COMPUTING SUBJECT:
Arrays of user defined classes

TYPE:
GROUP WORK ASSIGNMENT

IDENTIFICATION:
BORROWERSPECIALISATION/MC

COPYRIGHT:
Michael Claudius

DEGREE OF DIFFICULTY:
Easy

TIME CONSUMPTION:
2-5 hours

EXTENT:
100 lines

OBJECTIVE:
Inheritance

COMMANDS: 2
IDENTIFICATION: FANTASY LIBRARY NO 7: BORROWERSPECIALISATION/MC

This exercise is no. 7 in the story of Fantasy Library.

The mission

You are to develop a program, which can handle specialisations of borrowers at the Fantasy Library. Due to the requirement specification the following specialisations have been identified for the Borrower class: ChildBorrower and AdultBorrower as shown below

[image: image1.emf]-cprNo

-name

-bType

-year

-state

Borrower

{ Active, Passive,

 Illegal }

Fantasy Library vs. 2.0

OOD Structures: vs. 2.1Borrower

Specialisation

Michael Claudius//2006.09.01/Roskilde

-address

-email

-phone

AdultBorrower

-parent

-sex

ChildBorrower

-has parent

0..* 1..1

The objective
We want specialisation classes, which can register and keep records of different types of borrowers.

The problem

You are to develop a program, which can handle registrations of the two specialisations of the Borrower class. For a start we define simple versions of the classes ChildBorrower and AdultBorrower

ChildBorrower

Datafields:

 Borrower parent a reference to the one of the parents

 String sex the gender of the child (“Male”, “Female”)

Constructors

 ChildBorrower()

 ChildBorrower(String cprNo, String name, String bType, int year)

 ChildBorrower(String cprNo, String name, String bType, int year, String state

String sex, Borrower aParent)
Methods operating on the data fields

 String toString() overriding toString() in super class Borrower

 void setSex(int aSex)

 String getSex()

AdultBorrower

Datafields:

 String address

 int phone

 String email

Constructors

 AdultBorrower()

 AdultBorrower String cprNo, String name, String bType, int year)

 AdultBorrower(String cprNo, String name, String bType, int year, String state,

 String address, int phone, String email):

Methods operating on the data fields

 String toString() overriding toString() in the super class Borrower

 void setAddress(String address)

 String getAddress()

 void setPhone(int phone)

 int getPhone()

 etc…
Read on (
Assignment 1: Specialisation class: AdultBorrower

First create a Java class AdultBorrower with the mentioned data fields, three constructors and the method toString():

· The constructors
must call super; e.g. super(cprNo, name,…….)

· String toString()
returns a String with all borrower data seperated by lineshifts("\n")

must utilise super.toString()
Tip: Very similar to Borrower class !! So copy, paste and remember to remove a lot of the data fields and methods.

Assignment 2: Application class: TMC_BorrowerSpecialisation
Now you must create an application Java Main Class TMC_BorrowerSpecialisation using objects of the class AdultBorrower with the usual main method.

In main() you must show the construction of one borrower (b1) and three adult borrowers (ab1, ab2, ab3).

Also show use of the method toString() to print out the borrowers data.

Tip: Very similar to many other main-mehtods !!

Compile and run!

Assignment 3: Application class: Polymorphism

Try the following assignment:

b1 = ab1;

System.out.println(b1);

What was printed out ? Only borrower data or adult borrower data ?

Also try:

ab1 = b1

cb1 = ab1;

ab1 = (AdultBorrower) b1;

What was possible ? What was printed out ? Only borrower data or adult borrower data ? Why ?

Assignment 4: Specialisation class: ChildBorrower

Now create a class ChildBorrower with the mentioned data fields, three constructors and the method toString():

· The constructors
must call super; e.g. super(aName, aYear)

must initialise the data field parent

· String toString()
returns a String with all borrower data seperated by lineshifts("\n")

must utilise super.toString() and parent.toString()
Tip: Very similar to AdultBorrower class !! So copy, paste and remember to remove a lot of the data fields and methods.

Assignment 5: Application class: TMC_BorrowerSpecialisation
In TMC_BorrowerSpecialisation extend main() with construction of two child borrowers (cb1, cb2).

Also show use of the method toString() to print out these borrowers' data.

Compile and run!

Assignment 6: Application class main with array of borrowers

In TMC_BorrowerSpecialisation extend main() with an array bTable of the class Borrower:

Borrower[] bTable = new Borrower[5];

Initialise the 5 elements of the table, e.g. by means of constructions such as:

bTable[0] = b1;

bTable[1] = ab1;

bTable[2] = cb1;

Produce a for-loop traversing the table bTable and printing all the borrower data by means of the toString method:

System.out.print1n(bTable[i].toString())

Consider the above sentences carefully.

Notice how the right toString() is called

Assignment 6: Application class with borrower collection
In TMC_BorrowerSpecialisation extend main() with a variable borrowers of the BorrowerCollection class:

Add all the borrowers (b1, ab1, ab2, ab3, cb1, cb2) to this object.

Use toString() to print out all the data (borrowerCol.toString()).

_1218259701.vsd
-cprNo
-name
-bType
-year
-state

Borrower

{ Active, Passive,

 Illegal }

Fantasy Library vs. 2.0

OOD Structures: vs. 2.1Borrower Specialisation

Michael Claudius//2006.09.01/Roskilde

-address
-email
-phone

AdultBorrower

-parent
-sex

ChildBorrower

-has parent

0..*

1..1

