Roskilde edb-skole

2007-11-19/Michael Claudius

Prog2\Library OOD RDBImplementation.doc

4.0 Relational Database Implementation
4.1 Purpose

The issue of this activity is to implement the design in a Relational DataBase (RDB). The Before going into details one has to decide between two streams:

We have chosen to us a directly transformation from design class diagrams to relations/tables as the design is very detailed, thus making EE/R-Diagramming superfluous.
4.2 Activities

In the next sections we shall describe and do the following activities:

· Choice of RDB

· Review of OOD model finding any needed changes

· Categorise the classes and transform into relations

· Transform associations and generalisation structures into relations

· Define and describe the relations, attributes, keys and domains

· Create a Database Model Diagram

· Normalise the tables

4.3 Choice of RDB

The definitive choice of tools (Postgress, Ingress, Oracle, Interbase, ODBC), does not have to be taken now, but we have decided that we will use the Relational Database Postgress (ref. …) and that the connection to Progress (ref. …) shall be handled by a JDBC-driver provided by EasySoft (ref…).
The reason is that:

· Postgress provides the necessary facilities also for a later web-applications

· Postgress is quite fast and can handle many users at the same time

· Postgress is free software
4.3 Review of OOD model diagrams.

When we look at the diagram (cf. App. A). All the classes in the model data class category with persistent data can directly be taken as candidates to relations, giving the following preliminary list of relations:
Relation List
	Fantasy Library

	No.1

	Version 1.0

	Date
02.11.2007
	Initials
<MCG 3>

	Relation name
	Definition/Description
	Aliases
	Remarks/

Occurences

	AdultBorrower
	Borrower older than 15 years (inclusive)
	Adult
	many

	Book
	Book for lending/reservation from library
	
	many

	Borrower
	Person who has a borrower card to the library
	
	many

	ChildBorrower
	Borrower younger than 15 years (exclusieve)
	Child
	many

	Item
	Item for lending/reservation/using from library
	Book,CD,
DVD
	

	Lend
	Lend of Item by a Borrower
	
	0 to many

However there are a few suspicious issues to be looked at:
· The naming of Book

· The one-one Book-Lend association

· The Author attribute

and some very suspicious issues:
· Number of item-exemplars

· Result of Use case “Find Late lends” is missing

Book class

What happened to the other classes like CD, DVD, Video. When looking back in old documentations vs. 0.9 it is evident that the way Book is used in our diagram is the same as it would have been for the other Items. Furthermore we found an old Generalisation Specialisation diagram with a super class Item and 3 sub classes: Book, CD, Video.

However as the use case leading to the diagram focuses on Lending we don’t introduce this extra Generalisation-Specialisation structure now. But just replace Book with Item.

Number of item exemplars
In the present diagram it was for simplicity assumed that there is only exemplar of each item (book, video, CD) to be lent. If this was not the case there would be an extra class ItemDecription holding the common information for these item-exemplars. This I think is the correct solution but this also implies a big change in our diagram. In order not to confuse you (the students) we will not take this into account right now. In appendix A you will find the correct diagram and the correct database table diagram. I am quite sure that if you follow the instructions in UP such a big mistake will not be made. So make your use-cases and sequence diagrams with great care. Follow Susannes instructions!!
Book-Lend association

This is a one-one association. A Book is only lent to a Borrower one at a time. This is correct but it means that only present actual lends are be registered. When a Book is returned the connection is simply cancelled and there is no record of former lends; i.e. no historic.

Maybe this is what the library wants right now but to insure the for future use we change the association into a one-many association and we rename it Item-Lend.
This means that Lend must have an extra attribute for when the item was returned: returnedDate.
Book-Author attribute/clas

The attribute author is a little strange as a book can have many authors and one author can be author to many books. Thus it would be tempting to introduce a new class: Author and a Book.Athor association.

Find late lends

The use case “Find late lends” and the sequence diagram actually lead to a method checkLateLends, but this method is missing in LendCollection, so we just add this method This is outrageous and a big mistake. Again it shows how careful one must follow UP and remember everything.

With these remarks we shall now proceed and the new diagram is shown below.

[image: image1]

 4.4 Class categorisation
We categorised the classes according to their responsibility into the following categories:

Presentation class, i.e GUI

LibraryGUI ItemCollectionGUI, BorrowerCollectionGUI, LendCollectionGUI,

Interface classes to technical devices and or other systems.

None

Controller classes

None for the moment but there might be CMC-classes accessing flat files and there might be added CMC-classes for accessing the database, however this not of interest right now.

Holder/Collection class with the responsibility of holding objects of other classes.

BorrowerCollection, ItemCollection, LendCollection, AuthorCollection

Data class holding persistent data/information

Borrower, AdultBorrower, ChildBorrower, Item, Lend, Author

The classes in the Collection class category are the classes to be transformed into CMC-classes handling the access and sql-queries to the database.

The classes in the data class category are holding the persistent information to be put into the RDB and will be the classes to be transformed directly to relations/tables.
The other classes hopefully need very few changes.

4.5 Transformation into relations/tables
All the classes in the data class category with persistent data are directly taken as candidates to relations, giving the following preliminary list of relations:
Relation List
	Fantasy Library

	No.1

	Version 1.0

	Date
02.11.2007
	Initials
<MCG 3>

	Relation name
	Definition/Description
	Aliases
	Remarks/

Occurences

	AdultBorrower
	Borrower older than 15 years (inclusive)
	Adult
	many

	Author
	Writer of one/more books registered in library
	Writer, Artist
	many

	AuthorBook
	Relationship between Book and Author
	
	many

	Book
	Book for lending/reservation from library
	
	many

	Borrower
	Person who has a borrower card to the library
	
	many

	ChildBorrower
	Borrower younger than 15 years (exclusieve)
	Child
	many

	Item
	Item for lending/reservation/using from library
	Book,CD,
DVD
	

	Lend
	Lend of Item by a Borrower
	
	0 to many

Based on this we will now discuss the various possibilities of relationships/associations and possible changes in the interpretations of the design diagram.

4.6 Transformation of aggregation/association structures.

One-one (1-1) structures

There are no 1-1 structures as we changed the Item-Lend into a one-many structure.

One-many (1-*) structures

Here we have Borrower-Lend, Item-Lend and AdultBorrower-ChildBorrower. These one-many aggregations/associations are transformed into relations but during this phase foreign keys are inserted into the weaker part also known as the many part relation participating in the association. Thus the connection is now represented by the foreign keys.

A special problem is the AdultBorrower-ChildBorrower where the connection is represented in OOD by the reference-attribute, parent, in ChildBorrower. Such a memory reference changes whole time according to use of memory and thus it should not be registered in a RDB. Therefore the parent attribute can just replaced by the foreign key parentCprNo. Alternatively parentCprNo might be added as an extra attribute if other parts of the program needs the parent-attribute.
Many-many (*-*) structures

Here we have Author-Book. Transform the many association into two one-many relations. Thus an extra relation/table AuthorBook is added. In AuthorBook is added foreign keys: authorId and itemNo. Thus the connection is now represented by this extra table and the foreign keys.

Author is always an author of something and therefore has mandatory participation (1..1) whereas item has optional participation (there might exist books where the authors are unknown).
4.7 Transformation of Generalization-Specialization structure

Decide whether the sub types in each inheritance is not disjoint (overlapping) or disjoint, whether the participation is mandatory (forced) or optional.
We have Borrower-AdultBorrower/ChidBorrower which is considered as a disjoint structure as AdultBorrower and ChildBorrower exclude each other. Furthermore one cannot create an instance of only Borrower, meaning Borrower cannot stand alone; i.e. Borrower has mandatory participation in the structure.

Two possibilities thus exist:

· Collapse the super type into all sub types. One table per sub type.

· Introduce super type foreign key (cprNo in Borrower) in each subtype.

Both solutions will be correct. The first will give a simple inheritance structure whereas the second will give a more complex inheritance structure for the sub types.
The first possibility, to collapse Borrower with the sub types into the two tables: ChildBorrower and Adultborrower and will lead to changes in Lend and the use of Lend. Either we now need two Cpr. Numbers in Lend: childCprNo and adultCprNo and all sql-queries must check whether it is an adult borrower or a child borrower. Or we need two Lend tables: LendAdult and LendChild leading to various controls, too.
Therefore I decided to choose the second possibility. The reason for this decision is that the overall borrowing system will be much simpler.
4.8 Database relations and model diagram

The above discussion has clarified the relations and relationships/associations giving the following list of relations:

Relationship/Association List
	Fantasy Library
Lend-System
	No. 1

	Version 1.0

	Date
2007-11-07
	Initials
MC

	Relation
	Multiplicity
	Association
	Multiplicity
	Relation
	Participation

	AdultBorrower
	1..1
	Has children
	0..*
	ChildBorrower
	O : M

	Author
	1..1
	Wrote an Item
	1..*
	AuthorBook
	M : M

	Item
	1..1
	Is a Book
	0..1
	Book
	O : M

	Borrower
	1..1
	Has a Lend
	0..*
	Lend
	O : M

	Borrower
	1..1
	Is an adult
	0..1
	AdutlBorrower
	O : M

	Borrower
	1..1
	Is a child
	0..1
	ChildBorrower
	O : M

	Item
	1..1
	Has a Lend
	0..*
	Lend
	O : M

Shorts used as follows:

	Participation

	M: Mandatory
O: Optional

The table is to be read as follows:

Borrower might be involved in zero or many lends and a Lend belongs exactly to one Borrower.

Lend has mandatory participation in this association; i.e can not be created without a Borrower. Borrower has optional participation in this association; i.e. a Bottower can be created and exist without any Lend.
Database diagram

The class diagram was used as a starting point and based on the relations/relationships we can now draw the database model diagram:
[image: image3.emf]Borrower

PK cprNo

name

bType

regYear

state

AdultBorrower

PK parentCprNo (FK)

address

email

phone

ChildBorrower

PK childCprNo (FK)

parentCprNo

sex

FK

Item

PK itemNo

title

itemType

regYear

state

Lend

PK itemNo (FK)

PK cprNo (FK)

PK returnDate

Author

PK authorId

name

nationality

birthDay

AuthorItem

PK itemNo (FK)

PK authorId (FK)

Fantasy Library vs. 2.0

Database Model Diagram Vs. 1.0

Michael Claudius//2007.11.12/Roskilde

Book

PK itemNo (FK)

publisher

isbn

[image: image2]
4.9 Attributes, primary keys and foreign keys
We have the following relations/tables and attributes:
Relation Attribute List
	Fantasy Library

	No.1

	Version 1.0

	Date
02.11.2007
	Initials
<MCG 3>

	Relation name
	Attributes

	AdultBorrower
	parentCprNo(FK), address, email, phone

	Author
	authorId, name, nationality, birthday

	Borrower
	cprNo, name, bType, regYear, state

	Book
	itemNo(PK), publisher isbn

	ChildBorrower
	childCprNo(FK), sex, parentCprNo(FK)

	Item
	itemNo, title, pubYear, itemType, state

	AuthorBook
	itemNo(FK), authorId(FK)

	Lend
	itemNo(FK), cprNo(FK), returnDate

Most of the attributes were just taken directly from the originals but the following changes and extensions were made in accordance with our former discussion:
AdultBorrower: parentCprNo is both a primary key and foreign key to Borrower.

Borrower: registration year regYear instead of year, which is a reserved word in sql.

ChildBorrower: childCprNo is both a primary key and foreign key to Borrower.

Item: publishing year regYear instead of year, which is a reserved word in sql.

The primary keys are marked as underlined and most like cprNo, itemNo are AuthorId are evident.

In ItemAuthor and Lend we decided to use non pure implementation (using combined foreign keys as primary keys). In AuthorBook the composition of the two foreign keys (itemNo, authorId) uniquely identifies the row.

In Lend we could have had have two possible candidate keys:

itemNo(FK), cprNo(FK), returnDate
or
itemNo(FK), cprNo(FK), returnedDate
if a returnedDate (date of when the item was returned) should be registered. However a primary key can not have any attributes which might become null and returnedDate is unknown until it is returned whereas returnDate is known when the Lend is created. Using a faked returnedDate will complicate searching and therefore the first one is chosen as primary key.
4.10 Normalisation

A table where the primary key is just one attribute and this attribute uniquely identifies the row is automatically on 2NF and if no attributes determines other attributes the table will be on 3NF. Thus Borrower, ChildBorrower, Item, Author are all on 3NF.

All tables where all the attributes also are part of the primary key are on 3NF. Thus AuthorBook is on 3NF.
AdultBorrower is on 2NF as the address is a composite attribute consisting of street, no, postNo and City. As postNo uniquely identifies City in Denmark it is not on 3NF but on 2NF.
Lend is on 3NF.

This needs more explanation and some step by step explanations but I don’t have more time for this.
4.11 Specification of attributes and domains
We can now describe and specify attributes and domains
Relation Attribute Description List
	Fantasy Library
Lend-System

	No. 1

	Version 1.0

	Date
2007-11-07
	Initials
<MC>

	Relation
	Attribute
	Key
	Description
	Default Value
	Allowed

NULL
	Composite

	AdultBorrower
	parentCprNo
address

e-mail

phone

	PK,FK

	Refers to Borrower
	
	No

No

Yes

No

No
	No
Yes (critical)

No

No

No

	Author
	authorID
name

nationality

birthDay
	PK

	Uniquely identifies
	
	No
No

No

No
	No
No

No

Yes

	AuthorBook
	itemNo
authorID
	PK,FK

PK,FK
	Referers to Book
Referent to Author
	
	No

No
	No

No

	Book
	itemNo
publisher
isbn

	PK, FK

	Uniquely identifies

	
	No
No

No

No
	No
No

No

No

	Borrower
	cprNo
name

bType

regYear

state
	PK

	Uniquely identifies
	Active
	No

No

No

No

No
	No

No

No

No

No

	ChildBorrower
	childCprNo

parentCprNo

sex
	PK,FK

FK
	Refers to Borrower

Refers AdultBorrower
	Null
	No
No

Yes
	No
No

No

	Item
	itemNo

title

itemType
regYear

state
	PK

	Uniquely identifies
	Registered
	No
No

No

No

No
	No
No

No

No

No

	Lend
	itemNo

cprNo

returnDate
returnedDate
	PK,FK

PK,FK
PK
	Refers to Item

Refers to Borrower
	Null
	No

No

No
Yes
	No
No

No

Yes

Remark

Primary keys (PK) and foreign keys (FK) are just marked but discussed in the text.

Attribute Domains
	Fantasy Library
Lend-System

	No.

	Version

	Date
xxxx-xx-xx
	Initials
<NN>

	Relation
	Attribute
	Data Type
	Set of Value
	Format

	AdultBorrower
	parentcprNo

Address

e-mail

phone
	VarChar(10)

VarChar(60)

Varchar(30)

Numeric(12)
	0-9digits and cpr-rules

Any

Any

0-9 digits
	ddmmyy-xxxx

none

none

xxxxxxxxxxxx

	Author
	authorID

name

nationality

birthDay
	VarChar(10)

VarChar(30)

VarChar(18)

Date
	Any

Any

Any

0-9digits
	None

None

None

xx-xx-xxxx

	AuthorBook
	itemNo
authorID
	Numeric(20)

VarChar(10)
	0-9digits

Any
	None

None

	Book
	itemNo
isbn

publisher

	Numeric(20)

VarChar(15)
VarChar(30)

	0-9digits

0-9digits
	

	Borrower
	cprNo

name

bType

regYear

state
	VarChar(10)

VarChar(30)

VarChar(6)

Numeric(4)

VarChar(7)
	0-9digits and cpr-rules
Any

Female and male

0-9digits

Active, Passive, Illegal
	ddmmyy-xxxx

none

xxxx

	ChildBorrower
	childCprNo

parentCprNo

sex
	VarChar(10)

VarChar(30)

VarChar(6)
	0-9digits and cpr-rules
0-9digits and cpr-rules Female and male
	ddmmyy-xxxx
ddmmyy-xxxx

	Item
	itemNo
title

itemType
regYear

state
	Numeric(20)

VarChar(20)

VarChar(10)

Numeric(4)

Varchar(10)
	0-9digits

Any

0-9digits

Any

Registered. Available, Reserved, Lent, Lost
	None

None

xxxx

None

	Lend
	itemNo
cprNo

returnDate
returnedDate
	Numeric(20)

VarChar(10)

Datetime

Datetime
	0-9digits

0-9digits
DB data type

DB data type
	None

xxxxxx-xxxx

4.12 Conclusion

Next step will be to look at the implementation of the tables and the controller classes…..Bla bla

5.1. Transform the collection/holder objects. How are the relations identified ?

These classes are holding/controlling important functionality in the Application layer (Also named Controller Management Component CMC) and are not used directly as the relations are automatically identified by the table names.

The CMC-classes should be used indirectly to set up the functionality for the database.

The methods found are incorporated in the views of the database and set up as SQL-requests.

This decision includes the choice of embedded SQL, 2- or 3- tier etc.

As a golden rule the methods can be divided and placed on classes as follows:

CMC_Classes with the 4 CRUD-methods (Create, Read/Find/Search, Update, Delete)

One CMC-class per table and only when the methods involve only one table.

Read/Find/Search only for the “sql-select *” only using the primary key

Delete only for the “sql-delete” only using the primary key

Update only for updating all data in one row and only using the primary key

CMC_Classes with all other methods

One CMC-class per sql-sentence and only one doIt-method

In the first stage of implementation just keep them as OO-classes but be aware that the content, the number of classes and methods must be changed to handle a RDB.

Appendix A

[image: image4.emf]{ available, lent,

 lost }

Fantasy Library vs. 2.0

OOD Structures: vs. 1.1 Borrowers & Items & Lend

Michael Claudius//2007.11.12/Roskilde

LIBRARY PRESENTATION/VIEWS

+createBorrower()

+showBorrower()

+findBorrower()

+deleteBorrower()

+editBorrower()

+showAllBorrowers()

+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+createItem()

+showItem()

+findItem()

+deleteItem()

+editItem()

+showAllItems()

ItemCatalogGUI

-cprNo

-name

-bType

-year

-state

Borrower

{ Active, Passive,

 Illegal }

-address

-e-mail

-phone

AdultBorrower

-parent

-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo

-tille

-itemType

-year

-state

Item 0..*

-has borrowed

1..1

LIBRARY

MODEL

-holds *

*

+addBorrower()

+getBorrower()

+removeBorrower()

+replaceBorrower()

+allBorrowersData()

BorrowerRegister

+addItem()

+getItem()

+removeItem()

+replaceItem()

+allItemsData()

ItemCatalog

-itemNo

-cprNo

-returnDate

Lend

1..1 0..*

-holds

*

*

{ Registered, Available,

 Reserved, Lent, Lost }

-holds *

*

-author

-publisher

-isbn

Book

-AuthorId

-name

-nationality

-birthDay

Author

1..*

-wrote

1..*

+addAuthor()

+getAuthor()

+removeAuthor()

+replaceAuthor()

+allAuthorsData()

AuthorCollection

-holds *

*

+borrowItems()

+returnItems()

+showBorrowerLends()

+ahowAllLends()

+findLateLends()

LendGUI

+addLend()

+getLend()

+removeLend()

+getBorrowerLends()

+allLendsData()

+getLateLends()

LendCollection

+findItems()

+deleteItems()

ItemDeleteGUI

+findItems()

+deleteSelectedItem()

DeleteItemHandler

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���� EMBED Visio.Drawing.11 ���

[image: image5.emf]{

a

vailable,

lent

,

 lost

}

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2007.10.22/Roskilde

LIBRARY PRESENTATION/VIEWS

+createBorrower()

+showBorrower()

+findBorrower()

+deleteBorrower()

+editBorrower()

+showAllBorrowers()

+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+borrowItems()

+returnItems()

+showBorrowerLends()

+ahowAllLends()

LendGUI

+createItem()

+showItem()

+findItem()

+deleteItem()

+editItem()

+showAllItems()

ItemCatalogGUI

-cprNo

-name

-bType

-year

-state

Borrower

{

A

ctive,

Pass

ive,

 Illega

l

}

-address

-e-mail

-phone

AdultBorrower

-parent

-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo

-tille

-year

-itemType

-state

Item

0..*

-has borrowed

1..1

LIBRARY

MODEL

-holds

*

*

+addBorrower()

+getBorrower()

+removeBorrower()

+replaceBorrower()

+allBorrowersData()

BorrowerRegister

+addItem()

+getItem()

+removeItem()

+replaceItem()

+allItemsData()

ItemCatalog

+addLend()

+getLend()

+removeLend()

+getBorrowerLends()

+allLendsData()

LendCollection

-itemNo

-cprNo

-returnDate

Lend

1..1 0..*

-holds *

*

{

Registe

red,

Availab

le,

 Rese

rved,

Lent,

Lost

}

-holds *

*

+findItems()

+deleteSelectedItem()

DeleteItemHandler

+findItems()

+deleteItems()

ItemDeleteGUI

-author

-publisher

-isbn

Book

[image: image6.emf]{

a

vailable,

lent

,

 lost

}

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2007.10.22/Roskilde

LIBRARY PRESENTATION/VIEWS

+createBorrower()

+showBorrower()

+findBorrower()

+deleteBorrower()

+editBorrower()

+showAllBorrowers()

+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+borrowItems()

+returnItems()

+showBorrowerLends()

+ahowAllLends()

LendGUI

+createItem()

+showItem()

+findItem()

+deleteItem()

+editItem()

+showAllItems()

ItemCatalogGUI

-cprNo

-name

-bType

-year

-state

Borrower

{

A

ctive,

Pass

ive,

 Illega

l

}

-address

-e-mail

-phone

AdultBorrower

-parent

-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo

-tille

-year

-itemType

-state

Item

0..*

-has borrowed

1..1

LIBRARY

MODEL

-holds

*

*

+addBorrower()

+getBorrower()

+removeBorrower()

+replaceBorrower()

+allBorrowersData()

BorrowerRegister

+addItem()

+getItem()

+removeItem()

+replaceItem()

+allItemsData()

ItemCatalog

+addLend()

+getLend()

+removeLend()

+getBorrowerLends()

+allLendsData()

LendCollection

-itemNo

-cprNo

-returnDate

Lend

1..1 0..*

-holds *

*

{

Registe

red,

Availab

le,

 Rese

rved,

Lent,

Lost

}

-holds *

*

+findItems()

+deleteSelectedItem()

DeleteItemHandler

+findItems()

+deleteItems()

ItemDeleteGUI

-author

-publisher

-isbn

Book

_1256985350.vsd
LIBRARY
MODEL

-holds

*

*

+createBorrower()
+showBorrower()
+findBorrower()
+deleteBorrower()
+editBorrower()
+showAllBorrowers()
+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+addBorrower()
+getBorrower()
+removeBorrower()
+replaceBorrower()
+allBorrowersData()

BorrowerRegister

-itemNo
-cprNo
-returnDate

Lend

1..1

0..*

{ Registered, Available,

 Reserved, Lent, Lost }

-holds

*

*

+addLend()
+getLend()
+removeLend()
+getBorrowerLends()
+allLendsData()
+getLateLends()

{ available, lent,

 lost }

LendCollection

Fantasy Library vs. 2.0

OOD Structures: vs. 1.1 Borrowers & Items & Lend

Michael Claudius//2007.11.12/Roskilde

-holds

*

*

+createItem()
+showItem()
+findItem()
+deleteItem()
+editItem()
+showAllItems()

ItemCatalogGUI

+addItem()
+getItem()
+removeItem()
+replaceItem()
+allItemsData()

ItemCatalog

+findItems()
+deleteItems()

ItemDeleteGUI

+findItems()
+deleteSelectedItem()

DeleteItemHandler

LIBRARY PRESENTATION/VIEWS

-cprNo
-name
-bType
-year
-state

Borrower

{ Active, Passive,

 Illegal }

-address
-e-mail
-phone

AdultBorrower

-parent
-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo
-tille
-itemType
-year
-state

Item

0..*

-has borrowed

1..1

-AuthorId
-name
-nationality
-birthDay

Author

1..*

-wrote

1..*

-author
-publisher
-isbn

Book

+addAuthor()
+getAuthor()
+removeAuthor()
+replaceAuthor()
+allAuthorsData()

AuthorCollection

-holds

*

*

+borrowItems()
+returnItems()
+showBorrowerLends()
+ahowAllLends()
+findLateLends()

LendGUI

_1256986787.vsd
LIBRARY
MODEL

-holds

*

*

+createBorrower()
+showBorrower()
+findBorrower()
+deleteBorrower()
+editBorrower()
+showAllBorrowers()
+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+addBorrower()
+getBorrower()
+removeBorrower()
+replaceBorrower()
+allBorrowersData()

BorrowerRegister

-itemNo
-cprNo
-returnDate

Lend

1..1

0..*

{ Registered, Available,

 Reserved, Lent, Lost }

-holds

*

*

{ available, lent,

 lost }

+borrowItems()
+returnItems()
+showBorrowerLends()
+ahowAllLends()

LendGUI

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2007.10.22/Roskilde

-holds

*

*

+createItem()
+showItem()
+findItem()
+deleteItem()
+editItem()
+showAllItems()

ItemCatalogGUI

+addItem()
+getItem()
+removeItem()
+replaceItem()
+allItemsData()

ItemCatalog

+addLend()
+getLend()
+removeLend()
+getBorrowerLends()
+allLendsData()

LendCollection

LIBRARY PRESENTATION/VIEWS

-cprNo
-name
-bType
-year
-state

Borrower

{ Active, Passive,

 Illegal }

-address
-e-mail
-phone

AdultBorrower

-parent
-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo
-tille
-year
-itemType
-state

Item

0..*

-has borrowed

1..1

+findItems()
+deleteSelectedItem()

DeleteItemHandler

+findItems()
+deleteItems()

ItemDeleteGUI

-author
-publisher
-isbn

Book

_1256986684.vsd
LIBRARY
MODEL

-holds

*

*

+createBorrower()
+showBorrower()
+findBorrower()
+deleteBorrower()
+editBorrower()
+showAllBorrowers()
+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+addBorrower()
+getBorrower()
+removeBorrower()
+replaceBorrower()
+allBorrowersData()

BorrowerRegister

-itemNo
-cprNo
-returnDate

Lend

1..1

0..*

{ Registered, Available,

 Reserved, Lent, Lost }

-holds

*

*

{ available, lent,

 lost }

+borrowItems()
+returnItems()
+showBorrowerLends()
+ahowAllLends()

LendGUI

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2007.10.22/Roskilde

-holds

*

*

+createItem()
+showItem()
+findItem()
+deleteItem()
+editItem()
+showAllItems()

ItemCatalogGUI

+addItem()
+getItem()
+removeItem()
+replaceItem()
+allItemsData()

ItemCatalog

+addLend()
+getLend()
+removeLend()
+getBorrowerLends()
+allLendsData()

LendCollection

LIBRARY PRESENTATION/VIEWS

-cprNo
-name
-bType
-year
-state

Borrower

{ Active, Passive,

 Illegal }

-address
-e-mail
-phone

AdultBorrower

-parent
-sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo
-tille
-year
-itemType
-state

Item

0..*

-has borrowed

1..1

+findItems()
+deleteSelectedItem()

DeleteItemHandler

+findItems()
+deleteItems()

ItemDeleteGUI

-author
-publisher
-isbn

Book

_1256985072.vsd
Table

