Roskilde edb-skole

2013-04-15/Michael Claudius

Prog 2\Noter\OOD Implementation Guidelines.doc

OOD: The Guidelines on Implementation
And every time he had a choice he threw the green dices and followed their advice, and alas! They led him in the right direction to the treasure. (From The Dice Man)

Of course dices might be used but here is an alternative !!

Mission

The objective of this note is to describe the considerations on how to transform the Object Oriented Design (the design model) into an implementation.
Implementation types

In general there are the following major methods for implementation:
1. 3rd generation Object Oriented Programming Language (OOPL) with/without flat files
2. Relational Database (RDB) directly

3. Relational Database (RDB) via Enhanced Entity Relation Diagramming (EE/R-D)
4. Object Oriented Database (OODB)
However it must be stressed that implementation method no. 1 normally will be combined with one of the other methods. And this shall also be our assumption in the next sections.
Object Oriented Implementation (OOIMP)
The issue of this activity is to implement the design in an Object Oriented Programming Language (OOPL) by answering the major questions:

How are the basic elements transformed ?

How are the different structures/relations transformed ?

How are the objects identified ?

By choosing from the possibilities in the OOPL and defining the different data structures.
1. Review your OOD model diagrams.

Take a good look at the diagrams any changes needed ? Is everything in good order ?

2. Choice of OOPL
Decide the language and decide whether or not multiple inheritance is possible.

3. Redraw the Generalization-Specialization structures

In accordance with the choice in 2 consider using roles instead of inheritance where this is appropriate.

4. Transform the basic elements for the essential classes

Here classes, generalization-specialization, attributes and methods are judged.

Attributes are defined with acces, datatype, composite attributes are split.

Methods are defined with parameters, return value, acces

5. Transform the controller/collection. How are the model objects identified ?

Choose a data structure for each of the controllers/collections i.e. the FMC Model-holder structures are chosen by looking at how each object must be identified.

Choose between the possible data structures: array, array list, linked list, hash table, tree, map etc.

6. Transform the association structures.

Choose between single direction or double direction representations.

The evaluation of the frequency (how often are this function called) and the performance (acces time) helps to make the right choice.

Choose between the possible data structures: array, array list, linked list, hash table, tree, map etc.

7. Transform the aggregation structures.

Choose between one way direction or two way direction representations.

If the number of aggregated objects are constant or limited consider to use attributes instead.

The evaluation of the frequency (how often are this function called) and the performance (access time) helps to make the right choice.

Choose between the possible data structures: array, array list, linked list, hash table, tree, map etc.

8. Revise the diagrams with the implementation details and draw the new diagrams

9. Update the requirement definition document
Check the requirement definition for new functional and non-functional requirements. As we have been working with the implementation maybe even on a specific platform both new functional and non-functional requirements might be introduced.

Relational Database Implementation
The issue of this activity is to implement the design in a Relational DataBase (RDB). Before going into details one has to decide between two streams:

1. Directly transformation from design class diagrams to relations/tables

2. Indirect transformation via E/R-diagrams to relations/tables

and thereafter answering the major questions:

How are the basic elements transformed ?

How are the different structures transformed ?

How are the objects identified ?

Normalization. Which normal form (NF) ?
by choosing from the possibilities in the RDB and defining the different relations/tables and relationships/associations.

Normally the second approach is recommended, i.e. to go through the EE/R-diagrams as the steps thereafter are well described and documented and consistent with database design. However UPEDO, UML and UP ensures very detailed design models making EE/R-diagrams more or less superfluous. Also for implementations with embedded SQL in an OOPL the first approach seems more appropriate. Finally the first approach is also faster if a good design model exists.

Overview

In this section we will state the steps in the direct transformation and in the next section the other stream is described. As a major rule one can say that normally that:

model “data”class just holding data is transformed into a relation/table

attributes are just placed in the respective relation/table

methods with a RDB-functionality are placed on special DAO-classes

generalization-specializaton is transformed into one or more subtype tables

association/aggregation is transformed into zero, one or more tables

1-1 aggregation: the attributes is placed at the stronger relation or

1-1 association: a foreign key placed on the weaker -side relation

1-* association: a foreign key placed in the many-side relation

- structure is transformed into two 1-* relations with an extra relation between the original relations and with foreign keys referring to these relations/tables

0. Choice of RDB

The definitive choice of tools (MySQL, Postgress, Ingress, Oracle, Interbase, ODBC), does not have to be taken now, but we have decided that it is a Relational Database with relations, columns, rows and attributes. And sometimes it is opposite the choice was a taken already before any analysis due to requirements from the client/customer.
1. Review your OOD model diagrams.

Take a good look at the diagrams any changes needed ? Is everything in good order ?

2. Review the design classes
Look at the classes and categorise them according to their responsibility into the following categories:

Interface class to user: Presentation class, i.e GUI

Interface class to technical devises and or other systems.

Controller class

Model Holder/Collection class with the holding objects of other classes.

Model Data class holding persistent data/information

All classes can be kept if you are using embedded SQL in an OOPL, but Model Data classes need to be tables in the RDB. Further the collection/holder classes need to have “clones” encapsulating the DB-functionality (SQL-sentences) and the clones are named DAO-classes (DataAccessObject-classes).
3. Keep the interface and controller classes.

Hopefully these classes need very few changes as they should have no direct contact with the RDB.

4. Transform the collection/holder objects. How are the relations identified ?

These classes are holding/controlling important functionality in the Model layer and are not used as tables as the relations are automatically identified by the table names. The classes should be used indirectly to set up the functionality for the database. The transformation of these classes will be done later.
In the first state of transformation and implementation just keep them as OO-classes but be aware that the content, the number of classes and methods must be cloned to handle a RDB.
Whether or not the collection classes should have directly access to the DAO-Classes is an open question to be discussed later.
5. Transform data model classes into relations/tables

These classes are holding the persistent information to be put into the RDB.

Classes are transformed directly to relations/tables. Later they might be extended with primary key and foreign keys.

Attributes directly to attributes in relations, composite attributes might be split.
Methods (get/set) are thrown away as relations do not hold methods !
Objects are not transformed as an object just will be a row in the RDB.
6. Transform the 1-1 aggregation/association structures.

If it is a hard aggregation choose to in-cooperate one class as attributes in the other.

Otherwise place a foreign key on the weaker relation side or in both, if needed.

7. Transform the 1-* aggregation structures.

All aggregations are transformed into relations but during this phase foreign keys are inserted into the weaker part also known as the many part relation participating in the aggregation and thus the connection is now represented by the foreign keys.
8. Transform the 1-* association structures.

All aggregations are transformed into relations but during this phase foreign keys are inserted into the weaker part also known as the many part relation participating in the association. Thus the connection is now represented by the foreign keys.
9. Transform the *-* association structures.

Here both parts are strong. Transform the *-* association into two 1-* relations. Thus an extra relation/table is added. Follow the 1-* transformation. Add foreign keys in the new table. Thus the connection is now represented by the extra table and the foreign keys.
10. Transform the Generalization-Specialization structures into subtype structures

Decide whether the subtypes in each inheritance is not disjoint (overlapping) or disjoint, whether the participation is mandatory (forced) or optional. Choose between:

One table per class. Foreign keys in sub types referring to the super type.

Collapse the super type into all sub types. One table per sub type.

Collapse all sub types and the super type. One big table.
When looking at overlapping (non disjoint) subtypes consider using association roles instead of inheritance where this is appropriate; i.e. 1-* relations should then be used as described earlier.

11. Introduce primary keys and foreign keys in all the tables

Decide whether to use pure or not pure implementation (using combined foreign keys as

primary keys). This might be done simultaneously during the transformation step 4-9.
12. Create a database table diagram where the relations are shown.

Consider whether there is mandatory or optional participation in the relations ?

Strong or weak relation types?

13. Normalize to 3’rd normal form.

Explain the normalization rules make sure tables are on 3. NF.

Also this might be done simultaneously during the transformation step 4-12.
14. Document the relations/tables, attributes and domains
Use of RDB forms for this highly recommended. See special document on the forms.
Also this might be done simultaneously during the transformation step 4-12.
15. Update the requirement definition document
Check the requirement definition for new functional and non-functional requirements. As we have been working with the implementation maybe even on a specific platform both new functional and non-functional requirements might be introduced.

16. Transform the collection/holder classes. How are the relations identified ?

These classes are holding/controlling important functionality in the Model layer and are not used as tables as the relations are automatically identified by the table names. The classes should be used indirectly to set up the functionality for the database. Therefore instead of changing the methods clone the method-signatures into new DAO-classes and let the methods handle the SQL-sentences.

This decision might include the choice of embedded SQL, 2- or 3- tier etc.

As a golden rule the methods can be categorized and placed on classes as follows:

DAO-Classes with the 4 CRUD-methods (Create, Read/Find/Search, Update, Delete)

One DAO-class per table and only when the methods involve only one table.

Read/Find/Search only for the “sql-select *” only using the primary key

Delete only for the “sql-delete” only using the primary key

Update only for updating all data in one row and only using the primary key

DAO-QueryClasses with all other methods

One DAO-QueryClass per sql-sentence and only with one doIt-method

Or one DAO-QueryClass per use case.

In the second state of implementation just copy the classes into DAO-classes in a fourth layer and then change the content, the number of classes and methods to handle a RDB.
Whether or not the collection classes should have access to the DAO-Classes is an open question.

Relational Database Implementation via EER
The issue of this activity is to implement the design in a Relational DataBase (RDB). Before going into details one has to decide between two streams:

1. Directly transformation from design class diagrams to relations/tables
2. Indirect transformation via E/R-diagrams to relations/tables

and thereafter answering the major questions:

How are the basic elements transformed ?

How are the different structures transformed ?

How are the objects identified ?

Normalization. Which normal form (NF) ?

Normally it is recommended to go through the EE/R-diagrams as the steps thereafter are well described and documented and consistent with database design. However UPEDO, UML and UP ensures very detailed design models making EE/R-diagrams superfluous. Also for implementations with embedded SQL in an OOPL the first approach seems more appropriate. Finally the first approach is also faster. It all depends on how strict you follow UML/UP guidelines.
Overview

In this section we go through the EE/R-considerations and in the previous section the other stream is described. As a major rule one can say that normally:
model class just holding data is transformed into a relation/table

attributes are just placed in the respective relation/table

generalization-specializaton is transformed into one or more subtype tables

association/aggregation is transformed into one or more tables

1-* association is removed and a foreign key placed on the many-side part
1-1 structure is removed and the attributes is placed at the holder class

- structure is transformed into *-* relation type with 3 tables

0. Choice of RDB

The definitive choice of tools (Postgress, Ingress, Oracle, Interbase, ODBC), does not have to be taken now and maybe it has been taken already, but we have decided that it is a Relational Database with relations, columns, rows and attributes.
1. Review your OOD model diagrams.

Take a good look at the diagrams any changes needed ? Is everything in good order ?

2. Review the design classes
Look at the classes and categorise them according to their responsibility into the following categories:

Interface class to user: Presentation class, i.e GUI

Interface class to technical devises and or other systems.

Controller class

Holder/Collection class with the responsibility of holding objects of other classes.

Data class holding persistent data/information

All classes can be kept if you are using embedded SQL in an OOPL, but some needs to have clones with extra functionality and some needs to be tables in the RDB.

1. Keep the interface and controller classes.

Hopefully these classes needs very few changes as they should have no direct contact with the RDB.

2. Transform the collection/holder objects. How are the relations identified ?

These classes are holding/controlling important functionality in the Application layer (Also named Functional Management Component FMC) and are not used directly as the relations are automatically identified by the table names.

The DAO-classes should be used indirectly to set up the functionality for the database.

The methods found are incorporated in the views of the database and set up as SQL-requests.

This decision includes the choice of embedded SQL, 2- or 3- tier etc.

Just keep them as OO-classes but be aware that the content of the methods must be changed to handle a RDB.
3. Transform the Generalization-Specialization structures into subtype structures

Decide whether the subtypes in each inheritance is not disjoint (overlapping) or disjoint, whether the participation is mandatory (forced) or optional.

When looking at the overlapping subtypes consider using aggregation roles instead of inheritance where this is appropriate; i.e. 1-* relations should then be used as described later.

4. Transform the classes into entities

Each entity is given a primary key as identifier.

5. Transform the 1-1 aggregation structures.

If it is a hard aggregation choose to in-cooperate the class as attributes or place a foreign key on the the weaker entity side.

If it is a soft aggregation structure transform it into 1-1 relation.

6. Transform the 1-* aggregation structures.

If it is a hard aggregation place a foreign key on the n-side entity or transform it into a 1-* relation with a weak entity type.

If it is a soft aggregation structure place a foreign key on the n-side entity or transform it into 1-* relation.

7. Transform the 1-* association structures.

Consider aggregation instead unless several the associations are coupled together.

Transform the 1-* association it into 1-* relation.

If several 1-* associations are coupled together consider to collapse the structures and use a *-* relation instead.

8. Transform the *-* association structures.

Transform the *-* association it into an *-* relation.

9. Transform the *-* aggregation structures.

Very, very seldom, probably a mistake! Consider association instead !

Transform the *-* association it into an *-* relation.

10. Introduce primary keys and foreign keys in all the entity type and relationship types.

Decide whether to use pure or not pure implementation (using combined foreign keys as

primary keys). This might be done simultaneously during the transformation.

11. Review the new e/r-diagram.

Mandatory or optional participation of entities in the relations ?

Strong or weak entity types?

12. Document the entities, relations and attributes of each entity and relationship

Use of table forms is recommended.

13. Do the logic database design and normalize to 3’rd normal form.

14. Update the requirement definition document
Check the requirement definition for new functional and non-functional requirements. As we have been working with the implementation maybe even on a specific platform both new functional and non-functional requirements might be introduced.

7

