COMPUTING SUBJECT:
Arrays of user defined classes

TYPE:
GROUP WORK ASSIGNMENT

IDENTIFICATION:
ITEMCATALOGGUI/MC

COPYRIGHT:
Michael Claudius

DEGREE OF DIFFICULTY:
Intermediate

TIME CONSUMPTION:
8-18 hours

EXTENT:
100 lines

OBJECTIVE:
Arrays

COMMANDS:

IDENTIFICATION: FANTASY LIBRARY NO7: ITEMCATALOGGUI /MC

This exercise is no. 7 in the story of Fantasy Library. The previous exercises were:

Fantasy Library No. 1: Borrower
Fantasy Library No. 2: LibraryHits
Fantasy Library No.3 BorrowerCollection
Later on we will add more model classes, collection classes and presentation classes.

The mission
We want a program, which can register and keep records of items using a GUI like this:

[image: image1.png]Item Data

Create ftem)

Show ltem

Search ltem

Delete ftem
Al tem Data

Total number

[

[ustantems |

The objective
You are to develop a program, which can handle collections of items at the Fantasy Library. Due to the requirement specification done in business modeling the following use cases have been identified for the functionality of the item administration in the Lend-system:

	NO.
	USE CASE NAME

	DESCRIPTION

	1
	Registrer/Add/Create_Item
	Register a new item by adding it to the collection of items.

	2
	Find/Read/Search_Item
	Search/find a item with specific itemNo.

	3
	Update_Item
	Search/find a item with a specific itemNo and update with new data

	4
	Delete_Item
	Search/find a item with a specific itemNo and remove that item

	
	
	

	5
	ListAll_Items
	Generate data for all items and print it out

	….
	
	

The first design is split into 3 layers with 3 classes only:

Presentation layer: ItemGUI, the GUI class
Controller/Collection layer: ItemCatalog, the Collection class (holder class)

Model layer: Item the Model class (worker class)
In Java-terms one is thinking in packages and might see nick names (synonyms) as:

PMC: Presentation Management Component

CMC: Controller/Collection Management Component

MCM: Model Class Component

Item. Item, holds item data and set/get-methods.

ItemCatalog. The collection class ItemCatalog holds a list of items and methods to add, find, remove an item as well as other methods. The student MUST base the ItemCatalog on the ArrayList class.

ItemCatalogGUI. The GUI application class with the usual main method, handling the initialisation of an object of the class ItemCatalog, Offers a GUI-interface to the user and responds to the user's choice by showing the output on the screen.
The design is more or less based on the famous MVC-pattern (Model-View-Controller).

[image: image2]

In the implementation activity we start to follow a simplified version of this design and in later Library exercises we shall add more Model-Classes and Collection-Classes (implementing the catalogs) and Presentation Classes due to more complexity.

For a start we shall just look at the essential functionality of the CMC-class, ItemColletion, as described above.
The problem

You are to develop a program, which can handle registrations/administration of the item data. For a start we define a simple version of the class Item:

Data fields:

 String itemNo (libray’s identification no.)

 String title (full title)

 int year (year of publication) default 9999

 String itemType (CD, Book, DVD etc.)

 String state (Registered, Available, Lent, Reserved, Lost)

Constructors

 Item ()

 Item (String itemNo, String title, String itemType , int year)

 Item (String itemNo, String title, String itemType , int year, String state)

Methods operating on the data fields

 set-methods for all data fields

get-methods for all data fields

String itemData()/toSring returning some clarifying text and item data
 (e.g. Item No.: ISBN: 234-456, Title: SW-Java, Type: CD, Publication Year: 2003)

String toSring returning some clarifying text and item data
 (e.g. Item No.: ISBN: 234-456, Title: SW-Java, Type: CD, Publication Year: 2003)
Method for testing:

 void main(), creating an object and calling its methods

Read on (
Assignment 1: Model class: Item
First find the previous made Item class and download it from your teacher’s home page, and then extend the class Item with:

The extra data fields

Note that the data field "state" per default must be initialized to "Registered",itemType initialized to “Unknown” and year initialized to 9999.

The extra constructors (although you right now only need one!!)
All set- and get-methods. But not for the data field state.
Compile it.

Tip: Very similar to the previous made Item class !!

Assignment 2: Application and test in main

In the main you must declare and construct two objects of the Item class, Show the construction of two items:

b1: ISBN 0561-777, The Boss, Book , 2003, Available

b2: your own data

also show use of the method setTitle() to change the title and finally print out the item data using both the itemData() method and toString.

Tip: Very similar to TMC_Item class !!

Compile and run!

So far nothing new! But we now have an Item class reflecting our study project in SW-Design !

So far we are just warming up!

BUT NOW WE ARE TALKING BUSINESS…
Assignment 3: Collection class: ItemCatalog
The items must be recorded in a ItemCatalog class encapsulating an ArrayList of item objects using the following template:
Datafields:

 List data; holding the item-objects

Constructors

 ItemCatalog()

Methods operating on the data fields

 boolean addItem(Item item)
 Item getItem(String itemNo)

 Item getItem(int index)

 Item removeItem(int index)

 int getNoOfItems()

 etc. etc.

This will now be described in more details. Read on (
In your favourite editor create the Java Main Class ItemCatalog with the mentioned data fields and the following constructor and methods:

· ItemCatalog()
The constructor declares the collection data by using the ArrayList constructor and initializes noOfItems to 0

· boolean addItem(Item item):

Adds parameter item to the ArrayList collection data, at the end

Returns always true as the collection grows automatically.

· String allItemsData()
Returns a String with all items’ data separated by line shifts ("\n").
· String toString()
Returns a String with all items' data separated by line shifts ("\n")

Tip: Rather similar to examples from the book but addItem is new.

Compile it!

Assignment 4: Application and test in main in ItemCatalog

In the main you must try to test the class by declaring an object of ItemCatalog using 3 objects of the Item class. In main show these constructions:
· declare and construct the object, itemCol ,of the class ItemCatalog
· declare and construct the 3 objects, b1, b2, b3, of the class Item
· add the these item-object to the collection of items

· print out the all items’ data using the method allItemsData
Assignment 5: public int getNoOfItem()
In the ItemCatalog class declare a new method:

public int getNoOfItem()

Returns the actual number of items by calling data.size()
Now extend the method main of ItemCatalog to:

· print out the number of items

Notice how smart it is that the method size() do the work for us.

Remark

You have now a small, simple and very little tested program with the basic methods made ready for two use cases: Create_Item & ListAll_Items. We could go on adding more methods but according to Larman its best to build a fully functional program of a smaller part of the system and then later expand with implementation of the other use cases by doing more methods.

Therefore we shall now proceed with the first simple version of the GUI. We will use our normal standard well aware that later the GUI will be rather different.
FirstKISS: First Keep It Simple S----- Then (
Assignment 6 Java GUI Form ItemCatalogGUI

This GUI is very similar to the previous made ItemGUI , which you can download from your teachers home page. Do it!!. Then in NetBeans create a Java GUI Form named ItemCatalogGUI like:

[image: image3.png]Item Data

Create ftem)
Show ltem

Al tem Data

Total number

[

As you can see there are three JButton (createButton, showButton, showAllButton), three JLabel (dataLabel, dataAllLabel, noLabel), one JTextField (numberTextField) and two JTextArea (dataArea, dataAll). Note that the dataArea and dataAllArea are empty at starting point, whereas numberTextField shows 0 at starting point.
What you cannot see is that a JScroolPane is assigned to each JTextArea. Remember to do this..

The program is to be extended so a item can be created and added to the item collection. Further the item’s data and all the items’ can be shown in the JTextField. For this purpose we need to extend ItemCatalogGUI with:
itemCol, a data field of the class ItemCatalog
item, a data field of the class Item
ItemCatalogGUI

Extend the constructor so it declares the instance itemCol

ItemCatalogGUI() {

initComponents();

itemCol = new ItemCatalog();

}

createItem()

Uses JOptionPane to read in the item data.

Declares the item with the data.
Adds the item to the item collection, itemCol

Uses the method getNoOfItems to show the total number of items

Must be called when the createButton is clicked.

showItem()

Uses the itemData method of item to show the respective item data in the JTextArea. dataArea
Must be called when the showButton is clicked.

showAllItems()

Uses the allItemsData method of itemCol to show all the items’ data in the JTextArea allDataArea.
Must be called when the showButton is clicked.

Compile and run.

Assignment 7: public Item getItem(int index)
In the ItemCatalog class declare a new method:

public Item getItem(int index)

Returns the object reference, i.e. the Item object, at the given parameter index.

Returns null if no object exists, i.e. the index is out of range.

Extend the ItemCatalogGUI class with a JButton (searchButton) and a method:

findItem()

Uses JOptionPane to read in the index.

Uses getItem to find the item at the index

Creates an object reference to this item.

Uses the itemData method of item to show the respective item data in the JTextArea.

Must be called when the searchButton is clicked.
Assignment 8: public Item getItem(String itemNo)
In the ItemCatalog class declare a new method:

public Item getItem(String itemNo)

Traverses the data collection.

Returns the object reference, i.e. the Item object, with the given parameter itemNo.

Returns null if no object exists with the given parameter itemNo.

In the ItemCatalogGUI class change the method findItem in the following way:

findItem()

Uses JOptionPane to read in the index or the itemNo.

Uses getItem to find the item with the itemNo, if any.

Creates an object reference to this item.

Uses the itemData method of item to show the respective item data in the JTextArea

Must be called when the searchButton is clicked.
Assignment 9: public Item removeItem(int index)
In the ItemCatalog class declare a new method:

public Item removeItem(int index)
Removes and returns the object reference, i.e. the Item object, with the given parameter index.

Returns null if no object exists, i.e. the index is out of range.

Extend the ItemCatalogGUI class with a JButton (deleteButton) and a method:

deleteItem()

Uses JOptionPane to read in the index.

Uses removeItem to find the item at the index

Creates an object reference to this item.

Uses the itemData method of item to show the respective item data.

Must be called when the deleteButton is clicked.

Assignment 10: public Item removeItem(int itemNo)
In the ItemCatalog class declare a new method:

public Item removeItem(String itemNo)

Traverses the data collection.

Removes and returns the object reference, i.e. the Item object, with the given parameter itemNo, if any.

Returns null if no object exists with the given parameter itemNo.

In the ItemCatalogGUI class change the method deleteItem to handle this.

Helpers to those who need it !

The ItemCatalog class must resemble the following template:

	public class ItemCatalog {

List data;

….

 public static void main(String[] args) {

Item b1;

ItemCatalog itemCol;

b1 = new Item("ISBN561-777","The Boss", “Book”, 2003);

b1.setTitle("Memory of MC");

itemCol.addItem(b1);

System.out.println();

System.out.println(itemCol.toString()); //calls toString()

}// main

}

Assignment Y: public int removeItems(int year, String itemType)
In the ItemCatalog class declare a new method:

public int removeItem(int year, String itemType)
Removes all items registered after the year and of the same type as itemType.

Returns the number of removed items.

Extend the ItemCatalogGUI class with a JButton (removeSpecialButton) and a method to handle this.

Assignment Z: public ItemCatalog removeItemsSpecial(int year, String itemType)
In the ItemCatalog class declare a new method:

public ItemCatalog removeItemSpecial(int year, String itemType)
Removes all items registered after the year and with the same type as itemType.

Returns the collection of the removed items!!!

Extend the ItemCatalogGUI class with to handle this and to show all data for the removed items.

� EMBED Visio.Drawing.11 ���

[image: image4.emf]-itemNo : String

-title : String

-itemType : String = Unknown

-year : int = 9999

-state : String = Registered

Item

{ Registered, Available

 Reserved, Lent, Lost}

Fantasy Library vs. 1.0

OOD Structures: vs. 1.0 The Lend System

Michael Claudius//2006.04.18/Roskilde

MCMITEM MODEL

+addItem(in item : Item) : boolean

+getItem(in itemNo : String) : Item

+removeItem(in itemNo : String) : Item

+itemsData() : String

ItemCatalog

CMC ITEM COLLECTION

+createItem() : void

+findItem() : void

+editItem() : void

+deleteItem() : void

+listAllItems() : void

ItemCatalogGUI

PMC ITEM VIEW

-uses 1..1

1..1

-holds 1..1

0..*

_1207979628.vsd
-itemNo : String
-title : String
-itemType : String = Unknown
-year : int = 9999
-state : String = Registered

Item

+addItem(in item : Item) : boolean
+getItem(in itemNo : String) : Item
+removeItem(in itemNo : String) : Item
+itemsData() : String

ItemCatalog

CMC ITEM COLLECTION

+createItem() : void
+findItem() : void
+editItem() : void
+deleteItem() : void
+listAllItems() : void

ItemCatalogGUI

PMC ITEM VIEW

-uses

1..1

1..1

-holds

1..1

0..*

{ Registered, Available

 Reserved, Lent, Lost}

Fantasy Library vs. 1.0

OOD Structures: vs. 1.0 The Lend System

Michael Claudius//2006.04.18/Roskilde

MCM ITEM MODEL

