Roskilde edb-skole

2003-03-19/Michael Claudius

sys2\Løsninger\Library\OOD_Library_RDB.doc

THE FANTASY LIBRARY: RDBI

RDBI (Relational Database Implementation)

Activities

The issue of this activity is to implement the OO-Design directly in a Relational Database (RDB) by answering the major questions:

How are the basic elements transformed ?

How are the different structures transformed ?

How are the objects identified ?

By choosing from the possibilities in the RDB and defining the different data structures.

Remark

Please note that this solution does not go into the mandatory/optional and disjoint/Not disjoint discussion, as this is not a part of the method discussed in the OOD-book. You will find that discussion later in the EER transformation note !
Choice of RDB

The definitive choice of tools (Informix, Ingress, Oracle, Interbase, ODBC), does not have to be taken now, but we have decided that it is a Relational Database with relations, tuples and attributes.

Review your OOD model diagrams.

We have already in OOD reviewed the PDC-design by adding a few generalization structures and a categorisation class BorrowCategori holding the HomeBorrowItems as there can be many copies of for example the book. The result is shown on the diagrams: OOD Structures Vs. 1.0 Borrow system and the interfacing to Purchase and Searching system. These diagrams form the basis of the discussion in the rest of this note. It is noted that the word Singer could be replaced with Performer as there for example can be drummers and keyboard players; too. Singer is actually a role of a Performer.

Transform the basic elements

Classes directly to relations. Later they might be extended with foreign keys.

Attributes directly to attributes in relations, composite attributes might be split, e.g. Name is split into:

FirstName (String30)

LastName (String30)

Operations are NOT defined as relations donot hold operations !

Transform the FMC holder objects. How are the relations identified ?

The FMC are not used directly as relations are automatically identified by the table names.

The FMC should be used indirectly to set up the functionality for the database.

The functions found are incorporated in the views of the database and set up as SQL-requests.

This will have to done later !

Transform the association structures.

All associations are transformed into relations but during this phase foreign keys are inserted and some relations are thrown away.

The Borrower-Lend, Lend-Book associations are transformed directly into the relation Lend by adding two foreign keys: Book_Id and Borrower_Id to Lend relation.

The Video-Film, Film-Actor associations are transformed into two new relations: Vido/Film with the foreign keys Video_Id & Film_Id and ActorRole with the foreign keys Artist_Id & Film_Id. As artist can have many roles in a Film the foreign keys can not form a primary key; i.e. we need a primary key ActorRole_Id. The considerations/choices are very similar for CD and Book.

Transform the aggregation structures.

All aggregations are transformed into relations but during this phase foreign keys are inserted into relation participating in the aggregation (the weaker part also named the many part) and thus some relations are thrown away immediately.

The Borrower-Reservation, Reservation-Book associations/aggregation are transformed directly into one relation Reservation by adding two foreign keys: Cpr_No and HomeBorrowItem_Id to Reservation.

Lend-Hjemkaldelse aggregation is transformed by just adding the foreign key Lend_Id to the HomeCall relation (the many part).

The Borrow_Category is a holder of several copies of exactly the same HomeBorrow_Item; e.g. there can be many copies of the same book. Therefore the BorrowCategory-HomeBorrow_Item aggregation is transformed by just adding the foreign key BorrowCat_Id into HomeBorrow_Item.

Transform the Generalization-Specialization structures

The role of Artist gives some problems, as the Artist as an actor can have several roles in different Films but also in the very same Film! This gives rise to a new relation ActorRole connecting Film with Artist and AuthorRole connecting Book with Artist. Then Actor, Author and Singer/Performer do not have to exist alone and are therefore thrown away. The Actor/Author/Performer-special attributes -if any!- can be combined and added to the Artist relation

One can create an instance of only Item, meaning Item can stand alone. Therefore Item-HomeBorrowItem-Book/Video/CD Generalization-Specialization structure is transformed by the use of foreign keys in the subtypes connecting to the supertype relation just above the respectively subtype. Although HomeBorrowItem can not stand alone I decided to keep the class as a relation and add the foreign key Item_Id to the HomeBorrowItem relation. Furthermore HomeBorrowItem_Id is added as a foreign key to the Book realtion, to the Video realtion and to the CD relation. The reason for this decision is that the borrowing system will be simpler: otherwise there would be one Lend relation for Book, one for Video and one for CD.

Set up the new relations

The content of the relations is shown on the figure named RDB-Relations Vs. 1.0 on the next page. I have chosen a lazy solution and just changed the former diagrams; this is NOT advisable in the 2'nd semester project !!!

[image: image1.wmf]-Artist_Id

-ISBN_No?

-Novel_Id

AuthorRole

OOD RDB_Relations Vs 1.0

Borrow interfacing to purchase & searching system

Fantasy Library vs. 1.0

Michael Claudius//2002.03.01/Roskilde

-Title?

-Genre?

-Year?

-Date_Registration

-Date_Repaired

-Date_Thrown_Out

-State

-HomeBorrow_Id

-Item_Id

-BorrowCat_Id

Home Borrow

Item

-Name

-zip-code

-State/country

-Nationalty

-Special_Attr

-Artist_Id

Artist

-Item_Id

-Price

-Currency

Item/Thing/Good

-Title

-Genre

-Special_Attr

-Track_Id

Track

-Title?

-Genre

-Special_Attr

-Film_Id

Film

-Video_Id

-Special_Attr

-HomeBorrow_Id

-BorrowCat_Id

Video

-Book_No

-Edition_No

-Publisher?

-Special_Attr

-HomeBorrow_Id

-ISBN_No

-BorrowCat_Id

Book

-Title?

-Genre

-Special_Attr

-Novel_Id

Novel

-Cpr_No

-Name

-Address

-PostNo

-City

-Phone

-e-mail

-Date_Registration

-State

Borrower

-Date_Reservation

-Priority

-BorrowCat_Id

-Cpr_No

Reservation

-Title

-Genre

-Publisher

-Year

-BorrowCat_Id

BorrowCategory

-Date_lent

-Date_Returned

-Homecall_No?

-Date_Lost?

-Cpr_No

-HomeBorrow_Id

-Lend_Id

Lend

-Date_Homecalled

-Type?

-SpecialText?

-HomeCall_Id?

-Lend_Id

HomeCall

-Artist_Id

-Track_Id

-Special_Attr

PerformerRole

-Artist_Id

-Film_Id

-Special_Attr

-ActorRole_Id

ActorRole

-Video_Id

-Film_Id

Video/Film

-CD_Id

-Track_Id

CD/Track

-Book_Id

-Novel_Id

Book/Novel

-CD_Id

-Special_Attr

-HomeBorrow_Id

-BorrowCat_Id

CD

� EMBED Visio.Drawing.6 ���

PAGE
3

_1076840817.vsd

