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Master-Slave

The Master-Slave design pattern supports fault tolerance, parallel
computation and computational accuracy. A master component
distributes work to Identical slave components and computes a final
result from the results these slaves return.

Example The traveling-salesman problem is well-known in graph theoiy. The
task is to find an optimal round trip between a given set of locations,
such as the shortest trip that visits each location exactly once.

The solution to this problem is of high computational complexity—--
there are approximately 6.0828 * 1062 different trips that connect the
state capitals of the United States! Generally, the solution to the
traveling-salesman problem with n locations is the best of (n-i)!
possible routes. Since the traveling-salesman problem is NP-complete
[GJ79], there is no way to circumvent this high complexity if the
optimal solution must be found.

Most existing Implementations of the traveling-salesman problem
therefore approximate the optimal solution by only comparing a fixed
number of routes. One of the simplest approaches is to select routes
to compare at random, and hope that the best route found
approximates the optimal route sufficiently. We should make sure
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however that the routes to be investigated are chosen in a random
and independent fashion, and that the number of selected routes is
sufficiently large.

Context Partitioning work into semantically-identical sub-tasks.

Problem ‘Divide and conquer’ is a common principle lbr solving many kinds of
problems. Work is partitioned into several equal sub-tasks that are
processed independently. The result of the whole calculation is com
puted from the results provided by each partial process. Several
forces arise when implementing such a structure:

• Clients should not be aware that the calculation is based on the
‘divide and conquer’ principle.

• Neither clients nor the processing of sub-tasks should depend on
the algorithms for partitioning work and assembling the final
result.

• It can be helpful to use different but semantically-identical imple
mentations for processing sub-tasks, for example to increase
computational accuracy.

• Processing of sub-tasks sometimes needs coordination, for exam
ple in simulation applications using the finite element method.

Soluhon Introduce a coordination instance between clients of the service and
the processing of individual sub-tasks.

A master component divides work into equal sub-tasks, delegates
these sub-tasks to several independent but semantically-identical
slave components, and computes a final result from the partial
results the slaves return.

This general principle is tound in three application areas:

• Fault tolerance. The execution of a service is delegated to several
replicated implementations. Failure of service executions can be
detected and handled.

• Parallel computing. A complex task is divided into a fixed number
of identical sub-tasks that are executed in parallel. The final result
is built with the help of the results obtained from processing these
sub-tasks.
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( 11t1’iLI(.11iO1101 (iLCiLi(UiI. Ilk’ cXe(’Ut iO I of a St’FVl((’ IS delegated to
several ililk-re’iit impleiiientat ions. Inaccurate results cali he
detected and liaiid’dl.

Provide all slaves wit Ii a cunimoi I i it erlace. Let cliei I s of the overall
service commtinicate only with the master.

We (lecide to approximate t he solul ioi I to the traveling- salesman
prohleni by (‘olnparing a lixeci i iiiinbcr of trips. Our strategy for
selecting trips is simple—we just pick them randomly. This simple—
minded implementation uses an early version of the object—oriented
parallel programming language pSather IMFL93I. The program is
ttuwd kr a CM—5 computer from Thirikimig Machines Corporation with
SIX tV - four process( )rs.

lo take advantage of 11w C M—5 multi—processor architecture, the
lengths of different trips are calculated in parallel. We therefore
implernt’nt tije trip length calculation as a slave. Each slave takes a
nimher of t ri)s to be compared as input randomly selects these trips

and ret un is the shortest trip found. A master determines a priori the
number of slaves that are to be tnstantiated, specifIes how many trips
each slave instance should compare, launches the slave instances,
and selects the sliom-test trip from all trips returned. In other words.
the slaves provick local optima that the master resolves to a global
O1)tiliIIiilI.

Structure TI ic Htaslcr eonipot icilt1ro’ides a service that call be solved by apply
ing the ‘divide and conquer’ principle. It offers an interlace that allows
(‘lid its to access this service. Internally, the master imnplenients mm ic
I ioi is for partitioning work into several ccltial sub—tasks, starting and
controlling their proe’simlg, and computing a fInal result front all the
resulis obtained. The master also mnaimitains references to all slave in
51w ices to which it delegates the processing of sub-tasks.

The slave (‘olYlponeIIt provides a sub-service that can process (lie
sub-tasks defined by the master. Within a Master-Slave structure,
there arc at least two instances of the slave component connected to
the flnister.
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Class Collaborators Class Collaborators
Master • Slave Slave -

Responsibility Responsibility
• Partitions work • Implements the

among several sub-service used by
slave components the master.

• Starts the execu
tion of slaves

• Computes a result
from the sub-
results the slaves
return.

The structure defined by the Master-Slave pattern is illustrated by
the following OMT diagram.

±2
Master Slave

delegates
mySlaves sub-task execution subSen’icc

split Work
railSiaves
combineResults

service

Dynamics In the following scenario we assume, for simplicity, that slaves are
called one after the other. However, the Master-Slave pattern
unleashes its full power when slaves are called concurrently, for ex
ample by assigning them to several separate threads of control. The
scenario comprises six phases:

• A client requests a service from the master.

• The master partitions the task into several equal sub-tasks.

• The master delegates the execution of these sub-tasks to several
slave instances, starts their execution and waits for the results
they return.

• The slaves perform the processing of the sub-tasks and return the
results of their computation back to the master.

• The master computes a final result for the whole task from the
partial results received from the slaves,

• The master returns this result to the client.
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Implementation The implementation of the Master-Slave pattern follows five steps.
Note that these steps abstract from specific issues that need to be
considered when supporting the application of the pattern to the spe
cial cases of fault tolerance, parallel computation, and computational
accuracy, or when distributing slaves to several processes or threads.
These aspects are addressed in the Variants section.

Divide work. Specifr how the computation of the task can be split into
a set of equal sub-tasks. Identify the sub-services that are necessary
to process a sub-task.

For our parallel traveling-salesman program we could partition
the problem so that a slave is provided with one round trip at time
and computes its cost. However, for a machine like the CM5 with
SPARC node processors, such a partitioning might be too fine
grained. The costs for monitoring these parallel executions and for
passing parameters to them decreases the overall performance of the
algorithm instead of speeding it up.

A more efficient solution is to define sub-tasks that identify the
shortest trip of a particular subset of all trips. This solution also takes
account of the fact that there are only sixty-four processors available
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oi our CM5. The number of available processors limits the number of
sub-tasks that can he processed in parallel. To find the number of
trips to be compared by each sub-task, we divide the number of all
trips to be compared by the nuniber of available processors. Li

2 Combine sub-task results. Specify how the linal result of the whole
service can be computed with the help of the results obtained from
processing individual sub-tasks.

Each sub-task returns only the shortest trip of a subset of all
trips to be compared. We must still identify the shortest trip of tliese.[J

3 Specfj the cooperation between master and slaves. Define an inter
face for the sub-service identified in step 1. It will be implemented by
the slave and used by the master to delegate the processing of inch
vidual sub-tasks.

One option for passing sub-tasks from the master to the slaves is to
include them as a parameter when invoking the sub-service. Another
option is to define a repository where the master puts sub-tasks and
the slaves fetch them. When processing a sub-task, individual slaves
can work on separate data structures, or all slaves can share a single
data structure. Slaves may return the result of their processing
explicitly as a return parameter. or they may write it to a separate
repository from which the master retrieves it.

Which of these options are best depends on many fliciors; 1r
example, the costs of passing sub-tasks to slaves, of duplicating data
structures, and of operating on a shared data structure with several
slaves. The original problem also influences the decisions to be niade.
When slaves modify the data on which they operate. you need to
provide each slave with its own copy of the original data structure. If
they do not modify data, all slaves can work on a shared data
structure, fbr example when implementing matrix multiplication.

— For the traveling-salesman program we let each slave operate on
its own copy of the graph that represents all cities and their
connections. We will create these copies when instantiating the
slaves. The alternative—having the slaves read from one shared
graph representation—was not chosen since such a communication
load on the CM5 internal network would reduce the performance of
our application considerably.
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•

- Update the optimal tour if the currently evaluated

-- tour is better than the current optimum
update_optimum is

if current_tour.cost < best_tour.cost then
best_tour := current_tour;

end; -- if

end; - - update_optimum
end; - - class TSP

Note that the assignment In update_optimum assumes either deep-

copy semantics, or that current tour will refer to a new TOUR object
after the assignment. Otherwise, construct_random_tour 0 cor
rupts best_tour when modi1,ring current_tour. The original pro
gram solved the problem by swapping the two TOUR objects to which
best_tour and current_tour referred. U

5 Implement the master according to the specifications (leVeloped in
step 1 to 3.

There are two options for dividing a task into sub-tasks. The first is
to split work into a fixed number of sub-tasks. This is most applicable
if the master delegates the execution of the complete task to the
slaves. This might typically occur when the Master-Slave pattern is
used to support fault tolerance or computational accuracy applica
tions, or if the amount of parallel work is always fixed and known a
priori. The second option is to define as many sub-tasks as necessary,
or possible. For example, the master component in our traveling-
salesman program could define as many sub-tasks as there are pro
cessors available.

The exchange of algorithms for subdividing a task can be supported
by applying the Strategy pattern [GHJV95J. We discuss further issues
you should consider In the Variants section.

The code for launching the slaves, controlling their execution arid col
lecting their results depends on many factors. Are the slaves executed
sequentially, or do they run concurrently in different processes or
threads? Are slaves independent of each other, or do they need coor
dination? We give more details about this In the Variants section.

The master computes a final result with help of the results collected
from the slaves. This algorithm may follow different strategies, as
described in the Variants section. To support its dynamic exchange
and variation, you can again apply the Strategy pattern [GHJV95I.
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You also must deal with possible errors, such as failure of slave
execution or failure to launch a thread. Details are discussed in the
Variants section.

There is only one master component within a Master-Slave structure.
You can apply the Singleton pattern IGHJV95 to ensure this
property.

In the traveling salesman program we represent the master with
an object of class CM5_TSP. It offers a function best_tour C) to its
clients which returns the best round trip visited by the whole Master-
Slave structure. The best_tour () function takes the number of
routes to be generated and the number of processors to use as
parameters.

The function distribute () copies the graph and some additional
data structures to all processors. The implementation we show works
sequentially. ‘@j’ means ‘do this operation on processor j’. The
function distribute () creates as many new slaves as there are
processors available. The function random_perms () launches the
slaves. The function update_optimum C) selects the optimal route
from the local optima returned by the slaves.

Our strater for coordinating the slaves is to start them asynchro
nously and to synchronize them later, in particular when we want to
select the best trip found. To implement this behavior we use the
•future’ principle. A future is a variable that defines a value that is
computed asynchronously in a different process or thread of con irol.
Synchronization is achieved when the variable is accessed later. Since
pSather supports futures, we use an array of futures for slaves to
coordinate their parallel execution. For reasons of brevity we do not
illustrate object creation. For more details on the pSather version we
use in our example, see ILim93].

class CM5_TSP is
-- Data structures. Shared variables in pSather
-

- correspond to static members in C++
shared n TNT - - Number of Cities
shared P : TNT;

-- Number of processors
shared T ARRAYITSP}; -- The slave array
shared best_tour : TOUR -- The best round trip
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-
- Assign a slave to each available processor

distribute is
-

- Create the slave instances
i INT : 1;
while i < P loop

-

- initializes T[j]
copy_graph U@j;
i i+l;

end; - - loop
end; -- distribute
-

- Launch the slaves
random_perms(t : INT) is

i, j, jobs_per_proc : INT;
-- Calculate how many tours each slave must visit
-- Assume that P divides t
jobs_per_proc t/P;
-

- Define a monitor
m := MONITOR{TOUR} :MONITOR(TOUR} :new;
-- Launch each slave at its processor
i : 1;
while i <= P loop

m - Tfi] .random_perms(jobs_per_proc)@i;
i : i + 1;

end; -- loop
-

- wait until the slaves finish with their
-

- computation and take the results of the slaves
-

- in whatever order they are returned
j : 1;
while j < P loop

current_tour : m.take;
update_optimum()
j j + 1;

end; - - loop
end; - - random_perms
-- Select the optimal tours from the trips the slaves
-

- returned
update_optimum is - - not shown here
end; -- update_optimum
-

- Return the optimal tour from t randomly created
-- ones with help of P slaves.
best_tour(t, p INT) TOUR is

P p;
-- Create the slaves, launch them, determine
-

- the best trip visited, and return this tour
-- to the client calling the master
distribute;
random_perms(t)
update_optimum;
res := best_tour;

end; - - best_tour
end; -- class CM5_TSP
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Variants There are three application areas for the Master-Slave pattern:

Master-Slave for fault tolerance. In this variant the master just
delegates the execution of a service to a fixed number of replicated
implementations, each represented by a slave. As soon as the first
slave terminates, the result produced is returned to the client of the
master. Fault tolerance is supported by the fact that as long as at
least one slave does not fail, the client can be provided with a valid
result. The master can handle the situation in which all slaves fail, for
example by raising an exception or by returning a special ‘Exceptional
Value’ ICun94I with which the client can operate. The master may use
time-outs to detect slave failure. However, this variant does not help
with the situation in which the master itself fails—it is the critical
component that must ‘stay alive’ to make this structure work.

Master-Slave for parallel computatioii. The most common use of the
Master-Slave pattern is for the support of parallel computation. In
this variant the master divides a complex task into a number of
identical sub-tasks, each of which is executed in parallel by a
separate slave. The master builds the final result from the results
obtained from the slaves. The master contains the strategies for
dividing the overall task and for computing the final result.

The algorithm for sub-dividing the task and for coordinating the
slaves is strongly dependent on the hardware architecture of the
machine on which the program runs. On distributed memory
machines with general-purpose processors, for example, the granu
larity is usually larger than on SIMD (single instruction multiple data)
machines. Other aspects that govern the algorithm are the machine’s
topology and the speed of its processor interconnections. The cooper
ation between the master and the slaves also depends on aspects
such as the existence of shared or distributed memory for machines.
The division of work is further influenced by issues listed in the Slave
as Threads variant (see below), and the cooperation between master
and slaves by Issues listed in step 3 of the Implementation section.

Before the master can compute the final result it must wait for all
slaves to finish executing their sub-tasks. To free the master from the
task of synchronizing each slave individually, [KSS96} introduces the
concept of a barrier. A barrier is initialized with the slaves on whose
termination the master waits. It then suspends the execution of the
master until all the slaves it controls have terminated. Our pSather
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cXall iple, iii (:0111 fast works in an incremental lashion—whenever a
slave terillinales the andonperms ( ) method lakes 1t5 result.

Master-StaLe br computational accuracy. In this variant the execution
ol a service is delegated to at least three different implementations.
each of which is a separate slave. The master waits for all slaves to
complete, and votes on their results to detect and handle inaccura
cies. This voting may follow different strategies. Examples include
that in which the master selects the result that is ret urnecl by 1 he
greatest number of slaves, the average of all results, or the use of an
Exceptional Value ICun94I in the case in which all slaves produce di1
ICrent results.

‘o l)ro’de different slave implementations, we can extend the
structure of the Master-Slave pattern with an additional abstrac’i
class. This defines an interface common to all slave implementations.
Diffrrent slave implementations are then derived from this abstract
base.

Further variants exist for implementing slaves:

Slaves as Processes. To handle slaves located in separate processes.
you can extend the odginal Master-Slave structure with Iwo adcli
tional components lBro96}. The master includes a top component that
keeps track of all slaves working br the master. To keep the master
and the top component independent of the physical location of dis
tributed slaves, remote proxies (263) represent each slave in the
master process. You can apply the Forwarder-Receiver (307) or
Client-Dispatcher-Server pattern (323) to implement the inter-
process communication.

delegates
sub-task execution
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Slaves as Threads. In this variant, every slave is implemeilteci within
its own thread of control EKSS96I. In this variant the master creates
the threads, launches the slaves, and waits for all threads to complete
before continuing with its own computation. The Active Object
pattern [Sch95j helps in implementing such a structure.

In this variant the master must deal with two problems: what
happens if a thread cannot be created, and how many threads should
be created? A solution to the first problem is to call the slave’s services
directly, without launching them in a separate thread. Performance
will suffer, but the result will be correct. The optimal number of
threads depends on the number of processors available and on the
amount of work required from each thread. Too many threads incur
overheads in their creation and destruction, as well as in memory
consumption. [KSS96] suggests experimenting with diftèrent
strategies, starting with ‘a few more threads than the number of
processors’.

Master-Slave with slave coordination. The computation of a slave may
depend on the state of computation of other slaves, for example when

performing simulation with finite elements. In this case the
computation of all slaves must be regularly suspended for each slave
to coordinate itself with the slaves on which it depends, after which
the slaves resume their individual computation.

There are two ways of implementing such a behavior. Firstly, you can
include the control logic for slave coordination within the slaves
themselves. This frees the master from the task of implementing this
coordination, but may decrease the performance of the overall
structure. Slaves will stop their execution independently and may idle
until the slaves on which they depend are ready for coordination.

The second option is to let the master maintain dependencies
between slaves and to control slave coordination. At regular time
intervals the master suspends all slaves, retrieves the current state of
their computation, forwards this data to all slaves that depend on this
data, and resumes the execution of all slaves.
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jBro96J lists several applications of the Master-Slave design pattern,
all of which focus on distributed slaves. These include the distributed
design rule checking system CalibrerM DRC-MP and the CheckMate
IC verification tool, both from Mentor Graphics.

Factoring large numbers into prime Jhctors can also be done in a
‘divide and conquer’ fashion. As this problem is central to cryp
tography, of great interest to governments, and requires vast com
puting resources, it has been carried out over the Internet. One site
did the subdivision and sent sub-tasks to people willing to provide
computing time and the use of their machines.

Consequences The Master-Slave design pattern provides several benefits:

Exchangeability and extensibility. By providing an abstract slave
class, it is possible to exchange existing slave implementations or add
new ones without major changes to the master. Clients are not
affected by such changes. If they are implemented with the Strategy
pattern [GHJV95J, the same holds true when changing the algorithms
for allocating sub-tasks to slaves and for computing the final result.

Separation of concerns. The introduction of the master separates
slave and client code from the code for partitioning work, delegating
work to slaves, collecting the results from the slaves, computing the
final result and handling slave failure or inaccurate slave results.

Efficiency. The Master-Slave pattern for parallel computation enables
you to speed up the performance of computing a particular service
when implemented carefully. However, you must always consider the
costs of parallel computation (see below).

The Master-Slave pattern suffers from three liabilities:

Feasibility. A Master-Slave architecture is not always feasible. You
must partition work, copy data, launch slaves, control their
execution, wait for the slave’s results and compute the final result. All
these activities consume processing time and storage space.

Machine dependency. The Master-Slave pattern for parallel
computation strongly depends on the architecture of the machine on
which the program runs—see the Variants section for details. This
may decrease the changeability and portability of a Master-Slave
structure.
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3.4 Access Control

Sometimes a component or even a whole subsystem cannot or should

not be accessible directly by its clients. For example. not all clients
may be authorized to use the services of a component, or to retrieve
particular information that a component supplies.

In this section we describe one design pattern that helps to j)rote(’t

access to a particular component:

The Proxy design pattern (263) makes the clients of a component
communicate with a representative rather than to the component
itself. Introducing such a placeholder can serve many purposes,
including enhanced efficiency, easier access and protection from
unauthorized access.

[GHJV95J also describes the Proxy pattern. Our descriptioti differs in

that it separates the general principle that underlies the pattern from
its concrete application cases, which we describe as variants. We also
provide several new variants of Proxy that are not covered by the
Gang-of-Four version.

The Proxy pattern is widely applicable. Almost every distributed
system or infrastructure for distributed systems uses the pattern to
represent remote components locally, for example OMG-Corba

[0MG921. A more recent application of Proxy is the World Wide Web

1LA941, where it is used to implement the proxy servers.

Two other patterns described in [GHJV95I also belong 1.0 this
category—Facade and Iterator:

• The Facade pattern provides a uniform interface to a set of
interfaces in a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

• The Iterator pattern provides a way to access the elements of an
aggregate object sequentially without exposing its underlying
representation.

Like the Proxy pattern, both the Facade and lierator patterns are
widely applicable.
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