establishment feedback.

· Pre Analysis feedback

· Editing & correcting according to MCs feedback.

· We are one day behind the schedule.
Review Pre-Analysis & Project Establishment
Starting OOA

· Sys. Def.1, 2 &3

	Week 15

Working hr.s:

· Every day (Kl.9:30-16:45)
	Review Pre-Analysis & Project Establishment
OOA:
· Events

· Meeting with MC

· Project Establishment feedback. It is OK.

· OOA feedback. Editing & correcting OOA according to MC feedback.

· Meeting Claus management advisor for feedback. Pre analysis is OK.

Review OOA
· Group Social Arrangement- Roskilde Bowling Center

	Week 16

Working hr.s:

· Every day (Kl.9:30-16:45)
	Review OOA

(MAO) Company Description.

· Contacting Mr. Johansen Norddistribution manager, and arranging a meeting on Mon.d.25-03 kl.9: 00 to observe and ask few questions.

Our feedback to Group 2 about Project Estab., Pre Analysis & OOA

Starting OOD
· Meeting MC. OOA feedback.
 Group (2) feedback about what we have done so far.

	Week 17

Working hr.s:

· Every day (Kl.9:30-16:45)

· Saturday (Kl. 10:00-17:30)

Holiday(s): (1 day)

Fri.26-04-02
	OOD

Starting Database Design
Lecture about Implementation & Java

· Continuing the work in DB-design.

Implement DB-design using (Standard Query Language) SQL. Define Domains & creating tables.

	Week 18

Working hr.s:

· Every day (Kl.9:30-16:45)
	Starting Programming

· E-mail Database design section to Susanne / DB advisor.

· DB advisor feedback.

Review Database Design

Starting Project final review

	Week 19

Working hr.s:

· Every day (Kl.9:30-16:45)
	

7.9

Appendix I – Baselines

Baseline specification

The document produced is emailed to the project advisor the day before the meeting at 15:00. A meeting is arranged with the advisor, who will give us feedback on the product. The group members will discuss and make the changes that should be done in accordance with the feedback and the project requirement. The changes are reviewed and then the document is declared finished and will not be reviewed until the conclusion section.

We have agreed to make separate temporary TOC’s for each “section” of the project as we go. At the end, all the smaller parts are gathered into one document, and the TOC’s are joined into one.

B1
Project establishment

Description

· Finishing the Project Establishment document including the setting of a schedule.

Criteria for Group Evaluation

· The document is compliant to the guidelines from “Professional System Development” by Lars Mathiassen Cp.4.
Reviewed product

· Project establishment document 10-15 pages.

· A project schedule and the specification of the baselines.

B2
Pre-Analysis

Description

· A company analysis based on the interviews we have had with company’s director, and the observation of the working process within the company.

· A document is prepared describing one company problem and the solution to this.
Criteria for Group Evaluation

· The analysis, the problem formulation and the solution should be conforming to Understanding Management (Richard L. Daft & Dorothy Marcic), following the methodology from OPM Note from RHS.

· The solution process should be reasoned and explained using the above mentioned methodology.
Reviewed Product

· MAO & OPM Analysis Document 20-25 pages.

B3
OOA

Description

· The OOA document is created after finishing the Pre-analysis part of the assignment and based on it.

Criteria for Group Evaluation

· This part of the project should contain the system’s Problem and Application Domain and a few system definitions. The analysis must be conform with Object Oriented Analysis & Design by Lars Mathiassen (chapter 2 to chapter 8) and the OOA Guidelines (notes).We should be able to find ?? classes and ?? functions in the system.

Reviewed Product

· Document containing Classes & Objects, Event Table, Function list, state chart diagram, uses cases, HIC first analysis

B4
OOD

Description

· This is Object Oriented Design based on the Object Oriented Analysis done earlier.
Criteria for Group Evaluation

· The OOD document should contain the review of the PDC and FMC. A deeper look at the HIC. The Document will also include specification of functions, uses cases and behavioral patterns, plus navigation diagrams for the HIC in accordance with the OOA. The document is matching the OOD guidelines written by Michael Claudius.
Reviewed Product

· System structure divided in PDC, FMC model holder, FMC and HIC.

· Specification of complex functions and design criteria.

B5
E/R Diagrams

Description

· Based on the OOD document an E/R diagram is build and reviewed to an EE/R
Criteria for Group Evaluation

· The diagram fits to the theories in “Database System” by Thomas Connolly.

· Parts of the Generalization-Specification structure are reviewed.

· A supplementary analysis is also made on the aggregation and association structure.
Reviewed Product

· E/R diagram and EE/R diagram in accordance with PDC. List of relation and entity types.

B6
SQL

Description

· Finalization of the Database Design and development on our OOD using SQL DDL.

· Enterprise constrains and integrity constrains are developed in SQL DML.
Criteria for Group Evaluation

· The Design finalization is conforming to the methodology from “Database Systems” by Thomas Connolly Cp. 7 – 9 (WHAT VERSION?). All the relations have to be normalized in 3rd normal form following the roles in Cp. 6. All the Enterprise constrains should not cause loss of data.
Reviewed Product

· SQL script in DDL (Data Definition Language) and DML (Data Manipulation Language) in accordance with the EE/R diagram.

B7
Prototyping

Description

A Java program prototype integrating the previous developed Database
Criteria for Group Evaluation

· The user approves the prototype (hereby meaning the end user, the employee at ND).

· During the 1 hour testing the user should be able to go through the program making not more than 3 mistakes. The program should not crash more than 1 time within the time of testing, and there should not be more than 3 known bugs in the program source. There should be no loss of data during the execution of the program.
Reviewed Product

· Java program source of the implemented prototype, and floppy disk including this last in executable format.

7.10

Appendix J – Bibliography

Database Solutions

Connolly, Thomas; Begg, Carolyn

2000

ISBN 0-201-67476-9

Database Systems

Connolly, Thomas M.; Begg, Carolyn E.

3rd Edition

Interbase Language Reference

Borland / Interprise

1999

Java Gently

Bishop, Judith

3rd Edition

ISBN 0-201-710501

Object Oriented Analysis & Design

Mathiassen, Lars; Munk-Madsen, Andreas; Nielsen, Peter Axel; Stage, Jan

1st Edition

2000

ISBN 87-7751-150-6

Operations Management (OPM)

Compilation of various books, gathered by Klavs Frisdahl

Professional Systems Development – Experience, ideas and action

Andersen, Niels Erik; Kensing, Finn; Lundin, Jette; Mathiassen, Lars; Munk-Madsen, Andreas; Rasbech, Monika; Sørgaard, Pål

UML Explained

Scott, Kendall

2001

ISBN 0-201-72182-1

Understanding Management

Daft, Richard L.; Marcic, Dorothy

3rd Edition

2001

ISBN 0-03-031816-5

http://java.sun.com
Sun’s own homepage about Java, and a source of enormous amounts of information about Java and its functions.

http://partners.psionteklogix.com/ptxcms/core.asp
Psion Teknologix’ homepage, the company supplying ND with the scanners and the system.

www.google.com
A search page used for finding information on the net.

� EMBED Visio.Drawing.6 ���

� 	Appendix A

� 	 Company Contract in Appendix A

� 	iGroups is a service provided on the net that includes a simple file sharing facility, message system and calendar. All group members have got their own profile, which enables them to upload files and send instant messages to other members.

� 	Source of these goals - Mr. Johansen, Managing director

� 	UM page 162

� 	UM page 277.

� 	UM page 424

� 	UM page 425

� 	UM page 425

� 	UM page 64

� 	UM page 415

� 	UM page 413

� 	UM page 63

� 	UM page 387

� 	OPM page 11

� 	UM page 158

� 	UM page 162.

� 	UM page 277.

� 	OPM page 339

� 	UM page 514

� 	UM page 277.

� 	OPM page 339

� 	OPM page 268

� 	OPM page 302

� 	OPM page 313, UM page 515.

� 	UM 515

� 	OPM page 76

� 	UM page 266-271

� 	UM page 270.

� 	UM page 158

� 	OOA & D page 6.

� 	OOA & D page 45.

� 	OOA & D page 7.

� 	OOA & D page 6.

� 	OOA&D page 39-40.

� 	OOA&D page 53.

� 	OOA&D page 56.

� 	See appendix C

� When an assignment has been broken up into smaller parts we consider these parts as individual items.

� We consider a consignment to be one or more items, with one final destination, connected to one consignment document.

� 	OOA&D page 51.

� 	OOA&D page 56.

� 	OOA&D page 64.

� 	OOA&D page 75.

� 	OOA&D page 79.

� 	OOA&D page 69

� 	OOA&D page 84

� 	An attribute is a descriptive property of a class and an event. OOA&D page 89

� 	OOA&D page 137

� 	OOA&D page 137.

� 	See appendix D

� 	OOA&D page 155.

� 	OOA&D page 178

� 	As recommended by Lek Cand Scien Michael Claudius, Roskilde Handelsskole.

� 	Database Solutions page 122

� 	Database Solutions page 131

� 	Database Solutions page 95 & 89

� 	Database Solutions, page 20

� 	Database Solutions, page 142

� 	Database Solutions, page 205

� 	Database Solutions page 156

� 	Database Solutions page 28

� 	Database Solutions page 19

� 	See Table of transactions in appendix E.

� 	Database Solutions page 111

� 	Database Solutions page 172

� 	Database Solutions page 213

� 	Database Solutions page 6-29

� 	Database Solutions page 170

� 	Database Solutions page 178

� 	Database Solutions page 178

� 	Database Solutions page 230

� 	Database Solutions page 282

� 	Database Solutions page 253

� 	Database Solutions page 268

� 	OOA&D page 154.

PAGE
Page IV

Group 5:
 Roskilde Business College

Chris, Jakob, Mark, Thabet. 2nd Semester Project, School of Computer Science

[image: image41.wmf]-Name

-Address

-Phone Number

-Mobile Number

-Date of Birth

-Staff ID

-Status

-Date Employed

-Type

Staff

-Activity ID

-Time

-Activity Type

-Date

Storage Activity

-Number of Consignments

-Number of Activities per Employee

-Number of Consignments per Customer

-Date

Activity Summary

0..*

1..1

1..1

0..*

0..*

1..1

1..1

0..*

1..*

1..1

updates

records

updates

has

issues

1..1

1..*

has

-Location ID

-Location Description

-Location Status

Location

-Item ID

-Type

Item

-Consignment ID

-Check In Time

-Total Items

-Items stored

Consignmnet

-Name

-Address

-Phone Number

-Fax Number

-E-Mail

-Date Registered

-Customer Status

-Customer ID

Customer

Sub Contractor

Warehouse Employee

Manager

Driver

{Mandatory, Or}

Subcontractor Item

Regular Item

{Mandatory, Or}

1..1

0..*

updates

[image: image42.jpg]_1080845033.vsd
Consignment�

Item�

0..1�

0..1�

Location�

1..*�

1�

Staff�

Customer�

1..1�

0..*�

0..*�

0..*�

_1081257388.vsd
�

�

�

�

�

�

-Consignment ID
-Check In Time
-Total Items
-No.Items stored�

Consignmnet�

�

Static Structure�

�

-Item ID
-Type�

Item�

�

�

-Name
-Address
-Phone Number
-Fax Number
-E-Mail
-Date Registered
-Status
-Customer ID�

Customer�

�

�

-Name
-Address
-Phone Number
-Mobile Phone
-Date of Birth
-Staff ID
-Status
-Date Employed�

Staff�

�

�

-Status
-Location Description
-Location ID�

Location�

�

�

-Time
-Activity Type
-Activity ID�

Storage Activity�

�

�

�

Subcontractor Item�

�

�

�

Sub Contractor�

�

�

�

Warehouse Employee�

�

�

�

Manager�

�

�

�

Driver�

�

�

�

�

Regular Item�

�

�

�

�

PDC�

�

1..1�

0..*�

0..*�

1�

0..*�

1..1�

{ occupied, available }�

�

{ active, passive }�

+Register()
+Edit()
+Delete()�

�

FMC_Staff�

�

+Register()
+Edit()
+Delete()�

�

FMC_Customer�

�

+List_Customers()
+List_Employees()
+List_Consignments_in_Warehouse()
+List_All_Consignments()
+List_Storage_Activity()
+List_Storage_Activity_by_Employee()
+Show_Warehouse_Capacity()
+Show_Staff_Activity()
+Show_Customer_Activity()�

�

Reports�

�

+Locate()
+Delete()
+Register()�

�

FMC_Consignment�

�

+Store_Item()�

�

FMC_Item�

�

+Find_Customer()
+Find_Staff()
+Find_Consignment()�

�

Search�

�

FMC
Model Holder�

FMC�

+Register()
+Delete()�

�

FMC_Location�

�

1..*�

1..1�

1..1�

0..*�

�

-Number of Consignments
-Number of activities per staff
-Number of Consignments per customer_x
-Date�

Activity Summary�

�

1..1�

1..1�

{ remove, store }�

�

_1082010466.vsd
Staff�

Managing Director�

Warehouse Employee�

Driver�

Sub contractor�

_1082239142.vsd
�

�

�

�

HIC�

EIC�

Static Structure�

+Staff_Log_In()�

�

HIC_Log_In�

�

+Go_to_HIC_Consignment()
+Go_to_HIC_Employee()
+Go_to_HIC_Customer()
+Go_to_HIC_General_Report()
+Go_to_HIC_Log_In()�

�

HIC_Main_Menu�

�

+Register()
+Delete()�

�

FMC_Location�

�

+Find_Customer()
+Find_Staff()
+Find_Consignment()�

�

HIC_General_Reports�

�

+Find_Customer()
+Register_Customer()
+Edit_Customer()
+Delete_Customer()
+Show_Customer_Activity()
+Print_Customer_Details()�

�

HIC_Customer�

�

+Register_Consignment()
+Delete_Consignment()
+Search_for_Consignment()
+List_Item_Locations()
+List_Involved_Employees()
+Print_Consignment_Details()�

�

HIC_Consignment�

�

+Register_Employee()
+Delete_Employee()
+Edit_Employee()
+Print_Employee_Details()
+Search_for_Employee()
+Show_Employee_Activity()�

�

HIC_Employee�

�

+Delete_Old_Consignment()
+Delete_Old_Storage_Activity()
+Check_Consignment()
+Check_Storage_Activity()
+Create_Activity_Summary()�

�

EIC_Clock�

�

+Register_Location()
+Delete_Location()
+Check_Location_Status()�

�

HIC_Location�

�

+Register_Consignment()
+Store_Item()
+Remove_Item()
+Register_Location()
+Delete_Location()
+Locate_Consignment()�

�

EIC_Scanner�

�

+Print_Report()
+Print_Consignment()
+Print_Employee()
+Print_Customer()�

�

EIC_Printer�

�

+Register()
+Edit()
+Delete()�

�

FMC_Staff�

�

+Register()
+Edit()
+Delete()�

�

FMC_Customer�

�

+Locate()
+Delete()
+Register()�

�

FMC_Consignment�

�

+Store_Item()�

�

FMC_Item�

�

+Find_Customer()
+Find_Staff()
+Find_Consignment()�

�

Search�

�

FMC
Model Holder�

FMC�

+List_Customers()
+List_Employees()
+List_Consignments_in_Warehouse()
+List_All_Consignments()
+List_Storage_Activity()
+List_Storage_Activity_by_Employee()
+Show_Warehouse_Capacity()
+Show_Staff_Activity()
+Show_Customer_Activity()�

�

Reports�

�

_1082240119.vsd
Enter Title Here�

�

�

�

�

�

�

�

�

�

�

�

�

�

?�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Option1�

�

�

�

�

�

�

�

Customers�

Return to Menu�

Add customer�

Name�

Address�

Phone No.�

[Inserted automatically]�

Customer No.�

Fax No.�

E-mail�

Print Details�

Status�

[Active / Passive]�

Edit Details�

[Results]�

Danske Fragtm�nd�

Customer List�

Delete�

OK�

Log in�

Log in�

Exit�

Employees�

Return to Menu�

Add employee�

Name�

Address�

Phone No.�

[Inserted automatically]�

Employee No.�

Mobile No.�

E-mail�

Print Details�

Status�

[Active / Passive / Admin]�

Edit Details�

[Results]�

Dick�

Employee List�

Delete�

OK�

Consignments�

Return to Menu�

Danske Fragtm�nd 67�

Consignment No.�

�

No. of Items�

Customer�

Create�

Delete�

[Results]�

List Item Location(s)�

List Employees Involved�

Print Details�

General Reports�

Return to Menu�

Choose report type�

[Results]�

Print�

List Employees�

Activities by Employee
No. of New Consignments
Warehouse Capacity�

Units�

OK�

Choose Start Date�

DD�

MM�

YYYY�

DD�

MM�

YYYY�

Choose End Date�

All�

Dick
Henrik
S�ren�

Information type�

Daily�

Weekly�

Yearly�

Location�

Return to Menu�

Location ID�

Create�

Delete�

[Results]�

Print Details�

Location description�

Main Menu�

Customers�

Employees�

Consignments�

General Reports�

Log out�

Location�

_1082240659.vsd
�

�

�

�

-Name
-Address
-Phone Number
-Fax Number
-E-Mail
-Date Registered
-Status�

Customer�

�

�

-Consignment ID
-Consignment registered
-Total Items
-Items Stored�

Consignmnet�

�

�

-Location ID
-ItemID�

Item�

�

�

-Location ID
-Location Description
-LocationStatus�

Location�

�

�

-StorageActivityID
-StorageActivityTime
-StorageActivityDate
-StorageActivityType�

Storage Activity�

�

�

-Number of Consignments
-No of activities per Staff
-No of activities per Customer
-Summary Date�

Activity Summary�

�

�

-Staff ID
-CPR No
-Name
-Address
-Phone No
-Mobile No
-Status
-Date Employed
-Staff Type�

Staff�

�

�

�

1..1�

0..*�

0..*�

1..1�

0..*�

1..1�

0..*�

1..*�

1..1�

1..1�

0..*�

1..1�

initiates�

data collected�

updates�

updates�

1..1�

0..*�

updates�

has�

issues�

_1082144362.vsd
Staff�

PK�

Staff ID�

F-name�

L-name�

Date
Empl.�

2.NF�

Add.�

Phone�

Mobil�

Staff Satus�

CPR. No.�

Staff Type�

1fd�

2fd�

Staff�

PK�

Staff ID�

3.NF�

CPR. No.�

Staff Details�

PK�

FK�

F-name�

L-name�

Date
Empl.�

Add.�

Phone�

Mobil�

Staff Satus�

CPR. No.�

Staff Type�

_1082224081.vsd
Customer�

Items
Consignment Docs�

Items Registered�

Data Store /
 Mr Johansen�

Items
 Data�

Shelf
 No.�

Items
Located�

Location
 Data�

Shipping
 Date/Time�

Items
Retrieved�

Items
 Location�

Items
 Data�

End User�

Items
Consignment Docs�

_1082237194.vsd
NORDDISTRIBUTION A/S�

_1082143837.vsd
Item�

3.NF�

PK�

Item ID�

Location ID�

Item Location ID�

Item Type�

PK�

FK�

_1082143553.vsd
Storage Activity�

PK�

Activity Date�

Activity Time�

Storage Activity ID�

2.NF�

Summary ID�

Item ID�

Consignment ID�

Location ID�

�

FK�

�

Staff ID�

Activity Type�

FK�

FK�

FK�

FK�

1fd�

2fd�

3fd�

�

Storage Activity�

PK�

Location ID�

3.NF�

Activity Date�

Consignment ID�

Activity Time�

FK�

Staff ID�

Activity Type�

PK�

PK�

FK�

Storage Activity Date�

PK�

Activity Date�

Summary ID�

FK�

_1081945131.vsd
�

�

�

Enters Staff ID�

�

Refusal�

:Main Menu�

:Log In Screen�

Check Staff ID�

�

:Consignment Menu�

�

Enter
Consignment ID�

�

�

Enter Customer ID�

Enter No.
 of Items�

�

Log In OK/not OK�

�

�

Check for Duplicate�

Check Validity�

�

Data OK/not OK�

Invalid Data�

�

�

Interface�

�

Accepted�

Log Out�

System�

The Use Case begins when the Employee enters their Staff ID in the Log In Screen.

The screen will change to the Main Menu or issue a polite refusal.

The Employee clicks the Consignment button.
The screen changes to the Consignment Menu.

The employee enters the Consignment ID, Customer ID and number of Items.
Once this has been entered the create button is clicked.

The Consignment details are shown in a text field confirming the successful creation of a Consignment or an error message.

This use case finishes when the employee clicks on return to the Main Menu. From here the employee can select other functions or Log out.
�

Register Consignment
Use Case�

_1082010411.vsd
Assignment�

Goods�

Sub contractor�

Other goods�

Sub Contractor goods�

Staff�

0..1�

0..1�

Location�

Customer�

�

1..1�

1..*�

1�

Managing Director�

0..*�

1..*�

0..*�

People Cluster�

Warehouse Employee�

Driver�

Consignment Cluster�

_1081968737.vsd
Location�

PK�

PK�

Location ID�

Location Description�

Location Status�

Location ID�

2.NF�

1fd�

2fd�

Location Description�

PK�

Location Status�

Location ID�

Location Description�

Location�

3.NF�

_1081773690.vsd

_1081939873.vsd
�

�

�

�

�

1..1�

�

1..1�

0..*�

0..*�

1..1�

0..*�

1..1�

0..*�

initiates�

�

-Summary ID�

Activity Summary�

�

�

-Staff ID�

Staff�

�

data collected�

1..*�

1..1�

updates�

1..1�

0..*�

updates�

1..1�

0..*�

updates�

has�

issues�

�

-Location Description�

Location Description�

�

�

-Storage Activity ID�

Storage Activity�

�

�

-Location ID�

Location�

�

�

-Item Location ID
-ItemID�

Item�

�

�

-Consignment ID�

Consignmnet�

�

�

-CPR No�

Staff Details�

�

1..1�

1..1�

has�

1..1�

1..1�

has�

�

�

Staff removes item�

Item Location ID changes to null�

Items stored reduced by one�

Location status changed to empty�

Activity will be recorded at the end of the day�

�

-Customer ID�

Customer�

�

Static Structure�

_1081538448.vsd
�

�

�

�

-Name
-Address
-Phone Number
-Mobile Number
-Date of Birth
-Staff ID
-Status
-Date Employed
-Type�

Staff�

�

�

-Name
-Address
-Phone Number
-Fax Number
-E-Mail
-Date Registered
-Status
-Customer ID�

Customer�

�

�

-Item ID
-Consignment ID
-Staff
-Location
-Time
-Type
-Date�

Storage Activity�

�

�

-Item ID
-Consignment ID
-Location ID
-Type�

Item�

�

�

-Number of Consignments
-Number of Activities per Employee
-Number of Consignments per Customer
-Date�

Activity Summary�

�

0..*�

0..*�

1..1�

1..1�

1..1�

1..1�

0..*�

1..*�

1..1�

1..1�

0..*�

initiates�

records�

updates�

updates�

issues�

�

-Consignment ID
-Check In Time
-Number of Items
-CustomerID
-Status�

Consignmnet�

�

�

1..*�

has�

�

-Status
-Location Description
-Location ID�

Location�

�

�

�

Sub Contractor�

�

�

�

Warehouse Employee�

�

�

�

Manager�

�

�

�

Driver�

�

�

{Mandatory, or}�

�

-Post Code�

Subcontractor Item�

�

�

�

Regular Item�

�

�

�

�

{Mandatory, Or}�

1..1�

0..*�

updates�

_1080845820.vsd
�

�

Activity�

�

�

Active�

Customer Registered�

�

�

Passive�

Deliveries Refused�

�

Deliveries
Re-Allowed�

Customer Deleted�

�

�

�

�

Delivery Request Made�

Consignment Delivered�

_1081076603.vsd
�

Statechart�

�

Available�

Registered�

�

�

Occupied�

�

Deleted�

Item Stored�

Emptied�

_1081173740.vsd
�

�

�

�

Static Structure�

�

-Staff ID�

Staff�

�

�

-Customer ID �

Customer�

�

�

-Staff ID
-Time�

Storage Activity�

�

�

-Consignment ID
-Item ID�

Item�

�

�

-Date�

Activity Summary�

�

0..*�

0..*�

1..2�

1..1�

1..1�

1..1�

0..*�

1..*�

1..1�

1..1�

1..*�

has�

records�

has�

has�

issues�

�

-Consignment ID�

Consignmnet�

�

�

1..*�

has�

�

-Location ID�

Location�

�

_1080845342.vsd
�

�

Activity�

Consignment Registered�

�

Awaiting storage�

�

�

Final Item stored�

�

Stored�

�

Delivery Assigned�

�

Awaiting Check Out�

�

Final Item Checked Out�

Item stored�

Item Located�

Item Checked Out�

�

Not stored�

Deleted�

�

�

Passive�

�

Customer becomes passive�

Customer reactivated�

�

_1080844776.vsd
Suppliers�

Inventory�

Mail Room�

Warehouse�

Reception�

 �

$�

 �

$�

�

 �

$�

Purchasing�

�

�

Workstation�

�

�

�

�

�

�

Inbound
items�

Outbound
items�

Scan in
items�

Check out items by
scanning them out�

�

�

�

�

�

Henrik�

�

Delivery Notes�

Consignment
Documents�

�

Items Storage�

�

�

�

Items location
scanned in�

�

Items found by
scanning docs�

�

�

�

�

�

�

�

�

�

Delivery Notes�

Consignment Documents�

Consignment Documents�

1�

4�

3�

2�

_1080844923.vsd
A
Item in�

System Database�

B
Henrik�

C
Driver�

1
Check in
Items�

2
Item
storage�

4
Locate
Item�

5
Check out
Item�

Consignment
allocated�

�

Generate
Reports�

Consignment info�

Item info�

Location Data�

Consignment info�

 Location updates�

Location
 Data�

Consignment info�

Consignment info�

D
Item out�

Shipping
data�

Item Info�

Statistics�

Print info�

�

Consignment info�

Consignment info�

Employee ID�

Employee ID�

Employee ID�

_1080845004.vsd
Consignment�

Item�

1..*�

1�

_1080844830.vsd
�

Inventory management database

Data on items, customers, staff, locations, Consignments�

Database Management System�

Scanner data storing�

Items location/retrieval�

Data & information�

Scanner�

Items inbound�

Items outbound�

Scan location & Items�

Scanner and PC screens�

Scan documentation data�

Data from scanner /
Input from keyboard and/or mouse�

Data�

�

Model�

Reports on items delivered, employee performance etc.�

Java prototype�

Items/Materials�

Provision of information from the inventory Database.�

_1080661009.vsd
�

�

Activity�

�

Item Stored�

�

Checked Out�

Re-Located�

Stored�

�

Not stored�

Deleted�

Awaiting storage�

�

Item registered�

_1080844473.vsd
Warehouse�

Inventory�

Sales�

Packaging�

Suppliers�

Accounting�

Copy Center�

Person 1�

�

�

�

Norddistribution�sWarehouse�

Norddistribution�s
Customer�

Inbound
Items�

Driver�

4.�

5.�

6.�

7.�

8.�

Outbound
Items�

Delivered to
end user�

Final Destination�

�

�

Henrik�

Consignments
for pick-up�

Customer�

2.�

�

Consignments picked up & taken
back to
warehouse�

�

Jobs
assigned
�

�

Driver�

3.�

consumer�

1.�

�

Driver and customer rep�

Driver and
end user�

Consignments
delivered to
final destination�

Consumer request�

Delivery
request�

Item storage�

_1080844612.vsd
Suppliers�

Inventory�

Mail Room�

Warehouse�

Reception�

 �

$�

 �

$�

�

 �

$�

Purchasing�

?�

�

�

�

�

�

�

�

Inbound
items�

Outbound
items�

Check in
items�

Check out
items�

�

�

�

�

�

Henrik�

Consignment
Documents�

Items
retrieval�

�

Items Storage�

Consignment Documents�

Consignment Documents�

�

Delivery Notes�

Delivery Notes�

_1080805598.vsd
Enter Title Here�

�

�

�

�

�

�

�

�

�

�

�

�

�

?�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Log in�

Main Menu�

Customers�

Employees�

Consignments�

General Reports�

Log out�

Customers�

Danske Fragtm�nd 67�

Barcode No.�

�

No. of Items�

Customer�

[Results]�

Log in�

Exit�

Consignments�

General Reports�

Create�

Delete�

Return to Menu�

Return to Menu�

Return to Menu�

Add customer�

Name�

Address�

Phone No.�

[Inserted automatically]�

Customer No.�

Search�

Fax no.�

E-mail�

Print Details�

Show Activity�

Status�

[Active / Passive]�

Edit Details�

Employees�

Return to Menu�

Add employee�

Name�

Address�

Phone No.�

[Inserted automatically]�

Employee ID�

Search�

Mobile No.�

E-mail�

Print Details�

Show Activity�

Status�

[Active / Passive / Admin]�

Edit Details�

List Item Location(s)�

List Employees Involved�

Search�

Print Details�

Assignment Activity�

Sort�

DD�

MM�

YYYY�

Choose type�

Choose Start Date�

Item Activity
Staff Performance
Warehouse Capacity
�

DD�

MM�

YYYY�

Choose End Date�

View History�

Daily�

Weekly
Monthly
Yearly
Per Employee�

[Results]�

Print�

_1080823283.vsd
Storage Activity�

Item�

0..*�

1�

Location�

0..*�

1�

_1080730583.vsd
�

�

�

�

�

�

�

Log in

�

1
a b c�

7
s t u�

6
p q r�

5
m n o�

4
j k l�

3
g h i�

2
d e f�

Main Menu�

1. Register Consignment�

OK�

C�

0�

9
y z�

8
v w x�

2. Store Item�

3. Relocate Item�

4. Locate Consignment�

5. Check Out Item�

6. Register Location�

7. Delete Location�

Scan Location�

�

�

Register Consignment�

�

Store Item�

Scan Item�

8. Log off�

�

�

Scan Document�

Enter no. of Items
Confirm with OK�

4�

Return to Main Menu by pressing C�

Confirm with OK�

Enter Name of Location�

Return to Main Menu by pressing C�

�

Register Location�

Relocate Item�

Scan Item�

Return to Main Menu by pressing C�

Scan New Location�

Scan Location Barcode�

Location�

�

Locate Consignment�

Scan Document�

Return to Main Menu by pressing C�

C36�

Location�

Return to Main Menu by pressing C�

G25�

Confirm with OK�

B24�

�

Delete Location�

Scan Location�

Return to Main Menu by pressing C�

�

Check Out Item�

Scan Item�

Return to Main Menu by pressing C�

Enter or Find Customer no.�

Danske Fragtm�nd 67
Pampers		 68�

_1080461878.vsd
Item�

Regular item�

Sub Contractor item�

_1080470496.vsd
Potential new entrants�

Bargaining power of suppliers�

Rivalry among competitors�

ND�

Bargaining power of customers�

�

�

�

�

Threat of substitute products �

�

_1079429004.vsd
�

Tasks�

��

��

1�

��

��

��

��

ID�

Task Name�

Start�

Finish�

Time�

�

18�

1�

2�

��

��

��

3�

��

��

��

4�

��

��

��

5�

��

��

��

6�

��

��

��

7�

��

��

��

8�

��

��

��

9�

��

��

��

10�

��

��

��

11�

��

��

��

12�

��

��

��

13�

��

��

��

14�

��

��

��

15�

��

��

��

16�

��

��

17�

��

��

��

��

��

��

�

Jakob Kierkegaard as leader�

�

Mark Ryan as leader�

�

Thabet Al Assadi as leader�

�

Chris McCombe as leader�

�

�

�

�

Review�

