COMPUTING SUBJECT:
Implementation of association

TYPE:
GROUP WORK ASSIGNMENT

IDENTIFICATION:
LENDASSOCIATION/MC

COPYRIGHT:
Michael Claudius

DEGREE OF DIFFICULTY:
Intermediate

TIME CONSUMPTION:
4-8 hours

EXTENT:
100 lines

OBJECTIVE:
One way implementation of a 0..1 to 0..n association

COMMANDS:

IDENTIFICATION: FANTASY LIBRARY NO11: LENDASSOCIATION/MC

The mission

You are to develop a program, which can manage, control and handle the library lend of items to borrowers. Due to the requirement specification the following classes and structures have been found, as shown below:

Borrower. The model class (the worker class) Borrower, which holds Borrower data and various methods.

BorrowerCollection. The collection class BorrowerCollection, which holds the borrowers and methods to add, find, remove a borrower as well as other methods.

BorrowerAdministration. The handler class BorrowerAdministration holds an object of the BorrowerCollection and methods to add, register, find and remove a borrower as well as other methods.

BorrowerAdministrationGUI. The GUI presentation class BorrowerAdministrationGUI with which has the usual main method and handling the initialisation of an object of the class BorrowerAdministration. Offers a graphical interface to the user and responds to the user's choice

Item. The model class (the worker class) Item, which holds item data and some simple get-and set-methods.

ItemCatalog. The collection class ItemCatalog, which holds the items and methods to add, find, remove and edit a item as well as other methods.

ItemAdministration. The handler class ItemAdministration holds an object of the ItemCatalog and methods to add, register, find and remove a borrower as well as other methods.

ItemAdministrationGUI. The presentation class ItemAdministrationGUI, which offers a graphical interface to the user and responds to the user's choice.

Lend, holds lend data and set/get-methods.

LendCollection. The collection class LendCollection holds a list of lends and methods to add, find, remove an lend as well as other methods.
LendAdministration. The handler class LendAdministration holds an object of the LendCollection methods to add, register, find, remove an Lend as well as other methods.

LendAdministrationGUI. The GUI application class with the usual main method, handling the initialisation of an object of the class LendAdministration. Offers a GUI-interface to the user and responds to the user's choice by showing the output on the screen.

LibraryGUI. The super-GUI presentation LibraryGUI, which offers the top graphical interface to the user and responds to the users’ choice. Operates on GUI’s on borrowers, lends and items

[image: image1]

Note that we have already implemented the 1..1 association (actually an aggregation) between AdultBorrower and ChildBorrower.

The objective

We want a program, which can register and keep records of the borrowing of items by the borrowers. As the methods for collections of borrowers and items already have been implemented in a super GUI based program, it would be nice to utilize this.

The problem

The problem is how to implement the association between the Lend and the Borrower and the Item class. For the sake of simplicity we assume that only the current lends are registered; i.e. no historic and thus the multiplicity is a 1..1 to 0..* and 0..1 to 1..1 relationship, as also seen in the figure.

One solution is to follow the design closely and utilise a LendCollection class and just put identifiers of borrower and item into the Lend class. The identifiers can be object references (aBorrower) or identifications (cprNo). This solution is a one-way implementation (representation) as we can only go from Lend to Borrower and from Lend to Item and not opposite.
Another solution is to implement the association by extending the Borrower class with a private datafield borrowedItems of the class ItemCatalog holding items borrowed by the borrower. This solution is also a one-way implementation (representation), as we can only go from Borrower to Item borrowed by the respective borrower and not opposite. Spoiling the cohesion of the Borrower class.
The choice depends on a more careful analysis of frequency and time required for the queries.
We shall follow the design closely and choose the first mentioned solution.

Thus the Lend class is to resemble the following template:

Lend

Datafields:

 String cprNo (format ddmmyy-xxxx)

 String itemNo
 String returnDate (format yyyymmdd) or use the Date class. Check the Java Library
 Borrower aBorrower, reference to the borrower

 Item aItem, reference to the item borrowed

Constructors

 Lend ()
 Lend (String cprNo, String itemNo, String returnDate)
 Lend (String cprNo, String itemNo, String returnDate,
Borrower aBorrower, Item aItem)

Methods operating on the data fields

 String toString() returning all lend data

 Get/set-methods for all data fields
Assignment 0: Download .zip files

Find the Library2009.zip file on your teacher’s homepage, download it and extract the files to the package. Clean and build this project.

Then create a new Java application project Library2009Lend.

This project is going to utilize the classes in Library2009 as a jar file.
Therefore right click on the project Library2009Lend and

 Choose Properties -> Libraries -> Add Jar/Folder

Browse to find the Library2009.jar file in the dist folder:

[image: image2.png]® Add JAR/Folder,

Lookin: | dist

=0
[5) ubraryz009

File pame:

Files of type:

Classpath Entry (Flder, ZIP or JAR fi)

Now there is access to all the classes in Library2009, if you remember to import the package library2009 in your new classes.

It might be a little tedious but I it is worthwhile later on.

Assignment 1: Model class: Lend

Create a Java class Lend with the mentioned data fields, constructors and the get and set-methods for the data fields, as described on the previous page.
Remember to use the special auto generator:

Choose -> Source -> Insert Code -> Property

State each property and choose getter- and setter –methods to be generated automatically.
Assignment 2: Application and test in main in Lend

In the main in Lend you must try to test the class by declaring two objects of the Lend class. In main show these constructions:

· declare and construct objects b1, b2 of the class Borrower

· declare and construct objects i1, i2 of the class Item

· declare and construct the 2 objects, l1, l2 of the class Lend

· print out the all lends data using the method lendData
Compile and run.

Did you remember to import library2009 ?

Assignment 3: Collection class: LendCollection

The lends must be recorded in a LendCollection class encapsulating an ArrayList of lend objects using the following template:

Datafields:

 List lends; holding the lend-objects

Constructors

 LendCollection()

Methods operating on the data fields

 boolean addLend(Lend aLend)
 Lend getLend(String cprNo, String itemNo)
 etc. etc.

In your favourite editor create the Java Main Class LendCollection with the mentioned data fields and the following constructor and methods:

LendCollection()

The constructor declares the collection data by using the ArrayList constructor

boolean addLend(Lend aLend)

Adds aLend to the ArrayList collection data, at the end

Returns always true as the collection grows automatically.

boolean registerLend(String cprNo, String itemNo, String returnDate

Borrower borrower, Item item)
Creates a Lend object aLend using the parameters.

Adds aLend to the ArrayList collection lends, at the end.

Returns always true as the collection grows automatically.

Lend getLend(String cprNo, String itemNo)

Traverses the lends collection.

Returns the object reference, i.e. the Lend object, with the given parameters cprNo & itemNo.

Returns null if no object exists with the given parameters

String allLendsData()

Returns a String with all lends data separated by line shifts ("\n").

Tip: Rather similar to ItemCatalog.
Compile it!

Assignment 4: Application and test in main in LendCollection

In the main in LendCollection you must try to test the class by declaring an object of LendCollection and using 3 objects of the Lend class. In main show these constructions:

· declare and construct the a collection of lends, lendCol, of the class lendCollection
· declare and construct objects b1, b2 of the class Borrower

· declare and construct objects i1, i2, i3 of the class Item

· declare and construct the 1 objects, l1 of the class Lend

· add this Lend object to the collection of lends
· register the lends (b2,i2) and (b2,i3) using the method registerLend
· print out the all lends data using the method allLendsData
Compile and run

Assignment 5: Handler class: LendAdministration

The lends in LendCollection must be accessed via the LendAdministration class; handling all communication and encapsulating objects of the ItemCatalog, BorrowerCollection and LendCollection:
Datafields:

 ItemCatalog itemCat; holding the item-objects

BorrowerCollection borrowerCol, holding the borrower-objects

LendCollection lendCol, holding the lend-objects

Constructors

 LendAdministration()

 LendAdministration(BorrowerCollection borrowerCol, ItemCatalog itemCat)

Methods operating on lendCol collection

 boolean addLend(Lend aLend)

 boolean registerLendInfo(…)
 etc. etc.

This will now be described in more details. Read on (
Create a Java Main Class LendAdministration with the mentioned data fields and the following constructor and methods:

· LendAdministration()
The constructor declares the collection lendCol by using the LendCollection constructor

· LendAdministration(BorrowerCollection borrowerCol, ItemCatalog itemCat)
Declares the collection lendCol by using the LendCollection constructor

Initialises the data fields with the parameters

· boolean addLend(Lend aLend)
Adds aLend to the collection by calling addLend in lendCol
Returns always true as the collection grows automatically.

· boolean registerLendInfo(String cprNo, String itemNo, String returnDate)
Finds the borrower object with the cprNo. (getBorrower(CprNo).
Finds the Item object with the itemNo

Registers the end information by calling registerLend in lendCol.

Returns always true as the collection grows automatically

· String allLendsData()

Returns a String with all lends data separated by line shifts ("\n").

Compile it!

Assignment 6: Application and test in main in LendAdministration

In the main in LendAdministration you must try to test the class by declaring an object of LendAdministration and using three objects of the lend class. In main show these constructions:

· declare and construct the object, lendHandler ,of the LendAdministration

· declare and construct the 3 objects, l1, l2, l3, of the class Lend

· use addLendto add the these Lend-object to the collection of lends
· print out the all lends data using the method allLendsData
· use registerLend to register two more Lends
· print out all lends data using the method allLendsData
Tip very similar to main in ItemAdministration..

Remark: You have now tested and well structured classes.

Assignment 7 Presentation class Java GUI Form: LendGUI

In NetBeans create a Java GUI Form named LendGUI.

It is up to you and your group members to decide the GUI-form and components.

Assignment 8: Presentation Class: LendGUI

The program is to be extended, so a lend can be created and added to the lend collection. Further each borrower’s information and the current new lend’s data can be shown when the lending is done. Also all the lends’ data can be shown in the JTextArea. For this purpose we need to extend LendGUI with:

Data fields
lendHandler, a data field of the class LendAdministration
newLends, a data field of the class LendCollection holding current new lends

Constructors

LendGUI()

Initialises the components as usual and initalises the data fields

LendGUI(LendAdministration lendHandler)

Initialises the components as usual and initalises the data field with the parameter
Methods

public void borrowItems ()

Reads in the borrower cprNo.
Finds the borrower with the cprNo.
If a borrower is found it starts looping and in each loop it:
Reads in the item’s itemNo
Finds the item with the itemNo

If an item is a found a lend is created and added to the newLends collection
The lend is also added directly to the total lend collection, lendCol
Otherwise a relevant warning is given

Must be called when a createButton is clicked.

.

public void showAllLends()

Uses the allLendsData method of to show all the new lends´ data in the JTextArea.

Must be called when the showAllButton is clicked.

Compile and run!
Assignment 9: Presentation class: LibraryGUI extension
Extend and change the class LibraryGUI with the mentioned data fields and the constructor:

lendHandler, a data field of the class LendAdministration
constructor LibraryGUI()

Extend the constructor so it also declares the instance lendHandler

Remember to use the borrower collection from borrowerHandler and the item catalog from the itemHandler. (Use getCollection and getCatalog)
Further in the LibraryGUI class declare a new method:

lendAdministration()

Creates and shows the LendGUI.

Transfers the lend handler to this GUI.

Must be called when the lendAdmButton is clicked.

Assignment X: Presentation class: LendGUI extension
public void returnItems()

This is handling the return of items and is very similar to borrowItems (), but here it is searching is in the lendCol and removing lends.

Specify the use case and algorithm before programming !!!
Remember to extend the LendCollection with:

Lend removeLend(String cprNo, String itemNo)

Traverses the data collection.

Removes and returns the object reference, i.e. the Lend object, with the given parameters cprNo and itemNo.

Returns null if no object exists with the given parameters.
And extend the LendAdministration with a method to handle this.

Assignment Y: Presentation class: Library extensions
public void lateLends()

This is handling the search for late lends and prints out a letter to each borrower with a list of items to be returned. Specify the use case and algorithm before programming !!!
This is a very open question and you might like to invent a new GUI for this as its an internal administration tool.

� EMBED Visio.Drawing.11 ���

[image: image3.emf]{

a

vailable,

lent

,

 lost

}

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2009.09.22/Roskilde

LIBRARY PRESENTATION/VIEWS

+createBorrower()

+showBorrower()

+findBorrower()

+deleteBorrower()

+editBorrower()

+showAllBorrowers()

+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+borrowItems()

+returnItems()

+showBorrowerLends()

+ahowAllLends()

LendGUI

+createItem()

+showItem()

+findItem()

+deleteItem()

+editItem()

+showAllItems()

ItemCatalogGUI

-cprNo

-name

-bType

-year

-state

Borrower

{

A

ctive,

Pass

ive,

 Illega

l

}

-Address

-e-mail

-Phone

AdultBorrower

-Parent

-Sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo

-tille

-year

-itemType

-state

Item

0..*

-has borrowed

1..1

LIBRARY

MODEL

-holds

*

*

+addBorrower()

+getBorrower()

+removeBorrower()

+replaceBorrower()

+allBorrowersData()

BorrowerCollection

+addItem()

+getItem()

+removeItem()

+replaceItem()

+allItemsData()

ItemCatalog

+addLend()

+getLend()

+removeLend()

+getBorrowerLends()

+allLendsData()

LendCollection

-itemNo

-cprNo

-lentDate

-returnDate

Lend

1..1

0..1

-holds *

*

{

Registe

red,

Availab

le,

 Rese

rved,

Lent,

Lost

}

-holds

*

*

-author

-publisher

-isbn

Book

BorrowerAdministration LendAdministration

ItemAdministration

-holds

*

*

-holds

*

*

-holds

*

*

*

*

*

*

_1296844707.vsd
LIBRARY
MODEL

-holds

*

*

+createBorrower()
+showBorrower()
+findBorrower()
+deleteBorrower()
+editBorrower()
+showAllBorrowers()
+showBorrowersByName()

BorrowerAdministrationGUI

LIBRARY COLLECTION/CONTROLLERS

+addBorrower()
+getBorrower()
+removeBorrower()
+replaceBorrower()
+allBorrowersData()

BorrowerCollection

-itemNo
-cprNo
-lentDate
-returnDate

Lend

1..1

0..1

{ Registered, Available,

 Reserved, Lent, Lost }

-holds

*

*

{ available, lent,

 lost }

+borrowItems()
+returnItems()
+showBorrowerLends()
+ahowAllLends()

LendGUI

Fantasy Library vs. 2.0

OOD Structures: vs. 1.0.Borrowers & Items & Lend

Michael Claudius//2009.09.22/Roskilde

-holds

*

*

+createItem()
+showItem()
+findItem()
+deleteItem()
+editItem()
+showAllItems()

ItemCatalogGUI

+addItem()
+getItem()
+removeItem()
+replaceItem()
+allItemsData()

ItemCatalog

+addLend()
+getLend()
+removeLend()
+getBorrowerLends()
+allLendsData()

LendCollection

LIBRARY PRESENTATION/VIEWS

-cprNo
-name
-bType
-year
-state

Borrower

{ Active, Passive,

 Illegal }

-Address
-e-mail
-Phone

AdultBorrower

-Parent
-Sex

ChildBorrower

-has parent

0..*

1..1

+toString()

-itemNo
-tille
-year
-itemType
-state

Item

0..*

-has borrowed

1..1

BorrowerAdministration

LendAdministration

-author
-publisher
-isbn

Book

ItemAdministration

-holds

*

*

-holds

*

*

-holds

*

*

*

*

*

*

