
[image: image48.png]
Roskilde Business College

5th Semester Project
Project Team:
V.Tolvaisaite

R.Laucius

Project dates:
Start: 25th August, 2004

End: 12th November, 2004
ABSTRACT

Today’s business is wild: it insists on every company to install an IT solution that is more productive, more flexible and, what is most important, more involving to day-to-day processes, than any of the competitors. That is the way to stay alive in market, and possibly, stay at the top of it. Today standard solution to business problem is doomed, while innovation is the winner.

Sun Microsystems has been preparing ground for such unusual solutions, ever since they introduced Java programming language in 1995. Thousands of application programming interfaces (APIs) have been created by Sun and other vendors to enable developers to experiment without limits and also bring the best result to businesses.

Throughout this project, we aim to deepen all our prior knowledge we have gained so far during four semesters in Roskilde Business College, including the skills of Java. Our main direction we are striving for is efficient, easy to use and error-free IT solution that brings the most value to the company’s business.

TABLE OF CONTENTS

11
PROJECT ESTABLISHMENT

11.1
ANALYSIS

11.1.1
Background

21.1.2
Project Conditions

21.1.3
Problem and Solution

31.1.4
Resources

51.1.5
Project Limitations

61.2
RISK ASSESMENT

61.2.1
Potential Risks

71.2.2
Preventive Measures

81.3
RISK PREVENTION

81.3.1
Role Assignment

91.3.2
Teamwork Contract

91.3.3
Project Management

111.4
CONCLUSION

122
BUSINESS ANALYSIS

122.1
Competitive Advantage

132.1.1
Value advantage

142.1.2
Productivity Advantage

152.1.3
Conclusion

162.2
Logistics Management

162.2.1
Value Chain

252.3
Conclusion

263
METHODOLOGY

263.1
NEED FOR METHODOLOGY

263.2
MethodologY SEARCH

273.2.1
Extreme Programming (XP)

273.2.2
Rational Unified Process (RUP)

293.2.3
Microsoft Solutions Framework (MSF)

293.2.4
XP vs. RUP vs. MSF

323.2.5
Evaluation of Methodologies

333.3
SELECTED Methodology

333.3.1
Values and Practices

343.3.2
Requirement Management

353.3.3
Planning

373.3.4
Product Development

383.3.5
Integration

393.4
RISK WARRANTY

404
REQUIREMENTS

414.1
Functional Requirements

444.2
Non-functional Requirements

474.3
Summary

485
DEVELOPMENT DECISIONS

485.1
Database Management System

485.1.1
Rejected Candidates

485.1.2
Accepted Choice

495.2
JDBC Driver

495.3
Class Design Pattern

516
RELEASE: APPLICATION BASE

516.1
RELEASE planning

516.1.1
Iteration 1: Registration and Groups

526.1.2
Iteration 2: Item Selection, Form Maker and Printing

526.1.3
Iteration 3: Search, Backup and User Management

536.1.4
Planning summary

536.2
ITERATION 1: REGISTRATION AND GROUPS

546.2.1
Iteration Planning

546.2.2
Task 1: Database Design

616.2.3
Task 2: Component Design

746.2.4
Task 3: Database Implementation

766.2.5
Task 4: Unit Tests

786.2.6
Task 5: System Implementation

837
VISIONS

858
CONCLUSION

858.1
Problems

858.2
Process start-up and follow-up

86APPENDIX A: Team Contract

87APPENDIX B: References

87Literature:

87The Internet:

88APPENDIX C: SQL Code

101APPENDIX D: Java Code

102Application Skeleton:

115APPENDIX E: Class diagram drafts

118APPENDIX F: User stories priorities

1 PROJECT ESTABLISHMENT

Figure 1: Project establishment activities
[image: image1.png]Project establishment is a core activity, which prepares us to the further work on the project and strengthens our confidence on project success. Big part of that success will depend on how accurately we will follow the commitments described in this section. Generally, our project establishment will consist of three major activities – Analysis, Risk Assessment and Risk Prevention – which rely on each other. Analysis activity will set up the frames on what customer wants, prepare simple and comprehensible obligation list for us and the company, define our constraints and resources. We will evaluate resulting documents of this activity to find out all possible threats that could prevent us from completing the project on time, or in worst case, at all. This will be the base for Risk Assessment activity. Finally, we will set up our working schedule, assign to ourselves project roles and make initial plan. Figure 1 shows shortened outline of the whole Project Establishment section.

1.1 ANALYSIS

In this subsection will prepare the following list of core artifacts that will be used later on in this project:

· Draft paper on understanding of the company;

· Commitment list for the customer and for us;

· Abstract problem and solution definition;

· Resource list and constraints.

1.1.1 Background

“Salmeda” is a small Lithuanian company providing medical equipment for public and private institutions of health service, private doctors and patients. “Salmeda’s” employees are dealing with plenty of daily business operations that span variety of middlemen activities between suppliers and customers. The whole company achievement during its lifetime – profit, amount of regular clients, rather high competitive advantage – is really incredible, considering how company is managing their data flow – storing, processing and controlling of data is performed almost manually using Microsoft Excel spreadsheets.

The need of implementing automated operations information system has been growing constantly since the company started their existence, however, due to the lack of time and investment, this process has not been initiated. Present situation – swift evolution of medical technologies and equipment – caused a strong increase in the volume of daily information processing. More and more orders and contracts are coming in and out, consequently making their monitoring and manual processing a complex task. Encouraged by these conditions, “Salmeda” has chosen this project to be the ground for upcoming construction of business information system and a start of important business processes reformation.

1.1.2 Project Conditions

The few initial meetings have framed the expectations from both concerned sides – our customer’s and ours. Everything was agreed smoothly, without resistance and confrontation. The group’s commitment states:

“The group is given a responsibility of making an application, which is compliant to the requirements of ‘Salmeda’. The part of application done during project period is cost-free. The leftover functionality should be completed according to further agreement between the group and ‘Salmeda’ just after the project.”

Here follows the obligation list of the company:

“The company (‘Salmeda’) is responsible for providing workplace nearby their office and necessary equipment for the group. The company agrees to assign one of their employees for frequent meetings with group, discussions, detailed requirement explanation, etc. ‘Salmeda’ also agrees not to make pressure on the group to work exclusively on the application, leaving aside the report. The group is free to adjust their plans so that writing report has enough time to complete.”

These mandates are based on mutual trust between project group and employees of ‘Salmeda’ and will not be exclusively confirmed by a contract. Both sides might sign only further application expansions.

1.1.3 Problem and Solution

Any project, whatever type it would be, aims to realize one or more goals. The goal might be seen as a problem while the solution – as a path of its realization. Throughout this project we are aiming to complete three objectives with one solution. Hence, our list of problems is defined as follows:

· Business problem is the first objective of our assignment and concerns the product of our work. We are to build an information system that would significantly decrease paper work in the organization and unify the business data it is operating now. This problem also aims to satisfy needs of the customer and provide an IT solution that fits best to their business model.

· Developer problem is another goal, and is aimed to us, the team. We are to prove what we have learned during two years of Datamatician education and what we are able to achieve by using the knowledge we gained. We are striving to achieve significant improvement in our skills and experience, not only in systems development, coding or business fields but what we think is even more important – in relations, communication and understanding of the customer.

· Report problem is the last, though it is as important as the previous objectives. It is aimed to our academical institution – Roskilde Business College. We are to write fully qualified, comprehensible and structured report, which would mirror all our work done during project period.

The solution we need to achieve the above-mentioned objectives is as follows:

· Unified solution is to proceed with the project and try to complement all three goals with each other. Experience will not be gained without practical development and writing report, the report cannot be completed without knowledge and process itself, and the product will be unfinished unless you have learnt how to make it, and unless it is documented well. Only by carefully organizing them together we will be able to realize this solution completely.

Our objectives can be accomplished only by striving towards them all the time and only by going in a structured and well comprehensible way. We will define methodology in section 3 to have a structure that would guide us through the whole project. Finally, in the project conclusion section we are going to evaluate if we have achieved our goals or not.

1.1.4 Resources

All resource types plays an important role when planning the whole project: time frames up the whole process and implies on how rapid the project has to be done; technical resources impacts the final product by making available or unavailable tools for developers. Finally, human resources show overall productivity and enables project manager to combine existing skills to contribute upon the needed product. Subsequently, if resources are wisely combined and assigned to the right process, then project success is almost guaranteed.

1.1.4.1 Time

The official project start is on the 25th of August 2004 and the end is on the 5th of November 2004. In particular, we have 52 working days or approx. 10 weeks for realizing the assignment of this project. For detailed time schedule with tasks and deadlines included, refer to section 1.3.3: Project Management.

1.1.4.2 Technical

Most of the technical resources finally fall into two categories – either hardware or software. Nowadays, in the age of technology, hardware resources could hardly be a bottleneck of the small project like ours. Much more problems might arise when defining software resources. Today many useful applications are licensed with enormous prices, therefore not every project can support such software. Our case is different: we are using worldwide-accepted software that is not expensive; some of it is even freeware.

1.1.4.2.1 Hardware

· Home PCs and other needed peripherals.

· Workstation, printer, copy-machine, etc… at “Salmeda”;

· Star-topology local area network at “Salmeda”;

1.1.4.2.2 Software
Table 1 enlists the software we will be using in this project. As our experience tells, this set of software makes up a reliable and flexible development environment. We have been using these tools throughout the last two projects we had, and they proved to be worth our attention and extensive usage. However, Microsoft SQL Server and Poseidon for UML are two new tools we will be trying from now on and after this project we will be able to consider whether they should be added to our toolset.

	Software:
	Purpose:
	License:

	Microsoft Windows XP
	OS
	Licensed

	Microsoft Office XP
	Documentation
	Licensed

	Microsoft Project
	Time schedules
	Trial

	Microsoft Visio 2000
	Drawings
	Trial

	Microsoft SQL Server 2000
	DBMS
	Licensed

	Java TM 2 SDK, Standard Edition 1.5.0
	Development platform
	Open Source

	IntelliJ IDEA 4.5
	IDE
	Evaluation (extendable)

	JUnit 3.8.1
	Unit testing framework
	Open Source

	JBoss 4.0
	EJB server
	Open Source

	Poseidon for UML, community edition 2.5
	UML tool
	Freeware

Table 1: project software set
1.1.4.3 Human

People are the most difficult resource to manage. There exist many theories about how to manipulate over the teams’ skills and their time schedule to achieve the best result. However, our group is very small and therefore complex human resource management as well as skill assignment is not relevant.

1.1.4.3.1 Project Team

The circumstances before the project start have formed the group of only two persons to work on this project. Despite this fact, we will do our best to lead the project to success. The table below enlists team members in our group:

	Name
	E-mail
	Address
	Phone
	Nationality

	Ramunas Laucius
	gramas@mail.ru
	Birzisku 21, Vilnius
	+37060424469
	Lithuanian

	Valda Tolvaisaite
	valda@bk.ru
	Papilenu 16-8, Vilnius
	+37061879959
	Lithuanian

Table 2: team members' contact information
We are both 20 years old and graduated from the same gymnasium – Vilnius Lyceum of Sciences in Lithuania. Then we moved to Denmark, where we have started our professional education two years ago in Roskilde Business College. When talking about educational background and professional experience, obviously, we are not an expert group from this point of view. However, as every human being, we have our own unique characteristics that make our team diverse and flexible. The summary of our individual strengths and weaknesses can be found in the Table 3.

	Name
	Strengths
	Weaknesses

	Ramunas
	Programming, logical mindset, gets the point quickly
	Sometimes lazy, too optimistic

	Valda
	Doesn’t give up, energetic, full of ideas, meticulous
	Not punctual, easy to get off the track, too pessimistic

Table 3: team members' strengths and weaknesses
Considering enlisted personal characteristics, our strongest point would be innovative view to the problem. We can find out tons of new solutions every day and start doing them immediately. However, the weak side probably is that we are too much unstructured and inconsistent therefore unpredictable. Even though, if we just see that we are on the right track and still have enough motivation, we can do excellent project.

1.1.4.3.2 The Advisor

The advisor is a vital person for project team: he will keep an eye on our work, guide us whenever it is necessary and give valuable advice when we need them.

International coordinator:
Michael Claudius

E-mail:

claudius@rhs.dk
1.1.4.3.3 Customer Contact Person

This person will cooperate with us during the project: he will present all needs of the company, give us detailed requirement explanation, participate in discussions and stand-up meetings, test functionality, etc.

Manager of projects:
Kostas Cekanauskas

E-mail:

kostas@salmeda.lt
1.1.4.4 Resources Evaluation

Considering all above-mentioned resources, the scope of the project cannot be large. Human resources are strictly limited and would only create a very small team, reducing the possibilities of skill and experience allocation, which enables broader bounds of the project. Time is one of the most decisive resources. In this case it restricts from going into innovative fields, letting us just to accomplish the standard process. Technical resources also enable us just to complete a standard product.

1.1.5 Project Limitations

After we made an overview of the resources, it’s right time to see what limitations inhibit us. We have described each limitation we found in a separate paragraph. Because every constraint is a potential cause of one or more problems in the project, we thought it would be worth not just to list them in a table but instead describe them in more details.

1.1.5.1 Time Constraints

Even if we think optimistically, there is only a tiny possibility of completing all our objectives in a right time. Ten weeks are far not enough to satisfy the customer, our educational organization and ourselves. Thus, we have to prioritize objectives to make the one that is most important. If we are not giving priorities to them, consequently we will come up with unstructured and unfinished results. In our opinion, sorting the objectives is internal decision therefore we will not document it – just most of the time we will be changing the time schedule to reflect our current situation.

1.1.5.2 Access to Advisor

Since the project takes place in Lithuania and our advisor is in Denmark, there is a little communication limit. Obviously this could be solved with net meeting or videoconferencing technologies, but it requires additional hardware; its installation and adjustment also takes time, which we don’t have much as well. Consequently, as we have agreed with our advisor, we will use the simplest and highly effective way of communication – e-mails. As a result, we rely on mail servers, which might disappoint sometimes. If e-mail sending fails, we encounter a problem – we don’t get feedback from advisor or otherwise, what leads to incorrect perception about current project situation and may result in the worst case in very low quality project.

1.1.5.3 Access to Customer

While “Salmeda” does not have many employees that could communicate with us and explain their business problem, it might sometimes be difficult to access them. Quite often “Salmeda’s” contacts persons are busy with international exhibitions or conferences and simply do not have enough time for meetings. This is quite severe limitation that might lead to misunderstanding of customer’s requirements resulting in incorrect system behavior. However, we are trying to agree on important meetings in advance to make sure the needed persons are not away. In the worst case we will simply call “Salmeda” by phone.

1.2 RISK ASSESMENT

The previous section had introduced us with much material on what conditions we have at the beginning of the project. Now, in order to avoid sudden and unexpected problems that we already started discussing a little before, we will proceed with risk analysis, which will help us to prevent ourselves from possible failures. Firstly we are going to find every risk that could be a threat in our project and then we will keep on with solutions on how could we ensure safety from these risks.

1.2.1 Potential Risks

What type of risks could ever threaten the project from completing it? The most unexpected and dangerous ones are environmental and technical risks, e.g. serious illnesses, technical failures – they can do severe harm and they are unpredictable so it is almost impossible to manage these risks. Other more common type is internal project risks – they happen almost in every project and mostly because of inadequate management. Table 4 captures all risks that we could encounter through the project as well as their analysis – how we could avoid them, what are consequences of one or another risk.

	Risk factor
	Consequences
	E1

	E2

	Precautions
	Actions

	Illness or personal problems
	Delays

Increased work loads

Stress
	4
	5
	Take care of the health, do not work more than 40 hours per week
	Work overtime

Remake the schedule

Take over work of the member

	Lack of communication
	Constrained work

Loss of quality

Delays
	2
	4
	Decide on meetings in the contract, hold that agreement
	Discuss the problem

Agree on extra meetings

Find alternative communication methods

	Loss of motivation
	Disagreements

Loss of quality

Delays
	3
	4
	Don’t work too much intensively, have constant breaks, make the working process diverse
	Discuss problem, find out causes

Encourage each other

Share/exchange the tasks

Change working style and place

	Project drop by customer
	Stress and panic

Loss of motivation

Sudden plan changes

Delays
	1
	5
	Don’t disturb customer with unnecessary things, do our best to fulfill customer's expectations
	Continue working with the current information and use fictive company data during the rest of project time

	Customer unavailability
	Delays

Requirement misunderstandings
	4
	2
	Coordinate our and customer schedules and agree on meetings in advance
	Proceed with other parts of work, delaying the part which will be discussed with customer for later on

	Being behind the schedule
	Loss of quality

Panic
	5
	4
	Work according working hours, leave not important stuff aside
	Work extra time

Narrow down scope of the project

Remake the schedule

	Loss of backup
	Loss of information

Stress and panic

Delays

Loss of quality
	2
	5
	Establish effective backup procedure, ensure backup is stored in enough extra copies
	Collect the data from every possible source of our project

Remake the schedule

Narrow down project scope

	Insufficient technical knowledge
	Delays

Low quality work
	3
	3
	Constantly take an interest of available technical news
	Read relevant literature

Practice if enough time

	Technical equipment breakdown
	Loss of information

Extra expenses

Delays
	2
	5
	Adhere to the safety instructions, don’t experiment with equipment
	Find alternative technical equipment or buy new

Table 4: risk analysis
Taking into consideration our evaluations, we can figure out one interesting tendency: more predictable risks have higher possibility to occur but lower severity of harm, while those that are unpredictable could hardly happen but if they do happen, the harm is tremendous. There are two exceptions, one for each category, which threat is higher than others: Illness or personal problems and Being behind schedule. These two we have to take care for more than all other risks.

1.2.2 Preventive Measures

We cannot assure prevention from all risks: as we have just discussed, there are unpredictable risks as well. However, we can put much effort to reduce predictable ones and the simplest way to avoid these potential failures is to organize the project thoroughly from the start till the end. All the way through it, we should define and follow stable and flexible work method, produce highly structured and comprehensible documentation, at the same time not overload our work. The following activities will be done to decrease our vulnerability to the risks:

· Defining roles ensures that certain responsibility area is given for each team member;

· Signing group work contract implies that both team members will follow common rules;

· Planning all resources makes the process flexible and organized, enables evaluation;

· The process evaluation procedure defines criteria for objectively tracking the work.

1.3 RISK PREVENTION

As we have theoretically defined what are some of the measures to take against risk factors, in this section we will proceed with these activities in practice. More or less all activities are equally important and should be done with a great attention, because even a small flaw can have a noticeable impact on the further project work.

1.3.1 Role Assignment

Every project comprises thousands of different activities. Some of them are primary tasks and carry the most visible contribution to the final result. And the others act as helpmates, support the primary ones, and therefore are as vital as the latter. The need for such secondary activities should emerge instinctively (as the need to sleep) and therefore performing them should be routinely, without any special planning or effort.

From our point of view, Roles should be established in order to capture such kind of activities and in such way support and facilitate the most essential tasks being handled during the whole project period. By assigning specific responsibilities to each member in the beginning, we aim for our focus of attention to be paid to the primary tasks later on.

So far, we feel the necessity for the following Roles to be established:

	Role
	Member
	Duties

	Project manager
	Ramunas
	Keeps track of overall project progress, controls and adjusts time plan, evaluates the progress

	Backup person
	Ramunas
	Always makes the backup on agreed time and always makes it available for other the colleagues

	Contact person
	Valda
	Contacts the customer if any questions arise, prepares material for meetings

	Documentation person
	Valda
	Responsible for organizing all project documents, makes the report look nice and readable

Table 5: project roles

In order to assure that the above-mentioned duties will be done in the most efficient way, we assigned them according to our personal qualities and skills. Ramunas is able to make logical decisions, therefore he will make time plan logically and realistically; he is able to keep the right track - ideal quality for control over the progress; furthermore, as he is more punctual than Valda is, backup will be made almost on time; and finally, Ramunas’ optimism will be useful feature while making project progress evaluation thus increasing our motivation. On the other side, Valda and her energetic negotiations will perfectly deal with customer; because of her meticulous work, successful meetings will be everyday result, as well as well-organized project documents; and finally, because she is a girl, nice-looking report will be natural phenomena.

To sum up, fairly performing these tasks on our own responsibilities we will take precautions against the following risk factors:

· Being behind the schedule;

· Loss of backup;

· Project drop by customer;

· Customer unavailability;

· Loss of motivation.

1.3.2 Teamwork Contract

The team signs up the contract in order to be more structured, punctual and productive. It prevents from useless quarries, like “ –You were supposed to come at 8 o’clock. – There’s nowhere stated that!” therefore mostly lack of team communication risk is prevented by contract. From the time we sign this document, which defines our working days, time, place and team rules, we state our commitment to these terms. In order to save place, we laid out the contract into Appendix A.

1.3.3 Project Management

What direction to take when managing a project is a subject of change from one to another project. It is mostly complexity or simplicity of project as well as the customer you are working with who influence certain management activities. Taking into consideration the scope of this project, time constraints, human resources and project conditions we have stated above, we have determined the list of activities that we will go through, as well as neglected activities, which irrelevance we will reason in the following listings
.

	Accepted activities
	Reasoning

	Planning and scheduling
	Planning is necessary for all projects, including ours. A project without plans will probably not be delivered (complete) on deadline and possibly, will not be finished at all.

	Monitoring and reviews
	Monitoring is as important as planning. Static plans are not worth much. When progress is monitored, project plan can be accordingly adjusted and stay up to date throughout all the process

	Report writing and presentations
	Report is required artifact as we are going to make a presentation defending the project based on report. However, writing the report is responsibility of all team members, not only project manager.

	Personnel selection and evaluation
	Even though our team is very small, we will split the tasks according to our experience and characteristics in specific areas. It will be done to increase overall performance of the project. To gain the reduced quality, time-to-time we will perform reviews of the work; the project advisor will evaluate if the quality is reasonable as well.

	Rejected activities
	Reasoning

	Proposal writing
	We have agreed with the customer to accept this project informally and without any proposal, therefore this activity is already irrelevant.

	Project costing
	Since we are not requesting any toll for this part of the project, costing is not relevant, but may be accepted in project continuation.

Table 6: project management activities
From all above-mentioned activities, we will carefully document planning and scheduling only. Monitoring and reviewing activity will not be documented unless it changes the schedule – in this case the changes will be reflected in project plans. Report writing is obviously an implicit task, which results in this document, while presentation is a post-project activity; therefore it will not be included here. Finally, personnel selection and evaluation in our opinion should be internal activity that we will re-apply before each task.

We would like to note that all activities we have discussed here are more concerned about the general look and quality of the project. When we talk in greater details, we have to mention other concept – a methodology, which defines a set of activities, which these management activities will operate on. For example, methodology might contain design activity, then, in turn, planning would assign some time for it to complete, monitoring would keep track on it when it is in process and finally, report would document it. To sum up, methodology is a set of recommended practices that (if followed) structures the project into sequentially linked parts. Our definition of methodology is in section 3.

1.3.3.1 Project planning

We are not going to show in details our planning activity reasoning that the choice why we have assigned few days for one activity and few more for another is very subtle assignment. We have also taken into consideration the time needed to describe ever-changing tasks of the plan. Our decision is to show the latest time plan here, in Figure 2 and leave task observation for your own rating. It can be evaluated if tasks were planned fair enough or not by doing reverse planning, e.g. reviewing the task documentation and rate if such workload is appropriate for the time assigned for activity.

[image: image2.png]
Figure 2: Overall project plan

We would like to note a subtle decision that we made when doing the planning: we have assigned specific time for product development, but not went into details here. This is because we haven’t defined our working method so far; therefore it’s impossible to split this activity into smaller chunks. However, this time period is linked to the development phase planning where we evaluate in details the tasks of development. For this plan, please refer to the Release section on page 51, or for how we do development planning to the Planning game paragraph on page 35.

1.3.3.2 Evaluation procedure

Our work evaluation will be closely related to the limit of time assigned for specific task. After each task from the project schedule is finished, we will review the completed part ourselves to check document structure, logical flow and document completeness. If necessary, changes to the document will be immediately made. Much more important is the evaluation we get from advisor. Experienced and objective criticism and comments will help us to correct the flaws that are invisible for us. Therefore we will do our best to send the copies of current report to the advisor as often as once per week.

[image: image3.png]
Figure 3: Task evaluation procedure
Otherside of the evaluation is product tests. When we proceed to the Methodology section and further, we will decide what evaluation and how often the customer will give us – whether it will be prototype testing, or day-to-day meetings and reviews of the product.

1.4 CONCLUSION

At the end of establishment section we already have few high importance artifacts to rely on through the rest of the project: resource documentation, risk assessment, project roles, overall plan and more. These documents assure that we have successfully established the project and can proceed with it.

Now the next phase is business case, where we get to know far more requirements than we found out while establishing the project, and examine if the customer company is feasible to the installation of new information system. If so, we will suggest a solution that will be developed further on.

2 BUSINESS ANALYSIS

Before starting the actual system development, we feel the need for the clearer view about “Salmeda” organization and its daily business processes. By doing that we are going to describe how the system fits into the overall business or strategic objectives of the organization;

At this section we are going to get to know “Salmeda” by having a short look at daily business processes of the organization and how they help to achieve a competitive advantage. For the sake of our interest and better overview, we will start our journey by analyzing its competitive strategy as well as finding out its position in the marketplace.

[image: image4.png]
Figure 4: Business Analysis outline
2.1 Competitive Advantage

This is an advantage that specific organization has over its competitors. The source of competitive advantage is found firstly in the ability of the organization to differentiate itself, in the eyes of the customer, from its competition and secondly by operating at a lower cost and hence at greater profit [Christopher]. Every organization, which seeks to reach the marketplace leader position, is trying to gain whatever advantage over its competitors either it is productivity, value or even both.

According to Michael Porter, there are 4 positions the organization might take during its lifecycle. That strongly depends on competitive strategy the company is trying to adopt. A newborn organization usually finds itself in an uncomfortable commodity market that is dangerous to stay on, as there are no special features (Product/Service or Price) able to attract the consumer. According to M.Christopher, the only strategy to get out of the commodity market position is either to move towards cost leadership or upwards service leadership. Both positions are just halfway points towards reaching the target
 – cost and service leadership.

[image: image5.emf]Value advantage

Productivity advantage

Commodity

market

Cost

Leader

Service

Leader

Cost &

Service

Leader

Figure 5: Competitive strategy

In this chapter we are going to get know Salmeda competitive position by studying in great detail all the ways “Salmeda” is creating an advantage over its rivals and identifying its strong as well as weak areas. After this activity, we should be well-acquainted with “Salmeda” competitive situation. In case the situation can be improved (what is very likely), we should find the best way for increasing its entire competitive advantage and impelling it to move towards the target-like position in the marketplace.

2.1.1 Value advantage

The organization, which is trying to attract consumers with the benefit that can come of its offered product, seeks to be distinguished by adding value through differentiation and/or service. These 2 factors are basic means for increasing value advantage.

Differentiation is firstly recognizing differences in the priorities that different groups of people give to specific benefits; and secondly adopting the production to satisfy not only the needs which are common among major market, but also market segments with specific demands. There are 2 factors that could be called the sources for creating value for “Salmeda” organization through differentiation:
1. When “Salmeda” establishes “supplier-distributor” relationship with some manufacturer, it is treated as official representative with an exclusive right to represent the production of that company in Lithuania. No other organization (neither Lithuanian nor Foreign) is allowed to distribute equipment of this producer in Lithuania. That means the customers may choose “Salmeda” for one or another product because of its make and reputation.

2. “Salmeda” is representative of 22 different companies. As a result it offers very broad range of various medical goods. These can be grouped into 2 groups:

· Common inexpensive medical devices for frequent/regular use of public and private health institutions. Such kind of equipment is prevalent among the companies going with the same business and therefore belongs to the common market. Which manufacturer and Lithuanian distributor a customer will choose depends on plenty of factors.

· Exceptional sophisticated medical systems designed for complex treatments, examinations and surgeries. Such equipment is unique in the whole market and therefore is the main differentiation source for both manufacturer and “Salmeda”.

To summarize, the core in successful “Salmeda” differentiation is firstly looking for leading, competent and innovative manufacturers which produce wide-spread medical equipment as well as differentiate themselves with special goods required only by specific segments in the whole market; and secondly establishing “supplier-distributor” relationships with these manufacturers.

Service is an augmented benefit that comes of the product delivered to the customer. We have identified 2 kinds of Service produced by “Salmeda”:

1. When customer requests some equipment, “Salmeda” provides few offers with the set of medical devices and tools, which are compatible and complementary, which could even comprise the whole medical system. These adequate offers may differ in prices and/or makes. This is very useful facility for the customer, as it consumes much time to search for necessary equipment in various catalogues through millions of advertised mechanisms and to decide which of them is best suited.

2. When purchasing customer gets delivery and installation service, Lithuanian user manual, training (if required), after-sales technical support.

To sum up, form our point of view, such value-added service being provided by “Salmeda” is more stable source for sustaining and increasing competitive advantage than differentiation, as “Salmeda” can directly control the process of developing the service and improving it. Consequently, focusing on Service improvement is an area holding main “Salmeda” competitive power and able to move the organization towards an enterprise level.

2.1.2 Productivity Advantage

When talking about productivity advantage M.Christopher emphasized 2 factors which impact productivity advantage:

· economies of scale that enables fixed costs to spread over a greater sales volume;

· experience curve that directly relates cost of production unit and cumulative volume of the increasing experience and better productivity that is gained by workers over time.

[image: image6.emf]Real cost per unit

Total experience

Figure 6: Experience curve
Currently “Salmeda” could not be called low cost producer, as comparing to the majority of competitors, the products, which are equivalent to the equipment offered by rivals, have higher costs. Obviously, the original prices of the products do not depend on “Salmeda” as they are conditioned by manufacturers. The only way how “Salmeda” could make an indirect impact on reducing these original prices is by gaining greater sales volume; and by that increasing direct sales volume of manufacturer, and in turn stepping up economies of scale. However, such method for improving productivity advantage is very much dependant on lots of other factors, such as organization value advantage or experience curve (to be explained later), and therefore is unlikely to be directly controlled and improved.

The recent trends suggest focusing on experience curve effect as a route to cost reduction. According to the curve cost is falling exponentially when experience is growing. The word experience encompasses not only working skills, practices and experience gained by workers over time, also overall organization efficiency and productivity that is evolving over time as well. In “Salmeda” case focusing on experience curve effect is realistic source for reducing cost of the value that is added to the deliverable benefit by “Salmeda” itself.
2.1.3 Conclusion

In this section we have overviewed in detail all the sources which comprise competitive advantage of “Salmeda” organization. In our opinion, “Salmeda” creates and sustains superior performance because of the benefit they offer to the customers – that is greater value advantage. However, high prices are weak organization area frightening off potential customers (especially small units). Consequently, we can propose that currently “Salmeda” resides in the upper left corner of the matrix (see figure 5: competitive strategy) taking the service leader position
. However, everybody knows the saying “One can not be called a Solder who does not seek to be a General”. “Salmeda” is typical Solder aiming to be the best and insuperable – service and cost leader.

To conclude, while analyzing “Salmeda” competitive situation we have found a strength and a weakness:

· Strength is value-added Service;

· Weakness is rather low Productivity advantage.

Both of them are the terms comprising Logistics Management. That is the process of looking at the organization as a set of discrete daily performed activities (each of them contributing in adding value and gaining competitive advantage), and managing the performance of these activities in order to be more efficient and have greater differentiation than competitors.

Logistics Management is directly related to the experience curve effect, as optimizing each even trivial activity involved in organization daily operation might increase an overall experience (efficiency and productivity), and result in reduction of internal costs. As a result, better efficiency and productivity would be directly seen in the eyes of customers – better performance (responsiveness, reliability) in producing value-added service.

From our point of view, the study of “Salmeda” logistics management process, would be well-directed route to our aim – ascertain that the solution we are going to develop will successfully contribute in the process of improving an entire “Salmeda” performance: firstly fighting against its weakness, secondly supporting its strength, and finally reaching the target-like position in the marketplace.

2.2 Logistics Management

The scope of logistics spans the organization, from the management of raw materials through to the delivery of the final product [Christopher]. Michael E. Porter
 very successfully rendered that scope to the chain of values which are coming out from every discrete activity included in logistics. The management of these activities and their relations with each other creates value chain ending in advantages or disadvantages organization has over its rivals.
2.2.1 Value Chain

On the ground of Porter’s Value Chain analysis model we will capture everything, what “Salmeda” does during its lifecycle, in 2 groups of activities: primary and support; and judge them on the value they add to the overall organization performance.

Primary Activities

The primary activities
 are main company processes that are involved in the physical creation of the product, its sale and delivery. In the following list we will review primary “Salmeda” activities by categorizing them according to the model portrayed in figure:

Inbound logistics:

1) Ordered equipment is received from supplier.

2) Quality of newly received goods is examined manually by “Salmeda” employees.

3) Document with a list of shipment content is reviewed concurrently checking the received goods.
4) Inventory control is done by registering the goods in the warehousing system.
5) Formal confirmation with the list of received shipment content is sent to the supplier.

6) The list of shipment content is translated to Lithuanian language and sent to Customs as well as Accounting System.

[image: image7.emf]Human

Resource

Management

 Technology

 Development

Procurement

 Firm

 Infrastucture

Outbound

Logistics

Marketing

and

Sales

Customer

Service

Inbound

Logistics

Operations

Figure 7: M. Porter Value Chain model
Operations:

7) User Guide of each new medical device is translated into Lithuanian language.

Outbound logistics:

According to the conditions which are fixed in the Contract, the distribution process is started by the following activities:

8) Invoice (if prepayment was not made) and Acceptance Certificate are prepared.

9) Equipment with the above mentioned documents is shipped to a customer.

10) The documents are signed by both sides.

Marketing and Sales:

11) According to the needs of specific customer, individual “Offer” is formulated by selecting some equipment from MS Excel data source of registered items. Offers are made up in order to attract new clients as well.
12) If customer agrees to conditions of the “Offer”, the official “Contract” is signed.

13) Under a prior agreement “Prepayment Invoice” may be delivered to the customer
.

Customer Service:

“Salmeda” maintains product’s value by post-sale support to the customer:

14) Initial installing and training;

15) Product repair (during and after the term of guarantee).

By looking at the primary value chain activities listed above, we can get great understanding how the organization operates and what activities it performs until the customer gets its benefit for the money he pays. However, it is rather complex to identify, which of these business processes are really core in adding the value to that benefit. Therefore, we have decided to look at the value chain activities from a different approach that is more abstract and could be adopted to any organization, which is operating in way that assures a continuous turnover.
From our point of view, generally there are 3 phases which are iteratively performed by every organization (described above) during its lifecycle (see the figure below):

[image: image8.emf]I phase

III phase

II phase

Input

Organization

Raw

product

Value-added

product

Output

External Actors

Profit

Investments

Figure 8: "Magic" Cycle
I. Putting out investments and getting input:

Here an organization invests its resources (money, time, human knowledge, etc) to the outer actor in exchange to some raw material for further processing;

II. Increasing the value of the input and transforming it to an output:
During this stage of product development process raw material is transformed to the final product by value-adding operations accomplished in-house or by explicit actors. As we understand, this part of the process brings the major part of competitive advantage. Obviously, improving the performance of these activities would increase the competitive advantage in the most efficient way.

III. Producing output and getting profit:

All the activities needed to make an output being reachable to the outer actor in exchange to the income provided by external units.

By collecting “Salmeda” operation which are correspondent to the above described cycle phases and grouping them accordingly, we will be able to identify the core ones (handled during the second stage) and concentrate on them later on.

	Cycle

Phase
	“Salmeda” Activities

	I.
	1. Investments made when attending international conferences, seminars and exhibitions in order to establish the relationships with new manufacturers, develop professional skills, and know about new advanced medical technologies.

2. Ordering the equipment and its procurement.

	II.
	1. Manual Quality examination.

2. Creating serviceable and professional User Guide.
3. Creating Offers best suited to the specific customer needs.

4. Product installation and repair; customer training.

	III.
	1. Preparing integral parts of the output (Contract, Invoice and Acceptance Agreement).

2. Delivering output to the customer.

Table 7: “Salmeda” Magic Cycle
After filling this table, we resulted in:

1. Clearer view which activities form the basis for input transformation to output.

2. Extra source (1st activity in 1st phase) for competitive advantage found. This activity puts extra weight for improving differentiation and increasing overall organization experience.

3. Isolation of irrelevant activities (most of inbound logistics not included in the above table) which are routine operations, we should not pay attention to.

We can now proceed our study by focusing on the core “Salmeda” activities. Firstly we will prove their magnitude by stating foe considerations about this activity; then we will describe the way, how these activities are performed and evaluate this performance, and finally conceive how such way of performance could be improved in order to follow the strategic goal – becoming a General
.

	Activity
	Magnitude, Performance, Evaluation, Improvement

	Quality Examination
	M
	Secures the highest possible income with the lowest possible expenses. Without such examination poor quality product might be delivered to the customer that would require product repair or exchange. Obviously, in such case “Salmeda” would suffer from additional expenses.

	
	P
	Examination is performed manually by carefully inspecting and testing each device.

	
	E
	Such examination needs attention, thus might be performed only manually.

	
	I
	No better performance way could be suggested.

	User Guide
	M
	In order to gain, at least, customer satisfaction, the product must involve professional User Guide written in user mother language. Otherwise, equipment might be used incorrectly and damaged, in this way bring “Salmeda” problems and expenses.

	
	P
	User Guide translation and publication is usually done by external actors that are the experts in this field. Sometimes this activity is taken by secretary.

	
	E
	Because the operation is performed using outsourcing
, better quality is achieved by fewer costs.

	
	I
	Reduced costs (discounts) as well as enterprise level quality (consistent design and language style, better Image) would be gained when establishing stable co-operation with single external organization as well as taking this duty off the secretary role.

	Offer
	M
	This is very essential, frequently performed and much effort demanding activity. In order to create an Offer that results in successful sale, it is important to select best suited items and adjust best suited prices. For this reason, “Salmeda” people have to be technically as well as medically skilled, acquainted with customer very well, foreknow his needs and budget capabilities.

	
	P
	An Offer is designed as MS Word document selecting data from MS Excel files.

	
	E
	1. Even though MS Word is known as very convenient and usable text editor, designing an Offer with this tool, and making it look informative, comprehensive, attractive, and not overcrowded, consumes very much time.

2. This activity is performed by 3 “Salmeda” employees. Each of them has own data sources (MS Excel files) which become inconsistent from time to time. In such cases incompatible (invalid) information is delivered to clients and results in additional troubles: time spent for recovery in turn becoming expenses.

	
	I
	Considering the human effort (specific knowledge and experience) needed to accomplish this task, performance length as well as overall cost could be reduced by improving development technology, e.g. unifying all data files to single source being used by all employees; establishing convenient Offer designing tool.

	Customer Service
	M
	Comprises major part of “Salmeda” output and is one of the most considerable differentiation sources. Plays important role in attracting new clients as well as sustaining the old ones.

	
	P
	This responsibility is held by a person who is a technician in medical equipment field.

	
	E
	According to other employees, customer service is provided professionally and always satisfies the customers.

	
	I
	The repair process might be speeded up by purchasing better technologies.

Table 8: Analysis of “Salmeda” Core Activities
Secondary Activities

According to M.Porter, the main part of the value chain is facilitated by support activities which are brought under 4 generic groups
. Usually these activities are considered to be as an overhead of the basic business process, however often they are strongly contributing in increasing production value as well as competitive advantage. They are linked to primary activities and help to improve their effectiveness and efficiency. Hereafter we will direct the study of supporting procedures to “Salmeda” case where we have observed only 2 active processes:
Infrastructure:

Organization is continuously expanding its infrastructure - separating various functional units to interconnected structural elements. In the beginning, “Salmeda” consisted of 2 people doing everything. Today organizational structure evolved and is divided into the following administrative subsystems, having the number of employees (indicated in the column called E):

	Subsystem
	E
	Responsibilities

	Foreign Affairs
	3
	The 1st activity in the 1st phase of “Salmeda” Magic Cycle

	Production Management
	
	Cooperating with Suppliers, inbound logistic, outbound logistics, marketing and sales.

	Accounting
	1
	Finance and Accounting control, dealings with Customs

	Customer Service
	1
	Customer training; equipment installation; repair service

	Secretariat
	1
	Typical secretary tasks; Preparing documents as integral parts of the output (Invoice, etc) and Lithuanian User Guides at times

Table 9: “Salmeda” Infrastructure
Such administrative enhancement is directly linked to organization experience curve effect. People are spread over different responsibilities and tasks, therefore improving their skills and efficiency as well as entire organization productivity.

Technology Development
Information technology development plays a crucial role in every business (whether it is a small medium or a big enterprise), as technologies can strongly reduce human effort needed for tasks to be accomplished, which could be used for the other business processes more efficiently instead. And the latter is just one of the ways how technology can improve an overall organization performance.

“Salmeda” is not an exception to this rule. It puts big emphasis on the need for centralized Operation Information System that could manage and facilitate:

· insignificant and time-consuming business procedures (such as preparing product output-like documents, etc);

· one of the core activities, sustaining the organizational strength, that is Offer creating process;

· flow of information among all organization subsystems.
To sum up, the system should unify data flowing through the entire “Salmeda” value chain and manage functional transformation of that data. In the following diagram we will overview the cycle of data flowing through business processes which are handling that data in one or another way.

[image: image9.emf]1. Compose

Offer

2. Manage

Sale

Conditions

3. Make

Order

6. Orders

4. Examine

Received

Items

5. Check Item

Quality

Missing Items

Received

Items

8. Warehouse

Accounting

Report

6. Register

Invalid &

Missing

 Items

Invalid Items

Invalid & Missing Items

Order

Order

8. Make

Accounting

Report

10. Manage

Distribution

5. Invoices

9. Acceptance

Agreements

Invoice &

Acceptance Agreement

List of

distributed

Items

Invoice

4. Contracts

Rejected

Offer

Offer

Offer

Prepayment

Invoice

Contract

&/or

Invoice

Accepted

Offer

3. Offers

Item data

Customer

data

Customer

data

3. Offers

Selection

of Items

Item

selection

Contract

List of

Received Items

Ordered Items

Accounting

Report

1. Items

Request

a.

Customer

a.

Customer

a.

Customer

c.

Customs

d.

Accountin

g System

b. Supplier

Acceptance

Agreement

2. Customers

2. Customers

3. Offers

Selection

of Items

Customer

data

7. Examine

User Guide

Valid Items

1. Items

prices

9. Update

Warehouse

Accepted

Items

Codes

Accepted

Items

7. Suppliers

Supplier

data

 Figure 9: DFD “Production Management”

The processes that could be automated and handled by the system are highlighted with bold line. The Process “Examine User Guide” is partly automated; as it can be exploded into sub-processes including only one managed within system boundaries (see figure 11).

[image: image10.emf]2. Manage Sale Conditions

2.1. Prepare

Contract

2.2. Prepare

Prepayment

Invoice

a.

Customer

3. Offers

2. Customers

4. Contracts

5. Invoices

Agreement

to prepay

Contract

Contract

Prepayment

Invoice

Prepayment

Invoice

Accepted

Offer

Customer

data

Selection of

Items

a.

Customer

Figure 10: Lower Level DFD for process “Manage Sale Conditions”

[image: image11.emf]7. Examine User Guide

7.1. Check if

User Guide

translated

1. Items

User Guide

status

7.2.

Update

UserGuide

status

Item

5.

Check Item

Quality

Valid Item

8. Make

Accounting

Report

9. Update

Warehouse

Accepted

Items

7.3. Accept

Item

1. Items

User Guide

status

Item

Item

Accepted

Items

Figure 11: Lower Level DFD for process “Examine User Guide”

[image: image12.emf]10. Manage Distribution

10.1.

Make out

Invoice

10.2. Prepare

Acceptance

Agreement

3. Offers

2. Customers

9. Acceptance

Agreements

5. Invoices

Acceptance

Agreement

Invoice

Customer

data

a.

Customer

8. Warehouse

10.3. Update

Warehouse

Invoice

Selection of

Items

Acceptance

Agreement

List of

distributed

Items

Figure 12: Lower Level DFD for process “Manage Distribution”

The above data flow diagrams were made in order to understand the whole production management process and how the system we are going to develop will contribute to this process. What is more, the diagrams introduce system boundaries and interactions with its environment (external and internal systems).

First of all we, will model “Salmeda” as an organization showing its internal infrastucture and relationships with external entities.

[image: image13.emf]CustomerCustomsSupplier

Customer

Service

Accounting

Foreign

Affairs

Production

Management

Translator -

Publisher

Secretariat

Salmeda

Figure 13: “Salmeda” Infrastucture and Environment

By looking at Production Management DFD (see figure 12), which shows which external entities are exchanging information with the system, and the diagram above, we can establish the system contexts overcoming organizational units which are outside the system boundaries and are communicating with the system by inputing or outputing data.

[image: image14.emf]Production

Management

Secretariat

Accounting

CustomerSupplier

Foreign

Affairs

Figure 14: System Context
All diagrams which were modeled above in order to get just primary idea of the system to be developed illustrate that the system will basicly support the infrastuctural unit, called “Production Management”.

2.3 Conclusion

Through out the previous business analysis we have ascertained that Business Information System to be developed will successfully contribute in entire “Salmeda” strategic goal - target-like position in the marketplace. The system will help to increase “Salmeda” competitive advantage in the following ways:

· It will improve the efectiveness of major trivial business processes comprising value chain.

· “Salmeda” people will be able to focus on the effort needed to get wise to the customer’s needs, improve their professional skills, search for new contacts (suppliers, customers) instead of wasting time when designing the offer and other documents.

3 METHODOLOGY

Business analysis ended up with some important conclusion statements: first is that we have ensured that this project can proceed further, and second is that “Salmeda” is ready to re-arrange their business to accept the information system we are going to develop. Next step is to define our work method – it is highly critical factor when going towards the goal. Hereby we should establish the procedures of requirement gathering, work planning, development, feedback to customer, etc., and evaluate how these procedures warrant the risk precaution. Figure 15 plots the activities of this section.

[image: image15.png]
Figure 15: Methodology activities
3.1 NEED FOR METHODOLOGY

No project fits exactly for one or other specific methodology. That is obvious because the origin of a methodology is precisely defined set of activities for accomplishing wide-range of project types. It should be able to guide us through the whole process, providing us with reasonable boundaries and structure skeleton, giving the abstract path we should go having particular experience and knowledge of the project. Moreover, the basic idea of methodology is to ensure that it does not fail. Thus it is impossible to think of a template methodology that could be used blindly by all the projects.

3.2 MethodologY SEARCH

Few initial meetings we had with the customer resulted in many afterthoughts about how we are going to make this project go smooth. Simply, there were two obvious options: either we use a complete methodology or we glue one from pieces of number of methodologies. Of course, these pieces should be compatible amongst. We soon rejected the first alternative and selected the second one, mainly because we think we have learned mistakes from previous projects. One of the most severe mistakes and the one, which had the biggest impact on the result, is blind and unwary use of one methodology.

Our experience shows, that in the above defined situation, at one or another point methodology is stuck and project reaches a dead-end, where is difficult to find a way out. In fact, project plan then slips and you have to rush all the way to the finish. To avoid dead-ends in this project, we will try to construct a methodology from pieces. First, let's look through some, as we think, most suitable methodologies and evaluate their possibilities to be beneficial in the project. We are going to pay most of our attention to the values of methodologies, planning activity, risk management and product making process, from design to integration.

3.2.1 Extreme Programming (XP)

Because of its adaptability to ever-changing requirements, XP belongs to the family of agile methodologies. Through the meetings with our customer we agreed that requirements will be easy to change at any time, mainly because yet “Salmeda” has only rough vision of the system therefore it's difficult to set final requirements from the beginning. Regarding this fact, we will strive on making the process as close as possible to the “cost of change” curve, the one produced by XP. Note that cost is not only money investments, but also time and resources – the latter two have the most noticeable impact in our project.

[image: image16.png]
Figure 16: Traditional vs. XP cost of change curve
What makes XP’s “cost of change” curve not to grow exponentially but instead, at a certain limit become almost constant? That is probably XP values and practices that impact the stability of cost level. Therefore we have analyzed them and came to the conclusion that some of the practices contribute more than others in keeping the curve like it is. Consequently, we will try to apply these practices (listed below) in current project in order to achieve flexibility in requirement management:

	· Small releases;
	· Testing;

	· Simple design;
	· Refactoring;

	· Customer on-site;
	

One of the most important project success criteria is how good your plans are. XP makes all the plans according to work units: Releases and Iterations. In our opinion, XP's planning activities are one of the best – they are very flexible because of estimations; they adapt to the speed of developers; and what is most important – they are managing software in the way that it would be integrated often to get fast feedback from the customer. As these features essentially support our problem, we decided to include Release and Iteration planning to our work method as core activities in managing our development schedule.

3.2.2 Rational Unified Process (RUP)

Rational Unified Process is widely spread methodology framework and is known of its high scalability and flexibility – it can be applied to any type of project – from minuscule to enterprise. The overall decision about RUP was not to accept it as a core of our methodology. Although one of the key concepts in RUP is that its activities should be selected according the project needs, but reasoning that our time is much constrained and overloaded, we cannot assign time to configure the process for our needs and set it up correctly. Therefore we are more to adapting the process instead of process framework during this project.

However, we are considering to include some of RUP’s best practices that doesn’t exist or are not emphasized in other methodologies, namely: component-based architecture, model software visually (UML) and use case modeling. The strong sides of these practices should really bring benefit and flexibility to our project.

Component-based architecture is essentially built on object-oriented programming. When the developers started to see the world as made of Objects, it became natural to group them into more complex though strongly related structures, called components. In defining a very modular architecture, you identify, isolate, design, develop, and test well-formed components. These components can be individually tested and gradually integrated to form the whole system; therefore making component-based architecture is important for several reasons:

· It lets you gain and retain intellectual control over the project, to manage its complexity and to maintain system integrity;

· It is an effective basis for large-scale reuse;

· It provides a basis for project management.

In the Figure 17 RUP envisions the whole system that your application components should operate on. In our opinion, this diagram is a bit naïve to be true in the reality, because most of the software internals is a mess, not the modular components. Even though RUP shows their ideal view on all software, from OS to Application level, which is based on component architecture. We all should consider this diagram as a roadmap towards flexible and reusable software, which is modular and highly comprehensible.

[image: image17.png]
Figure 17: RUP's component-based architecture with layers

Other RUP practices we were discussing about – use case modeling and UML visual modeling – are actually the same: use cases belong to UML modeling practice. We have been using UML, including use cases, for almost all projects we had so far, therefore we know well its advantages and will not stop using it in this project. The overall UML enables to see the big picture of the system, provides clearer communication in the team or even with outside contractors, while use cases shows user requirements in a comprehensible way, with all possible scenarios that could occur with specific requirements.

3.2.3 Microsoft Solutions Framework (MSF)

MSF is a methodology framework designed by Microsoft, and fairly speaking, it is one of the most interesting and innovative process methodologies. It has the same cyclical process model as most of today’s methodologies, but additionally, it emphasizes team importance in the project. MSF created a great process to manage team communication and human skills, role assignment, introducing such disciplines as readiness and risk management.

Though MSF is an attractive choice of methodology, it is still out of question for our project. It is mainly directed to a project size of medium or large extent, as well as teams that are constantly working together through many projects. Considering that we are the extremely small team and our team structure changes from project to project, it is obvious that MSF cannot be our primary methodology, though some its features might be very beneficial.

One of such would be risk management. We could not say we have completely analyzed MSF if we have skipped this discipline. This is because risk management in MSF is one of the core activities, which is strongly related to team collaboration and shared responsibility principles – especially, learning from all experience statement.

[image: image18.png]
Figure 18: MSF risk management activities

Figure 18 shows cumulative risk management process, which is far more effective if done in software development company with stable working process and team, thus, less efficient in small projects with temporary teams. Despite this fact, we will try to adapt this discipline through this project and then evaluate if it is worth to accept or reject it during upcoming projects. So far we have already identified risks and prepared Risk Statement in Project Establishment section. Further we are to apply tracking and controlling the risks, and if any of them happen, learn and archive its consequences.

3.2.4 XP vs. RUP vs. MSF

This section will cover our discussion on similarities and differences of the methodologies we were talking about in previous sections. Generally, these methodologies are for the most part compatible, so we are focusing more on major issues that composites all three of them. Even though, each methodology has some issues that do not fall into the same category with others, consequently we will try to review most of these differentiations. Finally we will come up to the verdict about XP, RUP and MSF methodologies.

3.2.4.1 Parallel Issues

· Iterative development. Today probably most of methodologies use such circular also known as iterative cycles. XP and RUP unanimously propagate release and iteration units of time and software. MSF does not emphasize much the whole cycle; instead, they focus on phases and milestones – the smaller parts of the iteration. It is not surprising much that all methodologies are based on iterations, because it enables better control over all process, makes the planning activity easier, catches errors early and finally, makes the process flexible and adaptable to requirement changes.

· Adaptability to requirement changes. This issue is crucial for the final result of project. Most of the customers do not know what they want exactly in the beginning, though later the new requirements start to come up to the surface; therefore the whole process will gain advantage in cost, time and also quality, if it is resistant to such ever-changing requirements. Essentially, RUP, XP and MSF achieve this flexibility through iterative development and scalable planning activities.

· Investments in quality. XP’s refactoring, unit testing, RUP’s quality verification, MSF’s tester role and finally customer acceptance tests significantly improve overall quality of the project outcome. As these activities have high emphasis in respective methodologies, it becomes obvious that quality is one of the most important factors in projects guided by XP, RUP and MSF.

· Delivering solution with highest business value. Today’s customer is the one who has the right to make decisions. If you make one project that is not exactly as customer wanted, he will hire other team for the next project. This factor has caused most of the methodologies to set business value above all other issues in order to make developers strive for the best return result to the customer. Each of our discussed methodologies in one or another way ensures that the outcome has as much business value as possible. Though in this point, XP has a little advantage over the others. It delivers the highest business value first, what is extremely important in nearly all situations, while RUP and MSF do not have prioritization facilities – they strive to make the overall business value as high as possible. In this situation, XP’s customer gets an advantage of early putting into production the solution that outputs the most value to their company.

· Development phases. It became almost a standard to follow such development process:

[image: image19.png]
Basically, all our analyzed methodologies come through these phases: RUP follows it exactly, MSF plans after analysis phase, and XP radically inserts unit testing before coding. Though changing phase position in this chain interestingly affects the outcome, for example, as XP added unit testing before coding activity, the result is that its structure is now based on test suites, but in general, all phases are the same. There is nothing to be surprised of, because thousands of successful projects have come this way and there is nothing more to invent.

· Risk addressing and precaution. Risk has a strong impact on overall project flow. If risks are not managed, project might not be delivered on deadline or product might be of low quality. All of discussed methodologies takes risk seriously and has many precaution activities against it. MSF has extensive risk management discipline which we shortly described earlier; the manager of RUP project is responsible for handling risk precaution, as well as risk assessment is made in each iteration; while the whole XP methodology is designed to be resistant to potential risks, most involved issues being continuous integration, design strategy and day-to-day customer feedback.

3.2.4.2 Distinct Issues

The first thing that should attract our attention when talking about core differences between these methodologies is that XP is a process while, RUP and MSF are process frameworks – we could say, it is rules vs. options. XP is basically business and development oriented, describing the strategy on how to find out customer requirements, prepare the product and deliver it that customer would be satisfied. XP goes straight to the point – deliver software on time and deliver most business value that customer expected. The process frameworks – RUP and MSF – give more freedom and options to the project team than XP (RUP more, MSF less). Therefore if followed, these methodologies might produce much more artifacts.

Most of the other confrontations come because of scale and scope of methodologies and they are based on a certain activities, which we will shortly discuss:

· XP’s system metaphor does not scale well. For larger, complex systems, the architecture as metaphor is simply not enough. RUP and MSF have somewhat similar – the vision document – which is far more flexible and extendable than metaphor.

· The prototyping in RUP is incompatible with overall XP ideology. XP makes it all simple, and prototyping would be counted as extra workload. XP makes prototyping unnecessary, weighing it out with daily meetings with customer, code refactoring, small releases, etc.

· Stand-up meetings from XP methodology would be a headache for MSF and RUP management. The latter two are dealing with far more larger systems than XP, therefore during one meeting they establish plans for the next few weeks and at the same time gets extensive response from customer, while XP is much more detailed – they discuss the progress with customer and shows them the work outcome every day to ensure customer gets the right product.

· Collective code ownership is useful if the members of a team responsible for a small system or a subsystem are familiar with all of its code. However, for complex RUP projects it will often be faster and safer to have a fix made by the individual or pair currently working on the relevant code segment. MSF might be more applicable to this activity because of its open team communication, even though the situation is quite similar to RUP.

3.2.4.3 The Verdict

“These methodologies are for the most part compatible, though each emphasizes different aspects of thinking about and conducting development. Each is most effective when focused on its intended scale of development.”
3.2.5 Evaluation of Methodologies

By searching existing and widely accepted today’s software development methodologies we have noticed that most of them more or less follows one trend, at the same time each of them has its own specialties. The trend can be described as:

· to develop software iteratively;

· to achieve as much customer involvement as possible;

· to deliver the product which brings the most business value;

· to expect change from customer and respond to it immediately.

We think that these preferences make up the core of majority software projects. We have captured most important activities and practices of the methodologies in the following table, and given each of them our priorities. In this way, we have a good and comprehensible overview of how software can be realized today.

	Practices and activities
	Our eval.
	Common
	XP
	RUP
	MSF

	Acceptance testing

	(
	
	
	

	Architectural spikes

	(
	
	
	

	Automated testing

	(
	
	
	

	Coding standards

	(
	
	
	

	Component based architecture

	(
	
	
	

	Continuous integration

	(
	
	
	

	Continuous quality verification

	(
	
	
	

	Control requirement changes

	(
	
	
	

	Focus on delivering business value

	(
	
	
	

	Iterative development

	(
	
	
	

	Open team communications

	(
	
	
	

	Pair programming
	**
	(
	
	
	

	Planning game

	(
	
	
	

	Readiness management
	*
	(
	
	
	

	Refactoring

	(
	
	
	

	Release and iteration plans

	(
	
	
	

	Small releases

	(
	
	
	

	Stand-up meetings
	*
	(
	
	
	

	System metaphor
	*
	(
	
	
	

	Tasks

	(
	
	
	

	Use-case modeling

	(
	
	
	

	User stories

	(
	
	
	

	Visually model software

	(
	
	
	

	Working towards shared vision
	**
	(
	
	
	

	Notations:

	*
	Unit of our evaluation. The more stars (max 5) activity has, the more important it is for our current project

	(
	Activity is common to all discussed methodologies: XP, RUP and MSF

	(
	Activity that does not belong to one or more methodologies discussed

	
	Activity contradicts to the methodology

	
	Activity does not contradict with methodology but also does not complement it

	
	Activity does not belong to methodology but can finely complement it

	
	Activity belongs to methodology but is not emphasized

	
	Activity belongs to methodology and is one of the key activities in it

Note, that this evaluation table is more or less subjective, especially when talking about complementary activities or those activities that contradicts the methodology. However, we tried to reason this evaluation with official methodology technical whitepapers and blueprints. Most of the activities mentioned here are from XP, less from RUP and MSF. It is simply because XP is a process while the other two are methodology frameworks: the process clearly defines activities to take along when doing the project, as methodology framework gives much freedom to choose what is needed at a certain situation; therefore we have included into the table only those framework activities which define best the methodology.

3.3 SELECTED Methodology

Based on the above evaluations, we have compared what our project is like, its conditions and environment, and what could methodologies suggest for us. The final decision, reasoning with project scope, required output and current resources, is that the core structure of our project will be comprised of the activities of XP methodology, and only a few aspects of RUP and MSF methodologies.

Through the upcoming paragraphs we will describe in details the work method we are going to apply in this project. We will firstly present selected values and practices as the base principles, then keep on with the process details: requirements management, planning, development and integration activities. We hope that by following these methodology guidelines we will be able to achieve most of the objectives of this project.

3.3.1 Values and Practices

The way that project team follows towards objectives can be described in values and practices. Values are certain beliefs and principles that help to come over risks and reach the goal. Although values do not describe the practical way of overcoming problems, but they comprise the base of thinking which enables the practices to be processed easily and efficiently. In this point we fully agree with XP’s values:

· Communication – by open communication between customer and developers we achieve full understanding of each other and avoid many problems;

· Simplicity – XP bets that it is better to do a simple thing today and pay a little more tomorrow to change it, than to do a complicated thing today that may never be used anyway. By following this way, we save time and effort;

· Courage – when combined with other values, courage can overthrow anything. It enables to take more risk and get a greater reward for it;

· Feedback – it is the roadmap of the project. With frequent feedback you know exactly where is the next turn and where is the wrong way.

Generally, practices make up the spice of methodology. When taken all together, they fulfill each other and relationships between them make the individuality of methodology even more noticeable. When we talk about XP, the distinction can be seen clearly, as Kent Beck and his colleagues have created this methodology in order to eliminate, as he says, the basic problem of software projects’ failures – the risk. Beck invented many innovative practices, which have been adapted to many projects and software development companies. In our opinion, the following practices will perfectly accompany the work method we are going to use:

	Practice
	Explanation
	Benefits

	The Planning Game
	Quickly determine the scope of the next release by combining business priorities and technical estimates. As reality overtakes the plan, update the plan.
	Business value implemented first

Flexible planning facility

	Small Releases
	Put a simple system into production quickly, and then release new versions on a very short cycle.
	Fast customer feedback

Makes overall system simple

Easier adapts to requirement changes

	Simple Design
	The system should be designed as simply as possible at any given moment. Extra complexity is removed as soon as it is discovered. Design only what is currently needed.
	Transparent code

Better code reusability

	Testing
	Programmers continually write unit tests, which must run flawlessly for development to continue. Customers write tests demonstrating that features are finished.
	Constantly improved code quality

Fast, productive, accurate programming

Software comes to production earlier

	Refactoring
	Programmers restructure the system without changing its behavior to remove duplication, improve communication, simplify, or add flexibility.
	Better code quality

Simple and reusable code

	Pair Programming
	All production code is written with two programmers at one machine.
	Better team communication

Skill sharing and improvement

	Continuous Integration
	Integrate and build the system many times a day, every time a task is completed.
	Better overall system stability

	Coding Standards
	Programmers write all code according to rules emphasizing communication through the code.
	Transparent and understandable code

Better team communication

	Component Based Architecture
	The architectural design is made within components. The whole system is composed of logically related set of components.
	More comprehensible design

Easier integration

System modularity

	Visually Model Software
	Design software using visual modeling tools. The standard is UML, enabling different angle visual view to the system.
	Boosts system comprehensibility

Improves design quality

	Use-case Modeling
	Model the problem domain using use case technique. Then convert to class diagrams.
	Visually lays out requirements

Open design discussions with customer

3.3.2 Requirement Management

The most challenging activity through many projects has been finding the right language between customer and developers. Experience shows that it is very rare case when communication is fluent and understood well by both sides, therefore it is very important to establish very flexible and comprehensible requirement management activity that would help to hit the bull’s eye with customer needs.

We think that XP’s means of capturing requirements are the good example of comprehensible language for both customers and developers. User stories capture the requirements in simple user-perspective words and that is developers’ job to convert them into technical language. That job we perform in development phase (see Figure 22) by user story to use case conversion, but for requirement specification user stories is a well suit.

The whole process of acquiring customer’s needs is shown in Figure 19. First step is initial interviews with customer people. The project team attempts to get familiar with company and at the same time collect information about what they need. When requirements are more or less clear, then customer writes them down to user story cards, at the same time preparing acceptance test scenarios for new story. All stories and tests are put respectively into story deck and acceptance test suite. Developers then take story by story and estimate how long it would take to complete each of them. This estimation will be the basis for upcoming planning phase.

[image: image20.png]
Figure 19: Requirement management
It is not a must that customer has to write down all requirements at once. User story writing is a cumulative process, meaning that if at any time of the project customer comes up with new requirement, he can write a story and add it to the story deck and it will be taken into account when planning the next iteration or release.

3.3.3 Planning

Planning game
 is the process where project is prepared to come into the development phase. In order to make realistic plans, it is necessary that developers would estimate stories as precisely as possible. Thus, usually estimations are more or less incorrect, especially if developer hadn’t been coding similar assignment before. There are also things we cannot estimate, such as tool failures, cost of familiarizing ourselves with required tools and techniques, time needed for testing, refactoring, and integration. All these reasons lead to the risk to be behind the schedule. To solve the problem of inaccuracy and inability to estimate correctly, we will use two schedules. One is internal, estimated in terms of Ideal Days where tools and designs are perfect, there are no interruptions, and everything flows smooth as silk. In practice these Ideal Days never occur, so our other schedule is the external one, the one “Salmeda” can rely on. The external schedule is measured in Real Days, calculated using the following formula:

Real Days = Ideal Days * Load Factor.

The Load Factor is the ratio of Real Days to Ideal Days, taken from the past iterations. It is applied regularly and consistently in our external estimates. As we did not complete any of the iterations yet, our initial Load Factor will be set to 3. When iteration is completed, it will be reset to the Load Factor of the previous iteration
. Load Factor isn’t a measurement of efficiency. It’s more like the degree to which we tend to over-estimate our abilities. It measures our optimism. The change in Load Factor over iterations, however, can reflect changes in development efficiency, and will be tracked and analyzed carefully.

To link external and internal schedules with our report artifacts, we should say that all upcoming estimations, unless stated differently, will be measured in Ideal Days, and all the time plans will reflect Real Days. There will be no reflection of the two working schedules on report.

3.3.3.1 Release Planning

Development planning starts with assigning stories to the upcoming release and iterations. This activity we call release planning and it can be initiated when all the stories from story deck (see Figure 20) are completely estimated. Customer then prioritizes them by importance – which requirements they would prefer to have implemented first. Developers carefully review every story and ensure that each of them should be implemented in 1 to 3 week period; if not, they split or combine few stories to conform the “standard”.

[image: image21.png]
Figure 20: Release planning
After polishing the stories, business chooses the scope – the set of cards are assigned to the release and further on, to agreed number of iterations. Based on user story estimations, the team sets iteration and release dates, prepares time plan for release and confirms it with customer.

3.3.3.2 Iteration Planning

Iteration plans are directed more to developers than to customer, because it’s the team manager who needs to know on day-to-day basis what tasks are performed on specific date. Customer more observes release time plan. First and most important step in this phase is to write tasks at the same time taking into account the relevant stories. Tasks are technical descriptions of part of the story, encapsulating specific development activity, e.g. database design. When list of tasks is prepared, developers estimate them once again, this time in much smaller granularity than stories. As estimations are measured in Ideal Days, it is necessary to apply Load Factor set by the former iteration to get precise time needed to complete required software. Finally developers prepare iteration time plan, which might sometimes confront with release plan because of finer estimations – in this case project manager should confirm iteration plan with customer as well.

[image: image22.png]
Figure 21: Iteration planning
3.3.4 Product Development

As already mentioned, development of this project will be carried out with subsequent releases and iterations. The outline of an iteration process is shown on Figure 22. We are not going to make any distinction between the standard development phases – requirements, analysis, design and implementation – instead we will divide the process boundaries according to tasks created during iteration planning activity. As the tasks define specific part of the story, e.g. database design, we will combine respective parts of the stories to one task, e.g. design database.

[image: image23.png]
Figure 22: Product development: Iteration process
Development process will consist of some cyclical activities, which will be performed continuously in every iteration. First of all, we will convert stories (possibly a few tasks also) into technical language – the use cases, and prepare extensive use case documentation. If use cases’ scope is too narrow or too wide, we will probably combine or split them.

From the use cases we will make E/R diagrams, relational model and layered class models, if there is a need – a few more visual explanations. When all design is prepared, it’s time for the coding. It is very important to implement components coherently and follow dependencies, e.g. if some programming components need database to be ready first, then priority goes to database implementation. Before implementing any non-database code, unit-test suites should be written first to ensure overall system stability and code quality. Finally, using complete class models we will make software components and integrate them to application. By running functional tests after implementation phase developers ensure that software conforms the requirements and is able to perform needed functions.

3.3.5 Integration

Integration is process of making build of the system and deploying it for the customer. Let’s take a look at a small difference between release and iteration integrations
. Remember that release is a piece of software that can run independently and what is more important - it is stable. To be sure that customer has exactly what he wants, the software product is not only integrated after releases but also when iterations are complete. Iteration build is important, as the customer is able to get familiar with the system and test it constantly. However, software outcome after iteration is not necessarily independent or stable, neither error free, so customer cannot run it to the business. Iteration integration has the main purpose to enable the customer to find out what requirements were misunderstood by developers, what could be added more and, mainly, if customer likes the product. This tiny aspect of system stability shows the strong support of Small Releases practice – the more frequent releases are, the more profit of the system business gets.

[image: image24.png]
Figure 23: Software integration
When talking about integration process, we did not yet highlighted acceptance tests. Their most significant purpose is to ensure that the product we deliver complies with their requirements and also assure that product quality is high enough. As the time flows, developers constantly get the feedback from customer – their comments about quality, errors, interface and much more. These comments are considered and inserted to the schedule when planning next iteration.

3.4 RISK WARRANTY

Any methodology provides at least minimum risk warranties. Many activities from one or another point of view addresses risk and its prevention, if not explicitly then at least has some implicit ideas or guidelines. Though XP claims that all its practices are the antidote from risk. XP mission states: “if we accept project risk as a problem, then XP is the solution to it”. Considering that our core methodology has so much to do with any kind of risks, let’s review on how can XP guarantee protection from them.

	Risk
	Prevention mechanism

· Schedule slips – XP calls for short release cycles, a few months at most, so the scope of any slip is limited. Within a release, XP uses one- to four-week iterations of customer-requested features for fine-grained feedback about progress. Within iteration, XP plans with one- to three-day tasks, so the team can solve problems even during iteration. Finally, XP calls for implementing the highest priority features first, so any features that slip past the release will be of lower value.

· Project canceled – XP asks the customer to choose the smallest release that makes the most business sense, so there is less to go wrong before going into production and the value of the software is greatest.

· System goes sour – XP creates and maintains a comprehensive suite of tests, which are run and re-run after every change (several times a day), to ensure a quality baseline. XP always keeps the system in prime condition.

· Defect rate – XP tests from the perspective of both programmers writing tests function-by-function and customers writing tests program-feature-by-program-feature.

· Business misunderstood – XP calls for the customer to be an integral part of the team. The specification of the project is continuously refined during development, so learning by the customer and the team can be reflected in the software.

· Business changes – XP shortens the release cycle, so there is less change during the development of a single release. During a release, the customer is welcome to substitute new functionality for functionality not yet completed. The team doesn't even notice if it is working on newly discovered functionality or features defined years ago.

· False feature rich – XP insists that only the highest priority tasks are addressed.

The most effective way to be risk-safe is to join all prevention mechanisms together and follow them. Simply this huge mechanism is nothing more than XP methodology itself; therefore if we coherently use methodology guidelines, the risk threat will become not so much relevant.

4 REQUIREMENTS

In Business Analysis section we have overviewed “Salmeda” organization, gained initial understanding about the system and its scope. While selecting the best suited Methodology for the system development process, we have chosen Extreme Programming to be our guide and set the procedure for gathering and managing requirements. In this section we will produce set of defined requirements accurately reflecting customers’ needs and being the basis for upcoming design activity.

As the initial blueprint of software engineering process states, requirements should be described in customer oriented terms. There are lots of enhancements built on this blueprint; that have their own methods and techniques, practices and rules for the whole developing process. The one that is widespread among majority of these practices and becoming a rule for defining customer oriented functional requirements is technique called “Uses Cases”. It is worth to pay attention to its dual semantics, which is: Use Cases might be used to capture requirements as:

1. stories of how the system will be used;

2. detailed specifications of the system being designed.

In our opinion Use Cases are more suitable for the activity explained by the 2nd purpose, because of:

· description templates and formal UML notation made up for Use Cases;

· constraints put on Use Cases analysis activity (consistency, contradiction, structure);

· deeper view of the specific system functional behavior; which (view) is created by emphasizing 2 separate parts (actor
, system) and their interaction;

· Use Case technique capture functional requirements in a way that can be used to drive architectural decisions, identify OOD components and their responsibilities as well as relationships, and model class diagrams.

All the above mentioned factors demonstrate that analyzing requirements by Uses Cases results in technical oriented and precise requirements specification which in turn is essential input to an efficient system design.

The XP methodology we are trying to follow has an equivalent to the 1st semantics of Use Cases used for the same purpose – define different usages/features of the system telling how it is supposed to function. Let’s now have a short look at the semantics of User Story, which is:

1. short representation (formulated in users’ natural language) of a certain system function concept with minimum amount of details;

2. developers’ work unit being split into tasks and test unit being coded as acceptance tests;

3. users’ priority/scope decision unit as well as developers’ estimation unit.

From our point of view writing User Stories is perfect technique for simple requirements definition approachable to both users and developers. The artifact of this phase is useful input for the further software development activities (functional specification and design), as well as significant planning tool.

4.1 Functional Requirements

Functional requirements capture initial understanding of the system behavior. The table below contains a set of the User Stories, filled by “Salmeda” people so far. Each of them expresses specific task or service the system is required to perform.

	No.
	Name
	The Story

	NFR

	001
	Item Registration and Update
	S:

	Register and update items manually. Item should contain: code of producer company, item code, original name, name in Lithuanian, prime price (euro), code of the manual, translation (y/n). Item may be persistently updated when it is involved in other process (e.g. when making Item Selection, Form, etc). In such cases confirmation is necessary only, when data in mandatory fields (e.g. 'item code', etc) is updated.
	(1)U

(2)C

	
	
	N:
	When the Item object is used by other application functions that show Item data, the first line of Item Lithuanian Name should appear in bold.

	

	002
	Supplier Registration and Update
	S:
	Register and update suppliers manually.
Supplier should contain: code (2 uppercase letters), name of the company, country, address, telephone, fax, e-mail address, VAT code, website URL, bank property/-ies (that includes: bank name, code, account number, swift code), logo. Supplier may be persistently updated when it is involved in other process (e.g. over viewing suppliers, etc). In such cases confirmation is necessary only, when data in mandatory fields (e.g. 'name of the company', etc) is updated.
	

	003
	Object Restructuring
	S:
	It should be possible to change the structure of any “Business Object”
, i.e. to add/delete some fields, e.g. Item might have additional field 'color' in the future.
	(1)EX

	004
	Client Registration and Update
	
	
	

	005
	Person Grouping
	S:
	It should be possible to create a group of any registered person, e.g. by position. A person can belong to more than one group.
	

	006
	User Login
	S:
	Each user of the system should have username (known by other users) and secret password. User should login whenever the application is started. Anyone must not be able to use the system without username and password.
	(1)S

(2)U

(3)C

	
	
	N:
	It should be possible to change username, password and frequency of login function request in Options window.
	

	007
	Item Selection
	S:
	Register and update Item Selection by entering Item code. Item data for specific selection might be changed manually, e.g. Lithuanian translation should look a bit different for this client. These changes will not update Item entries.
	(1)C

(2)U

	
	
	N:
	Item may be selected from 'Item List' window as well (2).
	

	008
	Extensible Options
	S:
	Individual user may set his preferences in 'Options' window.
	(1)U

	
	
	N:
	For the meantime preferences include:

1. Name and contact information of the organization (System owner);

2. Username, password, and frequency of login function request;

3. Specific constant default values which might be required in Form generation process (e.g.);

4. Time period for automatic Backup function (available only to system administrator);

5. Form designing settings (e.g. Default layout template).
	

	009
	Excel Reader
	S:
	Supplier, Item, Client, etc registration could be accomplished by reading pre-formatted MS Excel document. If some of the object being registered are already registered, it should be updated according An application should report about error records and save them in a file at the location specified by user.
	(1)U

	
	
	N:
	User should be able to choose the attributes being registered and specify an excel document with data written in the columns that correspond to the columns indicated by an attribute.
User should be also able to choose the attributes that will be updated in case the same Supplier/Item/Client is already registered.
	

	010
	Form Maker
	S:
	Item Selection could be converted to specific forms and opposite. Additional data might be provided for a certain form during conversion process and/or it can be opened from template.
	

	
	
	N:
	The forms are:

1. Offer (for Customer);

2. Customer Contract;

3. Prepayment Invoice;

4. Order (for Supplier);

5. Item List in Lithuanian (for Accounting and Customs);

6. Invoice;

7. Acceptance Certificate.

Page limit should be seen in a form.

When Item Selection is converted from several forms, all items in the Selection list should be queued no matter if duplicates exist. If some Item does not exist any more, it should be noted as "N/A".
	

	011
	PDF Maker
	S:
	The forms can be converted to PDF files, to be sent to customers and suppliers.
	(1)U

	012
	Open Dialogue
	S:
	It should be possible to view all registered Item Selections, Forms and E-mail templates as individual internal files in an open dialogue and open the selected one to process within the application.
	(1)U

	013
	Search
	S:
	According to specific notation and settings Client, Supplier, Item, Item Selection and Forms could be found and listed.
	(1)U

	
	
	N:
	Search type might be chosen.
	

	014
	E-mail Sender
	S:
	It should be possible to send an email to the client and/or group of clients. According to agreed notation specific text (client name, position, etc.) should be inserted to the message automatically.
	(1)U

(2)C

	015
	Printer
	S:
	All forms should be printable. Print preview should be available as well.
	(1)U

	016
	Comments
	S:
	Each registered “Business Object” should have comments attached to it. Comment should automatically include date, time and username. User may type Comment text manually. When comment has text, user should be notified somehow about it.
	(1)U

(2)C

	
	
	N:
	Comments are classified by action type (creation, update, etc…)
	

	017
	HTML Maker
	S:
	The forms can be converted to HTML files, to be sent to customers and suppliers.
	

	018
	Automatic Backup
	S:
	The database and all external files should be copied in a certain period of time, which can be adjusted in program options. Copied data is recorded into an external hard disk specified by user.
	(1)S

	019
	Form Designer
	S:
	Form layout should be easily changeable and valid only in the specific user instance of the application. Layout that is changed could be saved as template.
	(1)U

	
	
	N:
	Useful feature would be grid.
When filling a Form, user should be able to easily disable/enable the current function (ability to change the Form layout).
	

	020
	User Admin
	S:
	One user should be granted as system administrator with ability to create other users, set specific system options (e.g. backup).
	(1)S

	021
	Excel Writer
	S:
	Export any data from the database to MS Excel file.
	

	022
	Networking
	S:
	There should be possibility for several clients to simultaneously access the system.
	(1)E

	023
	Localization
	S:
	The application should have Lithuanian User Interface. The system database should process data in Lithuanian format.
	

Table 10: User Stories

	Key
	Value

	S:
	Main part of the story description

	N:
	Additional notes

	U:
	Usability

	C:
	Correctness

	EX:
	Extensibility

	S:
	Security

	E:
	Efficiency

Abbreviations of table “User Stories”

4.2 Non-functional Requirements

After we took an interest into non-functional requirements (NFR), we found them taking very significant role in the software engineering process. In contrast to functional requirements (FR), NFR are the driving force for software existence. All the tasks captured by FR may be easily performed by a human without any help of computer. However, computer can carry out the same activities thousands of times faster, more reliably, and at less cost than we (humans) can. Thus, the main reason, why the software is useful, is its ability to behave efficiently.

To conclude the previous introduction we can state that NFR specifies the system quality constraints that are put on the results of the tasks captured by functional requirements. Therefore, NFR should form the basis for testing the system. We can find plenty of logical explanations for the previous statement. Suppose that:

· newly developed software correctly performs the tasks specified in functional requirements, however after few days of continuous usage of the system, RAM is overloaded, the application becomes not responding and needs to be restarted;

· purpose of new software was to improve daily business operations and bring competitive advantage, however due to security bugs of the system (unauthorized access to system data and/or its modification), organization suffered from profit loss and setback of competitive position in the marketplace;

· 3 years after new system was integrated into production, the business processes of the organization changed and new technologies entered the market. Naturally, the need to new extensions of the software emerged. However, the cost of developing totally new system was less than trying to adapt the old one to new requirements (lack of extensibility).

These situations definitely prove the magnitude of NFR in the software evaluation process. Thereinafter we will look at the software to be developed by us and turn our point of view towards non-functional requirements.

In theory one of the main differences between Use Case and User Story is that the latter one captures both FN and NFR. When describing the requirements in the stories, “Salmeda” people indirectly outlined NFR
: usability, security, correctness, extensibility, and efficiency. Later on, during one of the discussion of technical requirements, customers stated their opinion about already mentioned system qualities. They have also expressed a desire of the system maintainability guaranties. Furthermore, we as developers decided to consider additional criterion - reliability - common and significant in whatever software characteristics.

In the following table we will list non-functional requirements that are to be considered in our case, give brief explanation of each. Subsequently, find out the most critical ones (symbol ‘I’), which might influence the others and give a reason for such choice; indicate the probability of measurement (symbol ‘M’).

	NFR
	I
	M
	Explanation (E) of NFR and Reason (R) for Importance

	Usability
	5
	0
	E
	Simple and convenient user interface, easy use of functions.

	
	
	
	R
	This software is to be used daily and should add business value to the organization, what results in vital necessity the program to be easily employed, and the way of performing specific functions to be clear and convenient.

	Correctness
	4
	1
	E
	System functionality is correspondent to functional requirement.

	
	
	
	R
	Customers defined user stories with their specific requirements. However there are some ‘holes’ left to be filled by us (developers). Users gave us a bit of freedom to choose the way how particular functionality will be realized.

	Reliability
	5
	0
	E
	Continuous, uninterrupted, and correct operating of the system over a given period of time.

	
	
	
	R
	The system must not behave unexpectedly as the user could demand of it at any time, in any situation, that often might be called emergency. In such cases there is no time for maintenance to be carried out.

	Security
	3
	0
	E
	System’s ability to protect itself from threats of confidentiality, integrity and availability.

	
	
	
	R
	In the system specified by current functional requirements there should be implemented very mild security constraints: user authentication by login function; limited access to essential system functions (granted to sys admin); data protection by back-up operation. As recently planned system releases are not to be used by remote clients, this feature is not critical. However in the future, when different system access levels will have to be implemented due to different types of clients, data encryption and even more security issues (subject to upcoming requirements) will be demanded; the importance of this NFR will increase up to maximum, especially because system reliability is very much dependant on it.

	Efficiency
	4
	1
	E
	The way how the system utilizes computational resources (CPU cycles, memory, disc space, buffers). The time unit per which the system reacts to user-generated action and responds.

	
	
	
	R
	Rather important requirement, as low reliability is easily derived from high utilization of computational resources. The speed of the system responsiveness has to be optimal
.

	Extensibility
	5
	-1
	E
	System design that allows extending the core functionality to other usages or types of clients.

	
	
	
	R
	The part of the system to be implemented according to functional requirements, which are defined by current User Stories, will cover only the basic daily business needs. We have already got a conception of the future extensions (HTTP client, data transmitting through Bluetooth), which customers have started to think about.

	Maintainability
	3
	-1
	E
	System design that allows upgrading it whenever some defects come to surface.

	
	
	
	R
	In our opinion maintainability can be easily achieved if the system is designed to be extendable. As Extensibility is the critical NFR, we assume that seeking maintainability is not so essential.

Table 11: Non-functional requirements

The abbreviations in the previous table means as follows:

	Importance
	
	Measurement

	1
	Very low
	
	-1
	Impossible

	2
	Low
	
	0
	Inaccurate

	3
	Neutral
	
	1
	Accurate

	4
	High
	
	
	

	5
	Very high
	
	
	

The table above leads up to 3 critical features: Usability, Reliability and Extensibility that will dominate the choices of design style and techniques during the subsequent development phase.

Although our analysis of requirements seems to be complete; one considerable question is still up in the air: how the customers will decide if previously mentioned system qualities are successfully realized. In comparison to customers’ possibility to test the system functionality defined by FR and accept it or not, the arisen need for NFR measurement criterion appears to be rather complicated. If the measurable property for the requirement is not clearly stated, the way how software accomplishes functional tasks might always seem inefficient for the customer. That means NFR acceptance results depend on customers’ subjectivity.

In order to avoid potential misunderstandings we will try to establish some measurement criterion for NFR to be accepted. However, there are cases, when such measurement might not be done. By describing system quality factors in the above table, we have discussed a possibility for measurement. From our point of view, extensibility and maintainability are impossible to measure by the customers during acceptance period. These 2 factors should make sense only for developers: they will be the ones who will suffer from maintaining or extending the software. Security, Reliability, Usability, in turn, may be evaluated, though inaccurately:

· During the time unit, agreed as evaluation period, there might be no problems with security issues, e.g. no attacks by hackers, however that does not mean that the system is invulnerable to them. Security constraints to be realized in the current version of the system are more likely to be called functions, hence will be tested together with Correctness validation.

· Similarly, Reliability can be evaluated according to the only factor - system crashes or not. That could be called rather accurate measurement criterion. However, there are few considerations. If reliability test fails
, the real triggers might be vague or even uncertain, if test passes, we never now if the reality will pass as well. For that reason, we marked it as inaccurate.

· When developing User Interface we will suggest different alternatives for specific program environment issues and the users will be the ones who decide. Evaluation will be done according to few users’ desires
 concerned in system Usability.

And finally, the rest of NFR (correctness and efficiency) can be clearly validated by specific criterion.

	NFR
	Measurement criterion

	Usability
	System behavior and environment should be as far consistent to Windows standards as possible. Here are few details stated until now:

· Functionality manipulation by Menu bars and Tool bars;

· Standard Windows clipboard functions available;

· Standard options (such as open, print, exit, etc) found on menus called consistently to Widows applications.

	Correctness
	The results of the tasks performed by the system are correspondent to requirements defined in Story cards.

	Reliability
	During the evaluation period, “Salmeda” people will attempt to put system working load to the maximum (all users will intensively and simultaneously use all possible system features and be accessing the server concurrently). The system should remain stable.

	Efficiency
	Until now we have agreed only on 2 criterions of PC resources:

· RAM usage that could be necessary for the application - max 128 MB;

· Disc Space utilization that might be unlimited (up to 100GB).
The rest of computational resources (as CPU cycles, buffers) were left aside due to the extreme effort that is required to decide criterions and evaluate them afterwards.

System responsiveness criterions are as follows:

· program start up time – up to 1 min;

· single transaction – max 3 sec;

· batch transaction - operational time unlimited.

Table 12: Measurement Criterions of Non-Functional Requirements

The above table indicates some factors which will help to evaluate system qualities during the acceptance tests. As both sides (customers and developers) agreed, the evaluation period after each release will last one month.

4.3 Summary

Here we produced very significant artifact that clearly states Functional Requirements definitions captured within User Stories (by following XP recomendations) as well as prioritized and measured Non Functional Requirements. This section will be the basis for further design, development and testing activities.

5 DEVELOPMENT DECISIONS

We decided to assign one section for documenting significant development decisions we made before or in the development phase. Though these considerations are extremely important and has high impact on further result, we could not find suitable place in the current report structure to position them, so we enlist them here.

5.1 Database Management System

As we will surely be using a relational DBMS for the development, so here follows the discussion about which of them suit better to us. We have omitted all the large discussions and concentrated only on the main points, which affected our final decision.

5.1.1 Rejected Candidates

Oracle software is probably the most reliable and as benchmarking shows, in many situations most efficient so far. It provides many tools that enhance development with Java PL along with their database server. However, Oracle DBMS is created for large enterprise solutions and we feel no need to use it – it would just be waste of time, funds and when in production – system resources.

My SQL is good alternative, though it does not support stored procedures – they will only be available from v.5.0 which is now in alpha phase, meaning that it is still not reliable enough. In the latest stable version it also does not have Lithuanian collation, which is very important for the customer. These are the two drawbacks that made us not to choose lightweight MySQL DBMS.

We will not discuss other DBMS such as PostgreSQL, DB2, MaxDB that we are not familiar with. It would be time consuming to get acquainted with all their specifications and negatively affect the quality of the database part of our final system.

5.1.2 Accepted Choice

We have chosen Microsoft SQL Server because it has all features we require and affordable licensing price for the customer company. The following listing gives short overview of the features of the SQL Server that we will extensively be using through the project:

· Support for Lithuanian collation. As the greatest part of “Salmeda’s” processed data is only in Lithuanian language, we will certainly require this feature from DBMS.

· Stored procedures support. One of our design considerations was to use stored procedures as exposure of database data. As SQL Server even has its own stored procedure language, called T-SQL, we do not have any doubt about its trustworthiness. Probably it would be faster solution and more flexible design decision than simply using SQL queries. Sure enough, this solution cleans up Java code from large buffers filled with SQL statements at the same time making it much more readable.

· User-friendly management console. SQL Server provides Enterprise Manager facility that is extremely powerful and at the same time simple view to underlying database. In the interviews people from “Salmeda” mentioned that in some situations they would need to get inside their database. Enterprise Manager is a perfect solution – with a certain rights it enables any user easily review the database contents and if needed, change them with a great simplicity.

· Improved performance in native Windows environment. In our opinion this DBMS should make performance boost along with customer’s chosen Windows OS. As the newest versions of SQL Server use the .NET framework technology or at least windows-native COM+ services (Distributed Transaction Management, Automatic Transaction Processing), it will probably impact SQL Server’s statistical data, e.g. transaction time.

5.2 JDBC Driver

In order to connect Java programming language and Microsoft SQL Server database, we need a JDBC driver as intermediary software. The most natural choice was to choose it from DBMS vendor – Microsoft, which provides free and as they say, highly scalable and reliable type-4 JDBC driver. We have downloaded the driver from [MS JDBC] and tested its connection on two platforms: on Windows 2000 OS with SP4 driver worked perfectly, however when testing it on Windows XP SP2 it could not connect and threw the “Establishing Connection to Server” error. In the Internet forums we realized that we needed to install Service Pack 3a for Microsoft SQL Server 2000. After patching SQL Server, a test connection was established successfully.
Later on during the subsequent connection test runs, we realized that this driver has the big flaw: it does not support batch statements and BLOB objects. Because batch inserts/updates would probably significantly increase speed of registration/update transactions, we decided not to live with Microsoft JDBC solution. Our searches of new more reliable and supporting more features driver ended up with Jtds driver, available at [JTDS JDBC]. It is a freeware open-source driver developed by independent group of programmers. Jtds benchmarking shows that it overcomes Microsoft’s driver and more other commercial ones. As we have run the test connections, there were no problems with it, so our choice yet is Jtds type-4 JDBC driver.
5.3 Class Design Pattern

Generally, we would document design patterns in iteration’s design phase, as a proven solution to a common problem. In this case we made an exception to a Model-View-Controller (MVC) pattern, which could also be called the architecture. This pattern is very general and impacts the whole class pool, therefore it is a tough challenge to document it whenever it occurs, instead we will follow it allover as our design guideline.

Why we have chosen MVC? When applications contain a mixture of data access code, business logic code, and presentation code several severe problems can arise. Such applications are difficult to maintain, because interdependencies between all of the components cause strong ripple effects whenever a change is made anywhere. High coupling makes classes difficult or impossible to reuse because they depend on so many other classes. Adding new data views often requires reimplementing or cutting and pasting business logic code, which then requires maintenance in multiple places. Data access code suffers from the same problem, being cut and pasted among business logic methods. The Model-View-Controller design pattern solves these problems by decoupling data access, business logic, and data presentation and user interaction. Figure 24 shows the specification of MVC design pattern.

[image: image25.png]
Figure 24: Principle of MVC design pattern
In the further development – see Visions section – we will probably be developing under Model1 and Model2 architectures, which are modifications of MVC for enterprise systems, where MVC can no longer help. For more information on these enterprise patterns review [JavaWorld] and [Builder UK].

6 RELEASE: APPLICATION BASE

The project plan in project establishment section has limited our uninterruptible development time to six weeks – then the report should be delivered. Generally, in such time-period, it is possible to carry out one release, but not more. According to this fact, we will draw project boundaries as follows: we are going to include release one and leave further releases outside the scope of the report. In our opinion, it would be fair decision to make 2 to 3 iterations through these 6 weeks, averaging in two to three weeks each.

6.1 RELEASE planning

The first release, as we agreed with the customer and as we follow recommendations of planning activity, will be assembled from core user stories, which make up the fundamentals of application. Just before starting to do plans, customers evaluated their stories – they put priority of 10 to the stories they would prefer to have as soon as possible, while stories given priority of 1 are to be postponed till the last minute if there is enough time. At the same time we have made crude estimations on them – how many days it would take us to complete each story. After that we discussed with customer on what could go into first release and their final decision will be highlighted on upcoming paragraphs.

As we have mentioned in methodology section, estimations are counted as Ideal Days rather than Real Days. To know exactly when estimated iteration would be finished, we have to set Load Factor, which will tell the rate of working intensity we are going to achieve during next iteration. As we have told before, initial Load Factor will be 3, meaning that it would take twice as much time in Real Days to complete iteration than we have estimated in Ideal Days. However, note that Load Factor will probably change after each iteration, so initial estimations of the trailing iterations are going to vary.

6.1.1 Iteration 1: Registration and Groups

The very first iteration includes registration-based stories which enable to store Item, Supplier, Client and Person objects in the database manually and using batch registration with excel reader. Based on estimations, it would take us 12 Real Days (6 Ideal Days * 2) to end this iteration. Both, “Salmeda” and we, think this selection is good enough, since stories are closely related together and dependencies are not broken from outside stories. Note that in current iteration there are two stories with relatively low priority. One of them – “Client registration” story – has been chosen to the list at the very last minute. Consequently, because of the strong relation to the latter story and “Supplier registration” as well, “Person Grouping” has been placed among registration stories. These changes have been added according to the request from customer; they have completed the set of registration stories.

	Story
	#
	Priority
	Estimation
	Dependencies

	Excel reader
	009
	10
	2 days
	001w, 002w, 004w

	Item registration
	001
	10
	1 day
	002s

	Supplier registration
	002
	09
	1 day
	-

	Client registration
	004
	07
	1 day
	-

	Person grouping
	005
	03
	1 day
	002s, 004s

6.1.2 Iteration 2: Item Selection, Form Maker and Printing

This is obviously the iteration that provides the most business value. The chosen stories will basically contain the greatest part of daily processing in the application. This set of stories embodies the “paper work” in the company and its main purpose is to ensure that every single document of “Salmeda” is stored in the application and can be printed at any time.

During estimation we noticed that two stories – “Form Designer” and “Printer” – if done together, would take much less time than separate, so we have combined them into one. The reason for this decision came from our experience with Java programming language: as we sketch the preliminary classes involved with “Form Designer” and “Printer” stories we see that they both are dealing with Object dimensions and their positioning. The difference is that “Form Designer” is concerned with screen positioning while “Printer” is involved to position on the printed paper
. If we implement them separately, they would need additional synchronization of pixels therefore we join them. With such set we would need 22 Real Days to complete iteration, what is more or less satisfactory, having in mind that this iteration is so much important. Further dependency check did not cause any troubles, because all dependent stories are put into the first iteration.

	Story
	#
	Priority
	Estimation
	Dependencies (#)

	Item selection
	007
	10
	3 days
	001s

	Form maker
	010
	09
	4 days
	001s, 002s, 004s, 005w

	Form designer
	019
	08
	4 days
	-

	Printer
	015
	08
	
	019w

6.1.3 Iteration 3: Search, Backup and User Management

The last iteration of initial release should complete the application so it would be in a stable form and ready to be used in business. The table below shows all stories that were considered to be a part of third iteration.

	Story
	#
	Priority
	Estimation
	Dependencies (#)

	Search
	013
	10
	2 days
	001w, 002w, 004w, 005w

	Options
	008
	08
	N/A
	***w

	Backup
	018
	06
	1 day
	-

	User admin
	020
	02
	2 days
	006s

	User login
	006
	02
	1 day
	-

It might seem that all stories are not related to each other. Naturally, to complete the release, “Salmeda” people have chosen the set, which logically fulfills stories from former iterations and accompanies the stable software. Though stories and their dependencies do not interfere with dependencies and with each other, but we should pay attention to “Options” story, which is left unestimated. Partly it is because of weak dependency line with all deck stories, on the other hand it is the story that needs more investigation. In the usual process, we would split the story to be able to make estimations on it, however in this situation we decided to let it be as it is until conversion to use-case. At that time we will analyze it in greater details.

6.1.4 Planning summary

The release planning activity revealed that the first stable software will be integrated into customer’s infrastructure after about 2 months of development. Every iteration will be completed in the estimated time period and in the end of each, we will assign two days for evaluation and completion. Figure 25 displays a comprehensible review on how our estimations spread over the iterations.

[image: image26.png]
Figure 25: Preliminary Release 1 plan (v.3)
The plan task bar notation implies process groups in this release: the one marked with darker color is the actual input to the report we are planning to produce; the brighter taskbars indicates further working plan with “Salmeda” business information system. The deadline
 shows report delivery date. Naturally, we will be proceeding to the second iteration on that deadline.

Note that this plan is preliminary, meaning it might change over iterations. The change magnitude greatly depends on the Load Factor of the first iteration. Its variation from the initial constant – three – will push the taskbars to either left or right direction in the timeplan.

6.2 ITERATION 1: REGISTRATION AND GROUPS

This is the initial iteration of “Salmeda” information system we are starting to develop now. As many XP project experience states, initial iteration is always the one which needs most attention and concentration – it will be the ground for upcoming software, therefore everything should be processed in great details. Now and further on we will follow methodology guidelines and proceed with planning, development and integration phases. We must note once again that we organize the report on the basis of tasks instead of standard XP steering phase and its sub-activities.
6.2.1 Iteration Planning

As we started to think about splitting stories into tasks, we came up with the idea to create a set of tasks that would be common to more or less all stories. In our opinion, this strategy should ease combining and splitting tasks activity, make the overall time consumption view and save us from thinking unique names for each task, what would be really confusing.

For the first iteration we have roughly categorized tasks into design and code. Design will consist of two sub-elements: database modeling (incl. E\R diagrams) and Java application design (including Class & Component diagrams). Coding task activities falls into three subcategories: database, involving creation of database tables’, and writing stored procedures; unit tests, which will include analysis of scenarios which could possibly break our system and their realization – a test suite; and coding application logic and Swing user interface. Better overview of the iteration tasks can be found in Table 13.
 We have estimated all tasks and their counterparts from each story in details. All in all this iteration completes in 12 Real Days (96 working hours). That’s a surprising result as the release planning which is more coarse-grained, had the same output result.
	Story

Task
	Excel reader
	Item registration
	Supplier registration
	Client registration
	Person grouping
	Overall

	Design
	Db.
	5
	5

	
	App. component
	1.5
	3
	1
	5.5

	Code
	Db. tables
	-
	1
	1
	1
	0.5
	3.5

	
	Db. procedures
	-
	1
	1.5
	2
	1
	5.5

	
	Unit tests
	1.5
	1
	1
	1
	1
	5.5

	
	App. logic
	3
	1
	1
	1
	0.5
	6.5

	
	App. UI
	5
	3
	3
	3
	2.5
	16.5

	Overall (Ideal Hours)
	12
	9
	9.5
	10
	7.5
	48

Table 13: Task Estimation
Task analysis brought up a few changes in task structure: firstly, all database design is now the joint of separate story design and secondly, application component design has now linked Item, Supplier and Client registration stories. The most time-consuming process happened to be the application UI design – it requires almost triple as much time as other tasks.
6.2.2 Task 1: Database Design

The basic and quite important activity is development of data source, which is an essential part of the system component we will develop during this iteration. Following XP recommendations we will leave aside the part of database that will not be used by current application module.

6.2.2.1 Data Analysis

Before starting actual database design, we need to analyze the data that will be processed by the “Registration” unit. Using ER modeling technique we will look through the requirements described in the stories, collect main objects as “Entities” and associate them by “Relationships”. Both the objects and associations will be derived from user stories that are active for current iteration.
We have marked Item and Supplier relationship with total participation (double line) what means Item must be related with Supplier by minimum cardinality 1. For the problematic scenario if the supplier no longer exists, in further iterations we will develop “Comments” user story, which will label supplier as “retired” or similar until there are no more items in the stock from that supplier. For now, this scenario is not very emergent.
Client registration requirement states that client can be a Person and a Company. A Person can be registered as individual client and at the same time as contact person of a Company. We realized this demand by N:M relationship with its own attribute “work position”.

[image: image27.emf]Group

employs

Consists of

Country

ID

Supplier

Code

Logo

Supplier

Company Person

is

Bank

has

account

in

has

account

in

Phone

ID

ID

Name

Name

Mobile

Home

Work

Work

position

Phone

ID

Name

Code

Mobile

Stationary

Address

VAT

Code

E-mail

IDName

Code

Swift Code

Account No. Account No.

Website

E-mail

ID

Code

Name LT

Original

Name

Serial No.

User Guide

Code

User Guide

LT

0..N

1..1

0..1

1..M

1..1

0..N

0..N

0..M

0..N

0..M

0..M

0..N

producesItem

Customer

is

ID

0..1

1..1

Fax

Fax

Figure 26: E/R diagram
After we have noticed that Supplier has almost the same attributes as Company does, we decided to avoid redundancy by joining these two entities with 1:1 binary relationship and simulate generalization. Similarly, we created another entity Customer with an attribute “Code” identifying Lithuanian organizations and joined it with Company by “is” relationship. This generalization is a solution to another tricky requirement how to efficiently store bank properties, which might be possessed by either Company (Customer, Supplier) or Person.

6.2.2.2 Relational Database Design

Hereafter, we have analyzed data, we can easily accomplish design by converting ER diagram to relational model. We will proceed through the following steps:

1. For each entity create a relation with single-value attributes and primary key;

2. Choose one of 1:1 relationship related relations and give it a foreign key to the other;

3. Give the “N” relation in 1:N relationships a foreign key to the “1” relation;

4. Integrate the attributes of 1:N relationship to the “N” relation;

5. Create a relation with 2 foreign keys for each N:M relationship;

6. Create a relation for each multi-valued attribute with foreign key to owning relation.

By following these rules we have converted E/R to Relational model. The first version (Figure 27) is huge drawing containing 22 tables. Probably it is not the most efficient solution:

· 4 Relations standing for Bank Properties and Account Numbers has only one difference in the type of client (Company or Person) they belong to.

· All 7 relations standing for phone numbers and e-mail addresses differ from each other in the type of contact value (e.g. mobile or stationary phone) they hold and the type of client (Company or Person) as well.

Therefore we have decided to elaborate on relational model optimization. The first way describes the solution with the least possible table number in the database, though it might suffer from some other criteria, e.g. search time. This method is described as follows (see Figure 28, on page 59):

· In order to avoid duplication of the relations (phone, e-mail and bank property) that are necessary for both (Company and Person), create new relation called “IDRouter” that will unify Company and Person identification codes (ID).

· Create 2 relations called “ContactType” and “ContactAttribute” that will act as map of a contact type (mobile, home, work, email etc) and its value(s); and replace 9 superfluous relations holding various contact attributes.

[image: image28.emf]Supplier

PKID

FK1ComapnyID

SupplierCode

Country

Logo

Item

PKID

FK1Code

SerialNo.

NameOriginal

NameLT

UserGuideCode

UserGuideLT

Company

PKID

VATCode

Name

Address

Website

Person

PKID

Name

Group

PKID

Name

Bank

PKID

Code

SwiftCode

Name

WorkPosition

PKID

FK1CompanyID

FK2PersonID

WorkPostion

GroupPerson

PKID

FK2GroupID

FK1PersonID

CompanyBank

PKID

FK1CompanyID

FK2BankID

PersonBank

PKID

FK2PersonID

FK1BankID

AccountNo

PKID

FK1CompanyBankID

AccountNo

AccountNo

PKID

FK1PersonBankID

AccountNo

P_Mobile_Phone

PKID

FK1PersonID

No

P_Work_Phone

PKID

FK1PersonID

No

P_Home_Phone

PKID

FK1PersonID

No

P_Email

PKID

FK1PersonID

Address

C_Mobile_Phone

PKID

FK1CompanyID

No

C_Stationary_Phone

PKID

FK1CompanyID

No

C_Email

PKID

FK1CompanyID

Address

C_Fax

PKID

FK1ComapnyID

Fax

P_Fax

PKID

FK1PersonID

Fax

Customer

PKID

FK1CompanyID

Code

Figure 27: Relational Model v.1
Now let’s look through the shortcoming list – little data redundancy and clumsy JOIN usage:

· The relation “IDRouter” will always hold NULL value in one of the attributes;

· The records of attribute “Type” in the relation “ContactType” will also bring some sort of redundancy;

· Far more inefficient search – instead of executing one JOIN in v.1 Model when accessing e.g. contact attribute, here it would be applied 3 times. This produces much overhead.

There are some advantages that still do not pay off:

· Simplicity for design and implementation as well as better external comprehensibility;

· Efficiency in using DBMS resources (less tables);

As this optimization method has not been efficient solution, we will put it aside and elaborate a little more. Another possible optimize would also have significantly less tables than v.1 model introduced, but it would be very inefficient when we talk in the terms of data redundancy and unclear meaning:

· The database would only contain two tables to store company and person attributes respectively: “Company_Attributes” and “Person_Attributes”. These tables would perform attribute-saving operation and we would not need the 9 tables used in v.1 model.

· The unclear meaning comes into action when e.g. a person has two mobile phones and later on we would like to add a work phone. Now, two mobiles will create two records in “Person_Attributes” table, in the other fields except mobile inserting NULL values. What if we want to add work phone now? Which record to choose? If this fact does not matter – i.e. we choose the first record with empty work phone position and insert it, then its search would also be inefficient.

Finally when we come to the question “which is the most efficient”, probably we would say, v.1 model. Even though its design is not the most transparent and readable, but it is the way we choose and will implement in upcoming sections.

6.2.2.3 Normalization

The last step is to normalize the relations up to the Boyce Codd Normal Form. Normalization is the process of increasing quality of the relation by analysis based on its primary, candidate keys and functional dependencies. We will perform normalization by going through 4 steps:

· 1st NF - check if every relation attribute is atomic:

As we thoroughly followed the rules of ER conversion to relational model process, we are sure, that all the cells hold a single value.

· 2nd NF - check if every non-primary-key attribute is fully functionally dependent on the primary key:

[image: image29.emf]IDRouter

PKID

FK1CompanyID

FK2PersonID

Company

PKID

Name

Address

VATCode

Website

Person

PKID

Name

Bank

PKID

Name

Code

SwiftCode

BankProperty

PKID

FK1RouterID

FK2BankID

Account

PKID

FK1PropertyID

AccountNo

ContactType

PKID

FK1RouterID

Type

WorkPosition

PKID

FK1CompanyID

FK2PersonID

WorkPosition

Supplier

PKID

FK1CompanyID

SupplierCode

Country

Logo

Item

PKID

FK1SupplierID

Code

NameOriginal

NameLT

PriceOriginal

SerialNo

UserGuideCode

UserGuideLT

GroupPerson

PKID

FK1GroupID

FK2PersonID

Group

PKID

Name

Customer

PKID

FK1CompanyID

Code

ConatctAttribute

PKID

FK1TypeID

Attribute

Figure 28: Relational Model v.2

We treat every relation as an object that is identified by “ID” and all other attributes are integral features of that object, therefore we can state that only the “ID” of the object identifies each of the attributes.
· 3rd NF - check if none of non-primary-key attributes are transitively dependent on the primary key:

After we went through all the relations closely looking for transitive dependencies, the attribute “NameLT” of the relation “Item” caught our eyes. From the first site it seemed that this attribute is fully functionally dependent on “NameOriginal” or transitively dependent on “ID”. However after we reconsidered the fact that user irrespective of stable original name can change Lithuanian name of an Item, we were assured that the 3rd NF is met.

· BCNF - check if every determinant is a candidate key:

It is worth to mention that BCNF differs from the 3NF only when there are more than one candidate keys and/or they are overloaded or composite. For that purpose we will list the relations that have non-key attributes and attributes participating in before mentioned types of candidate keys:

	Relation:
	Candidate Key:

	Supplier
	CompanyID, SupplierCode

	WorkPosition
	[CompanyID, PersonID]

We have analyzed these 2 relations and can affirm that every non-key attribute is fully functionally dependent on the candidate key.

6.2.2.4 Procedural Database Design

The general purpose of the stored procedures is shown in Figure 29 – it provides one more abstraction level in the application and enables program components to access database as simple function calls. Obviously, design is improved and more readable and reusable. In many situations, it improves performance as well.
[image: image30.png]
Figure 29: Stored procedure layer
We have designed the procedures for the first iteration by overviewing top and bottom of the procedural layer. Firstly we should analyze database and we will revisit the relational model v.1. The natural functions that come out of relational diagram are simplified registration, update, etc. We list the general patterns below:

· Registration Procedures: Follows the pattern of InsertXxx
, e.g. InsertPerson;

· Update Procedures: Follows the pattern of UpdateXxx, e.g. UpdateGroup;

· Delete Procedures: Follows the pattern of DeleteXxx, e.g. DeleteClient;

· List Procedures: Follows the pattern of ListXxx, e.g. ListBanks.
In such way, we provide extensive function list that manages our processes with database and hides SQL DML
 complexity from application layer. As a simple example we can present a procedure named “InsertSupplier”. With simple SQL statements we would have to insert first into the “Company” table and later on to “Supplier” in order to register new supplier. Stored procedure “InsertSupplier” would encapsulate complex SQL statements and present itself with a list of comprehensible parameters. This eliminates unnecessary and confusing code from the application.
6.2.2.5 Conclusion

Correct relational model is very useful in database and application implementation process as well as overall system performance afterwards. In our opinion, because of all the activities we have done in order to result in efficient database design, we can proceed to the following tasks and see if we were successful.

6.2.3 Task 2: Component Design

XP practices recommend to keep the design in step with the incremental development process. That is design only what is suited for the system component under current development phase. By following this practice we will carry out designing process in parallel with iterative development process.
6.2.3.1 Component Design Process

We will base design process on the Requirement Definitions captured within User Stories, where requirements were simply expressed in natural user-oriented language, thereby providing primary understanding about system behavior. Here we are going to set a procedure for converting the requirements expressed in Stories and specifying them in technical language.

Use Case Definition

Use case is a set of interactions between the system and external actors. We are concerned with A.Cockburn’s considerations about the system itself as an actor, and therefore define Use Case as a set of interactions between the actors, which might be both external and internal (see the table below).

	External Actors:
	Internal Actors:

	Person
	System

	External system
	Subsystem (system component)

	External device
	Object

An actor usually has a set of responsibilities. In order to carry out these responsibilities, it sets a goal. And in order to reach that goal, it performs some actions. In this way actor initiates specific Use Case, which is successfully completed simply when that goal, which was in actor’s mind when initiating this Use Case, is satisfied. In the sake of simplicity when defining Use Cases we will disaggregate 3 kinds of actors and use the following notation:

· Trigger (Primary Actor) - an actor that is initiating a Use Case in order to satisfy its goal.

· Executor - an actor that is interacting with a Trigger and carrying out its responsibility during the Use Case (performing a set of actions).

· Assistant (Secondary Actor) - an actor whose assistance is required by an Executor during Use Case action. In other words, to carry out its intended responsibility successfully, an Executor needs the result that is carried out by other Use Case responsibility, therefore an Executor triggers an Assistant.

After we described our understanding of the Use Case we will produce the following artifacts when defining a Use Case:

· Use Case Overhead - initial Use Case description according to template (see table xx); it will complement the following state chart diagram (Use Case Body).

· Use Case Body - interacting actors behavior which is systemized and visually modeled within a state chart diagram, that will consist of:

1. Events caused by Trigger Actions or internal Executor Actions;

2. States entered by Executor after specific Event and forcing Executor to perform specific Actions in order to 1)carry out its Responsibility or 2)complete its activity without reaching the Goal.

The table below will be used as Use Case description template for creating Use Case Overhead.

	Key
	Value

	Title
	The main responsibility of the Executor

	Executor
	An actor which is interacting with a Trigger

	Goal
	A goal of the Trigger (derived from User Story)

	Trigger
	Primary Actor

	Precondition
	The condition of the Executor before the Use Case is initiated

	Triggering Action
	Action that is performed by Trigger in order to initiate the Use Case

	Execution Action
	What is done in order to carry out main responsibility of the use case

	Primary Result
	What is the result of the Use Case when the Executor satisfies the Goal of the Trigger

	Backup Result
	What is the result of the Use Case when the Executor does not deliver its responsibility.

	Post condition
	The condition of the Executor after Use Case completes

	Assistant
	Secondary Actor

Table 14: Use Case Overhead Template
Layered Component Design

After Use Case definition activity we will start design the system using an object oriented approach. First of all, we will perform intermediate activity – UseCase-to-Component convertion. By analysing Use Case we fill the table below that will act as a primary source for the following layered component diagram.

	Key
	Value

	Objects
	Preliminary Objects being processed within a Use Case and turned to represent Model Classes in Class Diagram

	Executor Actions
	Actions being performed while Executor is in different States and turned to Functions of Control Classes in Class Diagram

	Trigger-Executor

Direct Communications
	The cases when Executor interaction with Trigger occurs and what kind of interfaces are required for these interactions. These interfaces will be turned to View Components in Class Diagram

Table 15: “UseCase-to-Component” template
The table will clearly mirror MVC structure for Class Diagram to be modeled afterwards. Furthermore, it will facilitate the decisions to be made when identifying classes and their responsibilities.

Design Procedure

Here we will set a procedure to follow for design process of each system component to be developed during this iteration.

1. UserStory-to-UseCase;

While UserStory-to-UseCase conversion process, firstly we will look for the Goal residing in the Story; and secondly get general idea about the procedure of Actions to be performed in order to reach the Goal as a mean for Use Case Body definition.

2. Use Case Definition presented by Use Case Overhead and Use Case Body;

3. Component Design presented by UseCase-to-Component and Layered Class Diagram.

Component #1: Registration Component
UserStory-to-UseCase
The Stories “Item Registration”, “Supplier Registration”, “Client Registration” stand for the same Goal - registration or update of an Object, whether it is an Item, a Supplier, a Client
, or a Person
. Before mentioned Goal can be realized by the same sequence of Actions (algorithm) that is vaguely wrapped in these Stories. Consequently, by following that sequence/procedure we will define an Object Registration algorithm within a Use Case Body.

Use Case Definition

	Key
	Value

	Title
	Object Registration and Update

	Executor
	Registration Component

	Goals
	Register Object, Update Object

	Trigger#1
	User

	Trigger#2
	System components to be implemented later, e.g. Item Selection, Form Maker, Search, etc

	Precondition#1
	Registration Component is being activated its main environment.

	Precondition#2
	System component (Trigger#2) is active (carrying out its responsibility).

	Triggering Action #1
	User enters data of an Object being registered and presses “save” button.

	Triggering Action #2
	System component (Trigger#2) activates registered Object (vague understanding of Triggering Action #2 so far).

	Execution Action#1
	Executor registers an Object or updates it if User requires so.

	Execution Action#2
	Executor activates Object. When Trigger cause inactivation process, Executor checks Object status and updates it if Trigger requires so.

	Primary Result
	Object is registered or updated.

	Backup Result
	Post condition

	Post condition
	Object is inactivated and the Executor is restored to the state described within Precondition.

	Assistant
	none

Table 16: “Object Registration and Update” Use Case Overhead (Primary)

[image: image31.emf]same status

found

Waiting for

User Action

Object is Persistently Stored

object

found

Searching

for Object

Object is

Active

Checking

Object

Status

inactivation

process requested

Waiting for

User Action

status

change found

Checking

Data

Validation

status saving

requested

Waiting for

User Action

error found

error

confirmed

Checking

Data

Validation

Waiting for

User Action

object updated

status change

not saved

data entered

process

cancelled

update

requested

object not

found

Object

Registering

or Updating

error found

error not

found

object

registered

or updated

network /

connection

error

occured

error

confirmed

object instance

activated

Figure 30: “Object Registration and Update” Use Case Body (Primary)
After we have filled description template and modeled Use Case body, it is clearly seen, that actually we have defined 2 different Use Cases. The first one is the only responsibility of Registration Component - registration and update of an object. The other part of action, which can be performed while Object is persistently stored, comprise distinct Use Case, as its Precondition (#2), Trigger (#2), Triggering Action (#2) and Execution (#2) state that it strongly depends on the Parent Components (Triggers initiating this part of action), which might be implemented during further iterations or even releases. Consequently, we came up to the conclusion that each of these 3 User Stories should be split
 and create new Story that would successfully describe new system component (“Listing Component”) being designed later.

We will proceed designing Registration Component and create Use Case Definition that will reflect to one and only component responsibility: Object Registration and Update.

	Key
	Value

	Title
	Object Registration and Update

	Executor
	Registration Component

	Goals
	Register Object, Update Object

	Trigger
	User

	Precondition
	Main environment of Registration Component is activated.

	Triggering Action
	User enters data of an Object being registered and presses “save” button.

	Execution Action
	Executor registers an Object or updates it if User requires so.

	Primary Result
	Object is registered or updated.

	Backup Result
	Post condition

	Post condition
	Object is inactivated and the Executor is restored to the state described within Precondition.

	Assistant
	none

Table 17: “Object Registration and Update” Use Case Overhead (Final)

[image: image32.emf]Waiting for

User Action

object

found

Searching

for Object

Checking

Data

Validation

Waiting for

User Action

update

requested

object not

found

Object

Registering

or Updating

object

registered

or updated

error

confirmed

network / connection

error occured

error found

process

cancelled

data

entered

error not

found

Figure 31: “Object Registration and Update” Use Case Body (Final)
Component Design

The previous use case defines how registration/update process is realized by Executor-Trigger interactions comprising action-response-action algorithm. In order to approach to object-oriented design we will look at this algorithm and gather information required by UseCase-to-ComponentDesign activity.
	Key
	Value

	Objects
	Object

	
	Message

	Executor Actions
	Creates object instance

	
	Searches for instance twin

	
	Validates data

	
	Registers instance

	Executor-Trigger

Direct Communications
	Trigger provides data for Executor.

	
	Executor notifies Trigger by displaying Message – Trigger notifies Executor by responding to that Message.

Table 18: “Object Registration and Update” UseCase-to-Component
From the above table we can identify:

· Model Classes: “Object” and “Message”. We will change the name of ‘Object’ to ‘Entity’ as Object class already exists in Core Java Library;

· Main functions that will be handled by Control Classes;

· User Interfaces required for Executor-Trigger communication.

[image: image33.emf]RegistrationView MessageView

+createEntityInstance()

RegistrationViewController

+searchForTwin()

+register()

RegistrationController

+validateData()

ValidationChecker

EntityMessage

ConnectionError

DataValidationError

ErrQuestion

M

C

V

Figure 32: Registration Component Class Diagram
Model Classes:

1. We have changed the name of “Object” to “Entity” as Object class already exists in Core Java Library

2. “Message” is inherited by 2 subclasses (“Err” and “Question”) as Trigger can be notified about an Error or can be asked to tell Executor what action it has to perform next. Because 2 kinds of Error can occur during registration process, “Err” is inherited by 2 subclasses as well.

Control Classes:

We identified 3 control classes which are preliminary so far:

1. RegistrationViewController is responsible for listening to UI components
, which are held by RegistrationView, getting data from these UI components and creating an Entity instance, and passing that instance to RegistrationController.

2. RegistrationController’s responsibility is to operate with received Entity: 1) check, if it does not already exist in persistent storage, 2) register or update that Entity. Before registration/update it has to check validation of data being registered. This responsibility is delegated to ValidationChecker.

3. ValidationChecker validates data to be registered.

View Classes:

RegistrationView and MessageView will just hold well laid out UI components for interaction with Triggger.

6.2.3.2 Component #2: Reader Component

Use Case Definition

	Key
	Value

	Title:
	Batch of Objects Import from MS Excel document

	Executor:
	Reader Component

	Goal:
	Register or update batch of Objects taking data from MS Excel document

	Trigger:
	User

	Precondition:
	Main environment of Reader Component is activated.

	Triggering Action:
	Trigger selects the type (Item, Supplier, etc) of Object to be registered.

	Execution Action:
	According to Object Attributes, which were selected for registration by Trigger, Executor creates Registration Instruction. Executor reads batch of Objects data from file. Before registering Object, Executor creates an Object Instance by filling its Attributes, which are set in Registration Instruction, with data read from file, and registers that Instance. If Object is to be updated, Executor updates only the attributes, which are set in Update Preferences. If Object registration or update failed, data of Invalid Object is recorded to Invalid_Object Log.

	Primary Result:
	Valid Objects are successfully registered or updated according to Registration Instruction and Update Preferences. Invalid Objects are recorded in Log file. After the whole registration process Trigger is notified by Report.

	Backup Result:
	When the registration process is stopped due to connection/network error, Trigger is notified by Report, which has additional information – the Object (Valid or Invalid) that was the last fully recorded.

	Post condition:
	Executor is restored to the state described within Precondition.

	Assistant:
	Batch Registration Component

Table 19: “Batch of Objects Import from MS Excel document” Use Case Overhead

[image: image34.emf]Waiting for

Update

Preferences

next object

found

Displaying

Report

report

reviewed

Waiting for

User Action

registerable attributes

and file selected

Displaying

Object

Attributes

Reading

Document

object type

selected

process

cancelled

Waiting

for User

Confirmation

selection

missing

message

confirmed

Processing

Attributes

and File

Reporting

error

message

confirmed

Registerable Attributes

set in Instruction

no data

found

process

cancelled

Writing

Invalid_Objects

Log to File

IO error

occurs

file error

found

Registering

Batch Objects

evaluation report

generated

error message

confirmed

network / connection

errror occured

update preferences

applied

next object

not found

data read

Figure 33: “Batch of Objects Import from MS Excel document” Use Case Body
Component Design

	Key
	Value

	Objects
	Instruction

	
	Entity

	
	BatchEntity

	
	Message

	
	Preferences

	
	Log

	Executor Actions
	Displays object attributes

	
	Creates Instruction

	
	Validate file

	
	Reads data

	
	Creates update preferences

	
	Exports Invalid_Objects Log to file

	
	Generates report

	Executor-Trigger

Direct Communications
	Trigger selects type of Object to be registered – Executor displays Object attributes

	
	Trigger selects attributes to be registered and specifies file location – Executor creates Instruction and validates file

	
	Executor asks for Update Preferences – Trigger marks attributes which are prefered to be updated in case Object already exists.

	
	Executor notifies Trigger by displaying Message – Trigger notifies Executor by responding to that Message.

Table 20: “Batch of Objects Import from MS Excel document” UseCase-to-Component
The above table clearly mirrors what Model Classes are necessary for this component and lists the intermediate actions needed to be done in order to achieve Primary Result. These actions are equivalent to functions to be handled by Control Classes. Furthermore, we can see that there are 4 cases, when Executor directly communicates with Trigger. By looking at these cases, we will decide what View Classes are needed to handle Executor-Trigger Interfaces.

[image: image35.emf]IOErr

DocumentEmptyErr

ReaderView

MessageView

+displayAttributes()

+createInstruction()

+validateFile()

+createPreferences()

+registerBatchEntity()

+exportLog()

+generateReport()

ReaderController

MessageViewController

Entity

Message

ConnectionErr

FileNotFoundErr

ErrReport

M

C

V

FileInvalidTypeErr

Instruction

BatchEntityPreferences

Log

PreferencesView

ReaderViewController

+read()

Reader

PreferencesViewController

Figure 34: Reader Component Class Diagram
Component #3: Batch Registration Component

[image: image36.emf]next object

not found

Registering Batch of Objects

Searching

for Object

Registering

Object

Moving

Cursor

Forward

Flagging

Attributes

set in

Preferences

object

logged

next object

found

Displaying

Report

report reviewed

object

found

object registered

or updated

Checking

Data Type

Validation

data type

validated

updatable

attributes flagged

Waiting for

User Action

network /

connection

errror

occured

error message

confirmed

object not found

object data

received

Writing

Invalid_Objects

Log to File

Recording

Invalid

Object

validation error

found

evaluation report

generated

registration

data received

Figure 35: “Batch Registration” Use Case Body (not final)
6.2.3.3 Component #4: Person Grouping Component

[image: image37.emf]group

created

update

requested

Searching

for Group

Waiting for

User Action

group

deleted

Group is

Active

group

activated

person

added

person

removed

group

renamed

group closed

Group Existing

data

entered

group found

process

cancelled

Figure 36: “Person Grouping” Use Case Body (not final)
6.2.3.4 Component #5: Listing Component

[image: image38.emf]same status

found

Object is Persistently Stored

Object is

Active

Checking

Object

Status

inactivation

process requested

Waiting for

User Action

status

change found

Checking

Data

Validation

status saving

requested

Waiting for

User Action

error found

error

confirmed

object updated

status change

not saved

object instance

activated

Figure 37: “Object Listing” Use Case Body (not final)
6.2.4 Task 3: Database Implementation

Let’s revisit Relational Model v.1 (page 57) which we denoted as our final design for iteration 1. As usual we will write the database script in SQL language with slight difference in accordance and conformity to SQL Server. For SQL language specifics including SQL Server, visit [DbZoo].
We will start from creating the database named “salmeda” under the server instance that is running in our PC. When thinking about future, we will surely need a few non-administrator logins, so for the start we will create “user” login with the same password. Later on we will use it with JDBC driver when connecting from our Java application. Here follows the script:
--Create “Salmeda” database, if it does not exist already

--If so, drop the old one and create fresh database

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = 'salmeda')

DROP DATABASE [salmeda]

GO

CREATE DATABASE [salmeda] COLLATE Lithuanian_BIN

GO

--Create login for “user” and assign him “db_owner” role

--Check first if such login does not exist

if not exists (select * from dbo.sysusers where name = 'user' and uid < 16382)

EXEC sp_grantdbaccess 'user'

GO

exec sp_addrolemember 'db_owner', 'user'

GO

Note the code fragment where we are creating database and specifying the collation. Collation is simply the available character set for specified unit – in our case, the database itself. Though we added Lithuanian collation to the database definition, but we will also have to include collation for each attribute in every table that uses it. The further code is basic SQL language – we will now create the tables from our Relational Model. For simplicity we post here only one table implementation, thus note that at any time the complete SQL source is available in Appendix C.

CREATE TABLE [dbo].[Item] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Supplier_Id] [bigint] NOT NULL ,

[Item_Code] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL ,

[Original_Name] [varchar] (255) COLLATE Lithuanian_BIN NOT NULL ,

[LT_Name] [ntext] COLLATE Lithuanian_BIN NULL ,

[Original_Price] [money] NULL ,

[Serial_No] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[User_Guide_Code] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[User_Guide_LT] [bit] NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

When all tables are completely implemented, we need to establish constraints on all of them. Constraints are the implementation of relations from Relational Model. They also define certain situations when the data from parent table is deleted – what to do then with child records that were related to the parent. ON UPDATE and ON DELETE constraints embodies these rules and options like CASCADE or DO NOTHING set what should be done. The cascade constraint is mostly used because in many situations if parent does not exist any more, then child is no more needed. The following script fragment puts the constraint we have just discussed on Company and Company_Mobile_Phone tables.
ALTER TABLE [dbo].[Company_Mobile_Phone] ADD

CONSTRAINT [FK_Company_Mobile_Phone_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

As the tables and their relations are realized, it is already possible to insert, update or delete data in and out of the database. However, as we have chosen to base our design on store procedures, we should implement them before connecting to database from an application and at the same time hide SQL queries from it. The sample procedure registers new supplier to the database:

CREATE PROCEDURE CP_Insert_Supplier

@Name varchar(255),

@Supplier_Code char(2),

@Address varchar(1000),

@VAT_Code varchar(50),

@Website varchar(255),

@Country varchar(50),

@Logo image

AS

DECLARE @Company_ID bigint

BEGIN

EXEC CP_Insert_Company @Name, @Address, @VAT_Code, @Website;

EXEC CP_Get_Last_Company_ID @Company_Id OUTPUT;

INSERT INTO Supplier(Company_ID, Supplier_Code, Country, Logo) VALUES(@Company_ID, @Supplier_Code, @Country, @Logo)

END

GO

This procedure is composed of two other procedure calls and one INSERT statement. Actually the first procedure wraps another INSERT and in this way writing a record into Company and Supplier tables registers fully qualified Supplier object. Procedure call notation differs from server to server, and is also not the same when calling from Java (or probably any other) programming language. SQL Server inner procedure call is made with EXEC command, while executing procedure from Java uses the following syntax {call procedure_name(parameters)}.
To sum up the database implementation, we would state SQL Server capabilities at this point. It provides two very useful applications that can be used by even inexperienced persons to write SQL code. We have been using both of them – Enterprise Manager and Query Analyzer – and completed this development phase with ease.

6.2.5 Task 4: Unit Tests

As we have mentioned in Software Resources section in Project Establishment, we will be using JUnit framework to code the test cases in Java. JUnit is time- and developers-certified tool which is now used worldwide. You can say that you know JUnit if you know three concepts: TestCase, TestSuite and TestRunner. These are the basic classes (except TestRunner, which is our name to reflect the application that can run all tests) that complement the core of your test suites.

We will shortly describe our testing of Excel Reader component. We omit all other tests because they are very similar to each other. Excel Reader was one of the most interesting to write tests therefore we have chosen it. As the unit tests should be written before code, it makes it easier to think in human language of what could possibly happen wrong with your code. In this way we created TestCase subclass for reader and named it TestExcelReader. The main test idea for our component is to ensure that if component code changes, then the test should not break. We thought that the best way to ensure that is to prepare excel file with many data types, rows and columns of different size, some empty cells and rows, and make assertions that certain cells contain certain data and Java understands it correctly.

[image: image39.png]
Figure 38: Excel test file
The test code is self explanatory. Only the numbers might be confusing – they mean certain rows and columns of the document. The setUp() method is an initializer, which is run before all other code in order to prepare test data – we are using it to read the document. The tearDown() is opposite – like finalize() java method it cleans up the memory from used resources.

package tests;

/* omitted imports */

public class TestExcelReader extends TestCase {

 private static final String path = "converter/tests/sources/excel.xls";

 private Body result = null;

 public TestExcelReader(String name) {

 super(name);

 }

 protected void setUp() {

 try {

 result = ExcelReader.read(new File(path), null);

 } catch (MyException e) {

 e.printStackTrace();

 }

 }

 protected void tearDown() throws Exception {

 result = null;

 }

 public void testHeaderCellFormat() {

 Assert.assertTrue(result.getValueAt(0,0) instanceof String);

 Assert.assertTrue(result[0][1] instanceof String);

 Assert.assertTrue(result[0][2] instanceof String);

 }

 public void testBodyCellFormat() {

 Assert.assertFalse(result[1][2] instanceof String);

 Assert.assertTrue(result[1][2] instanceof Boolean);

 Assert.assertTrue(result[7][1] instanceof String);

 Assert.assertTrue(result[2][0] instanceof Double);

 Assert.assertTrue(result[3][2] == null);

 }

 public void testColumnCount() {

 Assert.assertEquals(result[0].length, 3);

 }

 public void testRowCount() {

 Assert.assertEquals(result.length, 13);

 }

 public void testExcelDocumentEmpty() {

 int cellCounter = 0;

 Assert.assertTrue(result.length != 0);

 for (int i = 0; i < result.length; i++) {

 for (int j = 0; j < result[i].length; j++) {

 if (result[i][j] == null)

 cellCounter++;

 }

 Assert.assertTrue(cellCounter != result[0].length);

 cellCounter = 0;

 }

 }

 public void testResultExists() {

 Assert.assertFalse(result == null);

 }

}

package tests;

import junit.framework.TestSuite;

import junit.framework.Test;

public class TestLauncher {

 public static void main(String args[]) {

 junit.textui.TestRunner.run(suite());

 }

 public static Test suite() {

 return new TestSuite(tests.TestExcelReader.class);

 }

}

Fairly speaking, this test failed many times, however it was only because POI API has an interesting procedure of counting rows and columns of the document. When this distraction was corrected the test did not break yet.
6.2.6 Task 5: System Implementation

One of our core decisions was to make procedure calling easier. When first looking the diagrams and our descriptions, it might seem irrational to implement Procedures component. Why would one code it if JDBC supports everything related to stored procedures: calls, IN/OUT parameter registration, etc…? However, we have an answer: to get rid of code complexity each time calling a procedure. We have taken several decisions, enabling us to hide unwanted mess.

[image: image40.png]
Figure 39: Procedure package class diagram
Firstly, what is almost obvious, we should necessarily wrap up Connection objects to some class, which should handle connects and disconnects with database. Our Connector class is implementation of this JDBC stuff, including more advanced DataSource and ConnectionPooling concepts. Next, we should be able to register any type of parameters automatically using Statement object. Half of solution was to model Procedure and Parameter classes, letting us declare any procedure and other half – to implement all available scenarios in procedure calls: the Query call takes only IN parameters to specify query conditions and returns ResultSet object, later wrapped to CachedRowSet; Functional call implements both, IN and OUT parameter registration; Update call handles INSERT, UPDATE and DELETE SQL statements.

package connection;

public class Connector {

 private java.sql.Connection con = null;

 private final String url = "jdbc:jtds:sqlserver://";

 private final String serverName= "localhost";

 private final String portNumber = "1433";

 private final String databaseName= "salmeda";

 private final String userName = "user";

 private final String password = "user";

 // Informs the driver to use server a side-cursor,

 // which permits more than one active statement

 // on a connection.

 private final String selectMethod = "cursor";

 public Connector() {}

 private String getConnectionUrl(){

 return url + serverName + ":" +

 portNumber + ";databaseName=" +

 databaseName + ";selectMethod=" +

 selectMethod + ";";

 }

 public java.sql.Connection connect(){

 try {

 Class.forName("net.sourceforge.jtds.jdbc.Driver");

 con = java.sql.DriverManager.getConnection(getConnectionUrl(), userName, password);

 if (con != null)

 System.out.println("Connection Successful!");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return con;

 }

 public void disconnect() {

 try {

 if (con != null)

 con.close();

 con = null;

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Outline of the Connector class

All needed procedures are coded as Singleton classes, extending one of the Procedure type implementations. It might look like database duplication in Java, but it finally turns out to be very useful idea. When calling a procedure, all you have to do is search for needed procedure in ProcedureList object and execute call(Procedure p, Body data) method which returns whatever object, depending on type of call invoked. In our opinion, this solution will indeed decrease number of code lines and strongly reasons the component architecture.

package procedures.model;

public abstract class Procedure {

 protected String name;

 protected Parameter[] params;

 public String getName() {

 return name;

 }

 public Parameter[] getParams() {

 return params;

 }

}

package procedures.model;

public class Parameter {

 private String name;

 private String description;

 private boolean isNullable;

 private int jdbcType;

 public Parameter(String name, String description, boolean isNullable, int jdbcType) {

 this.name = name;

 this.description = description;

 this.isNullable = isNullable;

 this.jdbcType = jdbcType;

 }

 public int getJdbcType() {

 return jdbcType;

 }

 public String getDescription() {

 return description;

 }

 public String getName() {

 return name;

 }

 public boolean isNullable() {

 return isNullable;

 }

}

package procedures.model;

To show the simplicity of procedures package we will display one of the procedure Singletones and the Façade to our Procedure package – the ProcedureList class.

package procedures.model;

import procedures.model.update.*;

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

public class ProcedureList {

 private static Procedure[] procedures;

 /**

 * Register all available procedures

 */

 static {

 procedures = new Procedure[] {

 /* public Procedures – has the table attribute

 * excel reader uses only these

 */

 ProcedureInsertSupplier.getInstance(),

 ProcedureInsertItem.getInstance(),

 ProcedureInsertClient.getInstance(),

 ProcedureInsertPerson.getInstance(),

 /* private Procedures */

 ProcedureAddPersonAccount.getInstance(),

 ProcedureAddCompanyAccount.getInstance(),

 ProcedureAddPersonToGroup.getInstance(),

 ProcedureAddWorkPosition.getInstance(),

 ProcedureInsertBank.getInstance(),

 ProcedureInsertGroup.getInstance()

 // more procedures to be added...

 };

 }

 public static Collection getTableList() {

 List list = new ArrayList();

 for (int i = 0; i < procedures.length; i++) {

 if (procedures[i] instanceof UpdateProcedure) {

 if (!((UpdateProcedure) procedures[i]).getTable().equals(""))

 list.add(((UpdateProcedure) procedures[i]).getTable());

 }

 }

 return list;

 }

 public static Procedure fromTable(String tableName) {

 for (int i = 0; i < procedures.length; i++) {

 if (procedures[i] instanceof UpdateProcedure) {

 if (tableName.equals(((UpdateProcedure) procedures[i]).getTable()))

 return procedures[i];

 }

 }

 return null;

 }

 public static Procedure findProcedure(String procedureName) {

 for (int i = 0; i < procedures.length; i++) {

 if (procedureName.equals(procedures[i].getName()))

 return procedures[i];

 }

 return null;

 }

 public static Parameter[] getParams(Procedure p) {

 return p.getParams();

 }

}

package procedures.model.update;

import procedures.model.Parameter;

import procedures.model.UpdateProcedure;

import java.sql.Types;

public class ProcedureInsertClient extends UpdateProcedure {

 private static ProcedureInsertClient procedure = new ProcedureInsertClient();

 private ProcedureInsertClient() {

 name = "CP_Insert_Client";

 table = "Klientai";

 params = new Parameter[] {

 new Parameter("Name", "Pavadinimas", false, Types.VARCHAR),

 new Parameter("Code", "Kompanijos kodas", false, Types.VARCHAR),

 new Parameter("Address", "Adresas", true, Types.VARCHAR),

 new Parameter("VAT_Code", "VAT kodas", true, Types.VARCHAR),

 new Parameter("Website", "Internete svetaine", true, Types.VARCHAR)

 };

 }

 public static ProcedureInsertClient getInstance() {

 return procedure;

 }

}

7 VISIONS

We are dedicating this section to share the vision of the further work with “Salmeda” project. It does not end when the report is delivered – otherwise, “Salmeda” people have shown much interest and willingness to continue and cooperate with us. From the discussions with customer people we have noticed not only the requirements captured so far in user stories, but much further view into the system, which we will briefly address now.
“Salmeda” people have great management skills – all the time they are searching for ways of improving the daily processes with unusual but effective solutions. In this way they are constantly trying to adapt to the market changes and take the whole opponent competition with possibility to prove even steadier position.
As “Salmeda” got the chance of innovating their processes and environment with this project, now they are reaching the maximum result of it. To prove this, we have prepared a diagram – see Figure 40 – where we envisioned one of the final stages of the information system. So far we have completed only a small part of Application, Data, UI Components and the database. The next step in the development (probably the next release) is going to be coding the networking components, which is crucial feature of the application – it will be a big step towards the main objective – unified data among employees. With networking enabled the new possibilities will arise: data sharing, simplified communications, etc.
[image: image41.png]
Figure 40: Project vision
An intermediary step when evolving to enterprise is web application. It will provide access to the system from home, thus at the same time increasing various security threats. Web access is extremely important feature, as it enables the data to be accessed almost at any time from any place. With the web access we will be able to expand communication context of the system by adding e-mail component and controlling company’s messages internally. One of the most ultimate components in the road to enterprise is going to be the Bluetooth accessibility. Now many handheld devices, such as mobile phones and PDA’s are by default Bluetooth enabled. The need emerges for unifying the data from these devices as well, because they hold probably evenly important business data as the application. When all these features are developed, we could say that our application reached enterprise level.
Let’s not forget that this chapter only envisions what could be done in the future. Only later circumstances and forthcoming process will tell how much of the vision we can embody. Hopefully it will come true and bring the business value to the customer as they have expected.
8 CONCLUSION

Eventually, we have come to the most challenging part of the project – evaluation. First of all, we are going to explain major process disturbance factors we have met during the project process, and secondly mention the things we are proud of.

8.1 Problems

The project process was not going smoothly as we expected it to go. The major problems were as follows:

Loss of Motivation

In the beginning we have raised very huge requirements for ourselves (produce the best project ever made), too idealistic project outcome, and underestimated our resources (time, experience, productivity and health). Later, when we understood the reality, we have temporarily lost our motivation.

Insufficient technical knowledge

We found it difficult to reach the goals we have raised as we felt lack of technical knowledge. We spent much time for searching about process methodologies, studying T-SQL procedural language, Jakarta POI API (for reading MS Excel file), JUnit Testing, deepening our Business knowledge in order to understand “Salmeda” case.

Illness and personal problems

Both of us expierenced personal problems and minor ilnesses, especially in the end of the project duration. These problems rather strongly influenced final result of our report (we counted approximatelly 2 weeks lost because of that).

Being behind the schedule

This risk was leading us almost all the time, as it can be easilly caused by a lot of other factors and disturbances occurred. The main sources for this risk were:

· Initial underestimation and unrealistic plan;

· Time required for writing report was not included in the innitial plan;

· There were few cases when we have performed irrelevant activities before we have found the right track.

8.2 Process start-up and follow-up

On one hand we consumed much time and put much effort in order to perform activities we have not been experienced before. On the other hand it brought us plenty of useful experience in controlling the process flow, managing risks and being at one breadth with methodology. Now, at the time we have to deliver the report, we are just in the middle of the whole process, though we have made a boosting start and a long follow-up awaits us. We believe that upcoming work will go smoothly as now we are more or less familiar with the process flow and the results will only encourage and satisfy us.
APPENDIX A: Team Contract

Working hours

· 10.00 to 19.00 from Monday to Friday;

· 13.30 to 14.30 is Lunch Break;

· Individual tasks are carried out at home at own time;

· Weekends and extra hours will be added if necessary.

Working place

· At “Salmeda” (Akademijos 4, 2600 Vilnius, Lithuania);

· At home;

· At Vilnius University (Naugarduko 24, 2006 Vilnius, Lithuania).

Decision-making

Both team members, considering their opinion and arguments, make majority of decisions. If necessary and possible, contact person at “Salmeda” is included in the discussion. In case of disagreements, the project advisor is contacted for an advice. All the arguments are closely considered again.

Each group member can make ordinary decisions correspondent to individual responsibilities and tasks.

Internal rules

· Participate and be punctual in all group meetings.

· In case of any unexpected problem (sickness or circumstances beyond the control) notify each other by phone and agree on temporary working process. If the problem is intended to be long term, other group member that has a right to make important decisions takes his/her responsibilities on his/her own.

· Meet deadlines inside the group and follow the daily plans.

· Have all updated documents and be aware of all information in them.

· Respect every opinion, be patient, help each other in understanding and doing things.

· Fulfill commitments.

· Avoid personal conversations with each other during working hours.

· Equally share all the project expenses.

Sanctions

We decided not to impose any financial or other kind of sanctions and play the game of trust and respect.

Signatures

By signing this contract, I declare my agreement to the above-mentioned terms.

	Ramunas Laucius: __________________
	
	Valda Tolvaisaite: __________________

APPENDIX B: References

Literature:

	[Sommerville 1997]
	I.Sommerville, “Software Engineering”, Addison-Wesley, Essex, England 1997

	[Beck 2000]
	K.Beck, “Extreme Programming Explained”, Addison-Wesley, NJ, USA 2000

	[Christopher 1998]
	Martin Christopher, “Logistics and Supply Chain Management”, 2nd ed., Financial Times Pitman Publishing, 1998, ISBN 0-273-63049-0, Ch. 1

	[Griffiths]
	Gary Griffiths, “Structured Systems Analysis Techniques”, Prentice hall Europe, ISBN 0-13-749847-0, Ch. 2, Ch. 3, Ch. 4

	
	

	
	

	[Deitel 2002]
	H.Deitel, P.Deitel, S.Santry, “Advanced Java 2 Platform: How to Program”, Prentice Hall, NJ, USA 2002

	[Connolly 1999]
	T.Connolly, C.Begg, A.Strachan, “Database Systems: a Practical Approach to Design, Implementation and Management”, Addison-Wesley, Essex, England 1999

The Internet:

	[Bredemeyer]
	R.Malan, D.Bredemeyer, “Functional Requirements and Use Cases”, www.bredemeyer.com/pdf_files/functreq.pdf

	[JTDS JDBC]
	sourceforge.net/project/showfiles.php?group_id=33291

	[MS JDBC]
	www.microsoft.com/downloads/details.aspx?FamilyID=86212d54-8488-481d-b46b-af29bb18e1e5&DisplayLang=en

	[MSF Whitepaper]
	MSF explained www.brightwork.com/files/MSF_v3_Overview Whitepaper.pdf

	[RUP Websurfin]
	RUP explained, www.websurfin.com/RUP/RationalUnifiedProcess

	[UML Spec]
	UML specification v1.5, www.uml.org/#UML1.5

	[XP Core]
	www.extremeprogramming.org

	[JavaWorld]
	www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

	[Builder UK]
	uk.builder.com/programming/java/0,39026606,39208256,00.htm

	[Choudhary]
	A.Choudhary, G. Dhargawe, "Gaining Competitive Advantage Through Logistics and Supply Chain Management",www.indiainfoline.com/bisc/gain.pdf

	[Cockburn]
	Alistair Cockburn, “Structuring Use Cases with Goals”, alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm

	[DbZoo]
	http://sqlzoo.net

	[XP Magazine]
	www.xprogramming.com

APPENDIX C: SQL Code

Here we list SQL code for “Salmeda” database. The code fully conforms first iteration’s Relational Model v.1. In addition, this code includes stored procedures that facilitate design of database and are described in more details in Database Implementation task.

--Create “Salmeda” database, if it does not exist already

--If so, drop the old one and create fresh database

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = 'salmeda')

DROP DATABASE [salmeda]

GO

CREATE DATABASE [salmeda] COLLATE Lithuanian_BIN

GO

--Create login for “user” and assign him “db_owner” role

--Check first if such login does not exist

if not exists (select * from dbo.sysusers where name = 'user' and uid < 16382)

EXEC sp_grantdbaccess 'user'

GO

exec sp_addrolemember 'db_owner', 'user'

GO

--Begin creating tables for our database

--Create table statements do not include any constraints

--They will be added after

CREATE TABLE [dbo].[Bank] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Name] [varchar] (255) COLLATE Lithuanian_BIN NOT NULL ,

[Code] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[Swift_Code] [varchar] (50) COLLATE Lithuanian_BIN NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Client] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Code] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Name] [varchar] (255) COLLATE Lithuanian_BIN NOT NULL ,

[Address] [varchar] (1000) COLLATE Lithuanian_BIN NULL ,

[VAT_Code] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[Website] [varchar] (255) COLLATE Lithuanian_BIN NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Account] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_Bank_ID] [bigint] NOT NULL ,

[Account_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Bank] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Bank_ID] [bigint] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Email] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Email] [varchar] (100) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Fax] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Fax_No] [bigint] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Mobile_Phone] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Mobile_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Company_Stationary_Phone] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Stationary_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Groups] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Name] [varchar] (100) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Groups_Person] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Group_ID] [bigint] NOT NULL ,

[Person_ID] [bigint] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Item] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Supplier_Id] [bigint] NOT NULL ,

[Item_Code] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL ,

[Original_Name] [varchar] (255) COLLATE Lithuanian_BIN NOT NULL ,

[LT_Name] [ntext] COLLATE Lithuanian_BIN NULL ,

[Original_Price] [money] NULL ,

[Serial_No] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[User_Guide_Code] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[User_Guide_LT] [bit] NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Name] [varchar] (100) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Account] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_Bank_ID] [bigint] NOT NULL ,

[Account_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Bank] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Bank_ID] [bigint] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Email] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Email] [varchar] (100) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Fax] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Fax_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Home_Phone] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Home_Phone_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Mobile_Phone] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Mobile_No] [varchar] (50) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Person_Work_Phone] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Work_Phone_No] [bigint] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Supplier] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Supplier_Code] [char] (2) COLLATE Lithuanian_BIN NOT NULL ,

[Country] [varchar] (50) COLLATE Lithuanian_BIN NULL ,

[Logo] [image] NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

CREATE TABLE [dbo].[Work_Position] (

[ID] [bigint] IDENTITY (1, 1) NOT NULL ,

[Person_ID] [bigint] NOT NULL ,

[Company_ID] [bigint] NOT NULL ,

[Work_Position] [varchar] (255) COLLATE Lithuanian_BIN NOT NULL

) ON [PRIMARY]

GO

--Start adding constraints as specified in relational model

--Primary key constraints go first!!!

ALTER TABLE [dbo].[Bank] WITH NOCHECK ADD

CONSTRAINT [PK_Bank] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Client] WITH NOCHECK ADD

CONSTRAINT [PK_Client] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company] WITH NOCHECK ADD

CONSTRAINT [PK_Company] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Account] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Account] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Bank] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Bank] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Email] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Email] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Fax] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Fax] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Mobile_Phone] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Mobile] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company_Stationary_Phone] WITH NOCHECK ADD

CONSTRAINT [PK_Company_Stationary_Phone] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Groups] WITH NOCHECK ADD

CONSTRAINT [PK_Group] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Groups_Person] WITH NOCHECK ADD

CONSTRAINT [PK_Group_Person] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Item] WITH NOCHECK ADD

CONSTRAINT [PK_Item] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person] WITH NOCHECK ADD

CONSTRAINT [PK_Person] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Account] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Account] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Bank] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Bank] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Email] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Email] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Fax] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Fax] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Home_Phone] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Home_Phone] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Mobile_Phone] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Mobile_Phone] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person_Work_Phone] WITH NOCHECK ADD

CONSTRAINT [PK_Person_Work_Phone] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Supplier] WITH NOCHECK ADD

CONSTRAINT [PK_Supplier] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Work_Position] WITH NOCHECK ADD

CONSTRAINT [PK_Workplace] PRIMARY KEY CLUSTERED

(

[ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Bank] WITH NOCHECK ADD

CONSTRAINT [IX_Bank] UNIQUE NONCLUSTERED

(

[Name]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Company] WITH NOCHECK ADD

CONSTRAINT [IX_Company] UNIQUE NONCLUSTERED

(

[VAT_Code]

) ON [PRIMARY] ,

CONSTRAINT [IX_Company_1] UNIQUE NONCLUSTERED

(

[Name]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Groups] WITH NOCHECK ADD

CONSTRAINT [IX_Groups] UNIQUE NONCLUSTERED

(

[Name]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Person] WITH NOCHECK ADD

CONSTRAINT [IX_Person] UNIQUE NONCLUSTERED

(

[Name]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Supplier] WITH NOCHECK ADD

CONSTRAINT [IX_Supplier] UNIQUE NONCLUSTERED

(

[Supplier_Code]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Client] ADD

CONSTRAINT [FK_Client_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Account] ADD

CONSTRAINT [FK_Company_Account_Company_Bank] FOREIGN KEY

(

[Company_Bank_ID]

) REFERENCES [dbo].[Company_Bank] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Bank] ADD

CONSTRAINT [FK_Company_Bank_Bank] FOREIGN KEY

(

[Bank_ID]

) REFERENCES [dbo].[Bank] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Company_Bank_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Email] ADD

CONSTRAINT [FK_Company_Email_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Fax] ADD

CONSTRAINT [FK_Company_Fax_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Mobile_Phone] ADD

CONSTRAINT [FK_Company_Mobile_Phone_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Company_Stationary_Phone] ADD

CONSTRAINT [FK_Company_Stationary_Phone_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Groups_Person] ADD

CONSTRAINT [FK_Group_Person_Group] FOREIGN KEY

(

[Group_ID]

) REFERENCES [dbo].[Groups] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Group_Person_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Item] ADD

CONSTRAINT [FK_Item_Supplier] FOREIGN KEY

(

[Supplier_Id]

) REFERENCES [dbo].[Supplier] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Account] ADD

CONSTRAINT [FK_Person_Account_Person_Bank] FOREIGN KEY

(

[Person_Bank_ID]

) REFERENCES [dbo].[Person_Bank] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Bank] ADD

CONSTRAINT [FK_Person_Bank_Bank] FOREIGN KEY

(

[Bank_ID]

) REFERENCES [dbo].[Bank] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Person_Bank_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Email] ADD

CONSTRAINT [FK_Person_Email_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Fax] ADD

CONSTRAINT [FK_Person_Fax_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Home_Phone] ADD

CONSTRAINT [FK_Person_Home_Phone_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Mobile_Phone] ADD

CONSTRAINT [FK_Person_Mobile_Phone_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Person_Work_Phone] ADD

CONSTRAINT [FK_Person_Work_Phone_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Supplier] ADD

CONSTRAINT [FK_Supplier_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Work_Position] ADD

CONSTRAINT [FK_Workplace_Company] FOREIGN KEY

(

[Company_ID]

) REFERENCES [dbo].[Company] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Workplace_Person] FOREIGN KEY

(

[Person_ID]

) REFERENCES [dbo].[Person] (

[ID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

--Now the funny thing = stored procedures

--Simple T-SQL statements following procedure design

CREATE PROCEDURE CP_Add_Company_Account

@Company varchar(100),

@Bank varchar(255),

@Account_No varchar(100)

AS

DECLARE @Company_ID bigint

DECLARE @Bank_ID bigint

DECLARE @Company_Bank_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company

SELECT @Bank_ID = ID FROM Bank WHERE Name = @Bank

SELECT @Company_Bank_ID = ID FROM Company_Bank WHERE Company_ID = @Company_ID AND Bank_ID = @Bank_ID

INSERT INTO Company_Account(Company_Bank_ID, Account_No) VALUES(@Company_Bank_ID, @Account_No)

END

GO

CREATE PROCEDURE CP_Add_Company_Email

@Company varchar(100),

@Email varchar(255)

AS

DECLARE @Company_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company

INSERT INTO Company_Email(Company_ID, Email) VALUES(@Company_ID, @Email)

END

GO

CREATE PROCEDURE CP_Add_Company_Fax

@Company varchar(100),

@Fax_No varchar(255)

AS

DECLARE @Company_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company

INSERT INTO Company_Fax(Company_ID, Fax_No) VALUES(@Company_ID, @Fax_No)

END

GO

CREATE PROCEDURE CP_Add_Company_Mobile_Phone

@Company varchar(100),

@Mobile_No varchar(255)

AS

DECLARE @Company_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company

INSERT INTO Company_Mobile_Phone(Company_ID, Mobile_No) VALUES(@Company_ID, @Mobile_No)

END

GO

CREATE PROCEDURE CP_Add_Company_Stationary_Phone

@Company varchar(100),

@Stationary_No varchar(255)

AS

DECLARE @Company_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company

INSERT INTO Company_Stationary_Phone(Company_ID, Stationary_No) VALUES(@Company_ID, @Stationary_No)

END

GO

CREATE PROCEDURE CP_Add_Person_Account

@Person varchar(100),

@Bank varchar(255),

@Account_No varchar(100)

AS

DECLARE @Person_ID bigint

DECLARE @Bank_ID bigint

DECLARE @Person_Bank_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

SELECT @Bank_ID = ID FROM Bank WHERE Name = @Bank

SELECT @Person_Bank_ID = ID FROM Person_Bank WHERE Person_ID = @Person_ID AND Bank_ID = @Bank_ID

INSERT INTO Person_Account(Person_Bank_ID, Account_No) VALUES(@Person_Bank_ID, @Account_No)

END

GO

CREATE PROCEDURE CP_Add_Person_Email

@Person varchar(100),

@Email varchar(255)

AS

DECLARE @Person_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

INSERT INTO Person_Email(Person_ID, Email) VALUES(@Person_ID, @Email)

END

GO

CREATE PROCEDURE CP_Add_Person_Fax

@Person varchar(100),

@Fax_No varchar(255)

AS

DECLARE @Person_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

INSERT INTO Person_Fax(Person_ID, Fax_No) VALUES(@Person_ID, @Fax_No)

END

GO

CREATE PROCEDURE CP_Add_Person_Home_Phone

@Person varchar(100),

@Home_Phone_No varchar(255)

AS

DECLARE @Person_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

INSERT INTO Person_Home_Phone(Person_ID, Home_Phone_No) VALUES(@Person_ID, @Home_Phone_No)

END

GO

CREATE PROCEDURE CP_Add_Person_Mobile_Phone

@Person varchar(100),

@Mobile_No varchar(255)

AS

DECLARE @Person_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

INSERT INTO Person_Mobile_Phone(Person_ID, Mobile_No) VALUES(@Person_ID, @Mobile_No)

END

GO

CREATE PROCEDURE CP_Add_Person_To_Group

@Group_Name varchar(100),

@Person_Name varchar(100)

AS

DECLARE @Group_ID bigint;

DECLARE @Person_ID bigint

BEGIN

SELECT @Group_ID = ID FROM Groups WHERE Name = @Group_Name;

SELECT @Person_ID = ID FROM Person WHERE Name = @Person_Name;

INSERT INTO Groups_Person(Group_ID, Person_ID) VALUES(@Group_ID, @Person_ID)

END

GO

CREATE PROCEDURE CP_Add_Person_Work_Phone

@Person varchar(100),

@Work_Phone_No varchar(255)

AS

DECLARE @Person_ID bigint

BEGIN

SELECT @Person_ID = ID FROM Person WHERE Name = @Person

INSERT INTO Person_Work_Phone(Person_ID, Work_Phone_No) VALUES(@Person_ID, @Work_Phone_No)

END

GO

CREATE PROCEDURE CP_Add_Work_Position

@Company_Name varchar(255),

@Person_Name varchar(100),

@Work_Position varchar(255)

AS

DECLARE @Company_ID bigint;

DECLARE @Person_ID bigint

BEGIN

SELECT @Company_ID = ID FROM Company WHERE Name = @Company_Name;

SELECT @Person_ID = ID FROM Person WHERE Name = @Person_Name;

INSERT INTO Work_Position(Person_ID, Company_ID, Work_Position) VALUES(@Person_ID, @Company_ID, @Work_Position)

END

GO

CREATE PROCEDURE CP_Get_Last_Company_ID

@Company_ID bigint OUTPUT

AS

BEGIN

SELECT @Company_ID = ID FROM Company WHERE ID = IDENT_CURRENT('Company')

END

GO

CREATE PROCEDURE CP_Get_Supplier_ID

@Supplier_Code char(2),

@Supplier_Id bigint OUTPUT

AS

BEGIN

SELECT @Supplier_Id = ID FROM Supplier WHERE Supplier_Code = @Supplier_Code

END

GO

CREATE PROCEDURE CP_Insert_Bank

@Name varchar(255),

@Code varchar(50) ,

@Swift_Code varchar(50)

AS

BEGIN

INSERT INTO Bank(Name, Code, Swift_Code) VALUES(@Name, @Code, @Swift_Code)

END

GO

CREATE PROCEDURE CP_Insert_Client

@Name varchar(255),

@Code varchar(50),

@Address varchar(1000),

@VAT_Code varchar(50),

@Website varchar(255)

AS

DECLARE @Company_ID bigint

BEGIN

EXEC CP_Insert_Company @Name, @Address, @VAT_Code, @Website;

EXEC CP_Get_Last_Company_ID @Company_Id OUTPUT;

INSERT INTO Client(Company_ID, Code) VALUES(@Company_ID, @Code)

END

GO

CREATE PROCEDURE CP_Insert_Company

@Name varchar(255),

@Address varchar(1000),

@VAT_Code varchar(50),

@Website varchar(255)

AS

BEGIN

INSERT INTO Company(Name, Address, VAT_Code, Website) VALUES(@Name, @Address, @VAT_Code, @Website);

END

GO

CREATE PROCEDURE CP_Insert_Group

@Name varchar(255)

AS

BEGIN

INSERT INTO Groups(Name) VALUES(@Name)

END

GO

CREATE PROCEDURE CP_Insert_Item

@Supplier_Code char(2),

@Item_Code varchar(50),

@Original_Name varchar(255),

@LT_Name ntext,

@Original_Price money,

@Serial_No varchar(50),

@User_Guide_Code varchar(50),

@User_Guide_LT bit

AS

DECLARE @Supplier_Id bigint

BEGIN

EXEC CP_Get_Supplier_ID @Supplier_Code, @Supplier_Id OUTPUT

INSERT INTO Item(Supplier_Id, Item_Code, Original_Name, LT_Name, Original_Price, Serial_No, User_Guide_Code, User_Guide_LT) VALUES(@Supplier_Id, @Item_Code, @Original_Name, @LT_Name, @Original_Price, @Serial_No, @User_Guide_Code, @User_Guide_LT);

END

GO

CREATE PROCEDURE CP_Insert_Person

@Name varchar(255)

AS

BEGIN

INSERT INTO Person(Name) VALUES(@Name);

END

GO

CREATE PROCEDURE CP_Insert_Supplier

@Name varchar(255),

@Supplier_Code char(2),

@Address varchar(1000),

@VAT_Code varchar(50),

@Website varchar(255),

@Country varchar(50),

@Logo image

AS

DECLARE @Company_ID bigint

BEGIN

EXEC CP_Insert_Company @Name, @Address, @VAT_Code, @Website;

EXEC CP_Get_Last_Company_ID @Company_Id OUTPUT;

INSERT INTO Supplier(Company_ID, Supplier_Code, Country, Logo) VALUES(@Company_ID, @Supplier_Code, @Country, @Logo)

END

GO

APPENDIX D: Java Code

Test Case sample: Excel Reader component

package tests;

import junit.framework.Assert;

import junit.framework.TestCase;

import reader.control.ExcelReader;

import reader.control.ExcelReader;

import reader.model.Body;

import reader.model.Body;

import util.MyException;

import java.io.File;

import util.MyException;

public class TestExcelReader extends TestCase {

 private static final String path = "converter/tests/sources/excel.xls";

 private Body result = null;

 public TestExcelReader(String name) {

 super(name);

 }

 protected void setUp() {

 try {

 result = ExcelReader.read(new File(path), null);

 } catch (MyException e) {

 e.printStackTrace();

 }

 }

 protected void tearDown() throws Exception {

 result = null;

 }

 public void testHeaderCellFormat() {

 Assert.assertTrue(result.getValueAt(0,0) instanceof String);

 Assert.assertTrue(result[0][1] instanceof String);

 Assert.assertTrue(result[0][2] instanceof String);

 }

 public void testBodyCellFormat() {

 Assert.assertFalse(result[1][2] instanceof String);

 Assert.assertTrue(result[1][2] instanceof Boolean);

 Assert.assertTrue(result[7][1] instanceof String);

 Assert.assertTrue(result[2][0] instanceof Double);

 Assert.assertTrue(result[3][2] == null);

 }

 public void testColumnCount() {

 Assert.assertEquals(result[0].length, 3);

 }

 public void testRowCount() {

 Assert.assertEquals(result.length, 13);

 }

 public void testExcelDocumentEmpty() {

 int cellCounter = 0;

 Assert.assertTrue(result.length != 0);

 for (int i = 0; i < result.length; i++) {

 for (int j = 0; j < result[i].length; j++) {

 if (result[i][j] == null)

 cellCounter++;

 }

 Assert.assertTrue(cellCounter != result[0].length);

 cellCounter = 0;

 }

 }

 public void testResultExists() {

 Assert.assertFalse(result == null);

 }

}

package tests;

import junit.framework.TestSuite;

import junit.framework.Test;

public class TestLauncher {

 public static void main(String args[]) {

 junit.textui.TestRunner.run(suite());

 }

 public static Test suite() {

 return new TestSuite(tests.TestExcelReader.class);

 }

}

Application Skeleton:

Core of Registration component:

package registration.model;

public interface Registerable {

}

package registration.model;

import procedures.model.Procedures;

public class Entity implements Registerable {

 protected Procedures procedure;

 protected Object[] attributes;

 public String getProcedure() {

 return procedure != null? procedure.getName(): null;

 }

 public Object[] enlistAttributes() {

 return attributes != null? attributes: null;

 }

}

package registration.model;

import java.util.List;

import java.util.ArrayList;

public class EntityBatch implements Registerable {

 private List<Entity> list;

 public EntityBatch() {

 list = new ArrayList<Entity>();

 }

 public void addEntity(Entity e) {

 list.add(e);

 }

 public Entity getEntity(int index) {

 return list.get(index);

 }

 public int getBatchSize() {

 return list.size();

 }

}

package registration.model;

import static procedures.model.Procedures.INSERT_CLIENT;

public class Client extends Entity {

public Client(String name, String code, String address, String vatCode,

 String website) {

 attributes = new Object[] { name, code, address, vatCode, website };

 procedure = INSERT_CLIENT;

 }

 public String getName() {

 return (String) attributes[0];

 }

 public void setName(String name) {

 attributes[0] = name;

 }

 public String getCode() {

 return (String) attributes[1];

 }

 public void setCode(String code) {

 attributes[1] = code;

 }

 public String getAddress() {

 return (String) attributes[2];

 }

 public void setAddress(String address) {

 attributes[2] = address;

 }

 public String getVatCode() {

 return (String) attributes[3];

 }

 public void setVatCode(String vatCode) {

 attributes[3] = vatCode;

 }

 public String getWebsite() {

 return (String) attributes[4];

 }

 public void setWebsite(String website) {

 attributes[4] = website;

 }

}

package registration.model;

import static procedures.model.Procedures.ADD_PERSON_FAX;

public class PersonFax extends Entity {

 public PersonFax(String person, String fax) {

 attributes = new Object[] { person, fax };

 procedure = ADD_PERSON_FAX;

 }

 public String getPerson() {

 return (String) attributes[0];

 }

 public void setPerson(String person) {

 attributes[0] = person;

 }

 public String getFax() {

 return (String) attributes[1];

 }

 public void setFax(String fax) {

 attributes[1] = fax;

 }

}

package registration.control;

import procedures.control.ProcedureController;

import procedures.control.UpdateProcedureController;

import procedures.model.Procedure;

import procedures.model.ProcedureList;

import registration.model.Entity;

import java.sql.SQLException;

public class RegistrationController {

 public void register(Entity entity) throws SQLException {

 ProcedureController pc = new UpdateProcedureController();

 Procedure p = ProcedureList.findProcedure(entity.getProcedure());

 pc.call(p, entity);

 pc = null;

 p = null;

 };

}

The Connector (Database bridge)

package connection;

public class Connector {

 private java.sql.Connection con = null;

 private final String url = "jdbc:jtds:sqlserver://";

 private final String serverName= "localhost";

 private final String portNumber = "1433";

 private final String databaseName= "salmeda";

 private final String userName = "user";

 private final String password = "user";

 // Informs the driver to use server a side-cursor,

 // which permits more than one active statement

 // on a connection.

 private final String selectMethod = "cursor";

 public Connector() {}

 private String getConnectionUrl(){

 return url + serverName + ":" +

 portNumber + ";databaseName=" +

 databaseName + ";selectMethod=" +

 selectMethod + ";";

 }

 public java.sql.Connection connect(){

 try {

 Class.forName("net.sourceforge.jtds.jdbc.Driver");

 con = java.sql.DriverManager.getConnection(getConnectionUrl(), userName, password);

 if (con != null)

 System.out.println("Connection Successful!");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return con;

 }

 public void disconnect() {

 try {

 if (con != null)

 con.close();

 con = null;

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Core of Procedures component

package procedures.model;

public abstract class Procedure {

 protected String name;

 protected Parameter[] params;

 public String getName() {

 return name;

 }

 public Parameter[] getParams() {

 return params;

 }

}

package procedures.model;

public class Parameter {

 private String name;

 private String description;

 private boolean isNullable;

 private int jdbcType;

 public Parameter(String name, String description, boolean isNullable, int jdbcType) {

 this.name = name;

 this.description = description;

 this.isNullable = isNullable;

 this.jdbcType = jdbcType;

 }

 public int getJdbcType() {

 return jdbcType;

 }

 public String getDescription() {

 return description;

 }

 public String getName() {

 return name;

 }

 public boolean isNullable() {

 return isNullable;

 }

}

package procedures.model;

public class UpdateProcedure extends Procedure {

 protected String table;

 public String getTable() {

 return table;

 }

}

package procedures.model;

import procedures.model.update.*;

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

public class ProcedureList {

 private static Procedure[] procedures;

 /**

 * Register all available procedures

 */

 static {

 procedures = new Procedure[] {

 /* public Procedures – has the table attribute

 * excel reader uses only these

 */

 ProcedureInsertSupplier.getInstance(),

 ProcedureInsertItem.getInstance(),

 ProcedureInsertClient.getInstance(),

 ProcedureInsertPerson.getInstance(),

 /* private Procedures */

 ProcedureAddPersonAccount.getInstance(),

 ProcedureAddCompanyAccount.getInstance(),

 ProcedureAddPersonToGroup.getInstance(),

 ProcedureAddWorkPosition.getInstance(),

 ProcedureInsertBank.getInstance(),

 ProcedureInsertGroup.getInstance()

 // more procedures to be added...

 };

 }

 public static Collection getTableList() {

 List list = new ArrayList();

 for (int i = 0; i < procedures.length; i++) {

 if (procedures[i] instanceof UpdateProcedure) {

 if (!((UpdateProcedure) procedures[i]).getTable().equals(""))

 list.add(((UpdateProcedure) procedures[i]).getTable());

 }

 }

 return list;

 }

 public static Procedure fromTable(String tableName) {

 for (int i = 0; i < procedures.length; i++) {

 if (procedures[i] instanceof UpdateProcedure) {

 if (tableName.equals(((UpdateProcedure) procedures[i]).getTable()))

 return procedures[i];

 }

 }

 return null;

 }

 public static Procedure findProcedure(String procedureName) {

 for (int i = 0; i < procedures.length; i++) {

 if (procedureName.equals(procedures[i].getName()))

 return procedures[i];

 }

 return null;

 }

 public static Parameter[] getParams(Procedure p) {

 return p.getParams();

 }

}

package procedures.model;

public final class Procedures {

 public static final Procedures ADD_COMPANY_ACCOUNT = new Procedures("CP_Company_Person_Account");

 public static final Procedures ADD_COMPANY_EMAIL = new Procedures("CP_Company_Person_Email");

 public static final Procedures ADD_COMPANY_FAX = new Procedures("CP_Company_Person_Fax");

 public static final Procedures ADD_COMPANY_MOBILE_PHONE = new Procedures("CP_Add_Company_Mobile_Phone");

 public static final Procedures ADD_COMPANY_STATIONARY_PHONE = new Procedures("CP_Add_Company_Stationary_Phone");

 public static final Procedures ADD_PERSON_ACCOUNT = new Procedures("CP_Add_Person_Account");

 public static final Procedures ADD_PERSON_EMAIL = new Procedures("CP_Add_Person_Email");

 public static final Procedures ADD_PERSON_FAX = new Procedures("CP_Add_Person_Fax");

 public static final Procedures ADD_PERSON_HOME_PHONE = new Procedures("CP_Add_Person_Home_Phone");

 public static final Procedures ADD_PERSON_MOBILE_PHONE = new Procedures("CP_Add_Person_Mobile_Phone");

 public static final Procedures ADD_PERSON_WORK_PHONE = new Procedures("CP_Add_Person_Work_Phone");

 public static final Procedures ADD_PERSON_TO_GROUP = new Procedures("CP_Add_Person_To_Group");

 public static final Procedures ADD_WORK_POSITION = new Procedures("CP_Add_Work_Position");

 public static final Procedures INSERT_BANK = new Procedures("CP_Insert_Bank");

 public static final Procedures INSERT_CLIENT = new Procedures("CP_Insert_Client");

 public static final Procedures INSERT_COMPANY = new Procedures("CP_Insert_Company");

 public static final Procedures INSERT_ITEM = new Procedures("CP_Insert_Item");

 public static final Procedures INSERT_GROUP = new Procedures("CP_Insert_Group");

 public static final Procedures INSERT_PERSON = new Procedures("CP_Insert_Person");

 public static final Procedures INSERT_SUPPLIER = new Procedures("CP_Insert_Supplier");

 private final String name;

 private Procedures(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

package procedures.model.update;

import procedures.model.Parameter;

import procedures.model.UpdateProcedure;

import java.sql.Types;

public class ProcedureInsertClient extends UpdateProcedure {

 private static ProcedureInsertClient procedure = new ProcedureInsertClient();

 private ProcedureInsertClient() {

 name = "CP_Insert_Client";

 table = "Klientai";

 params = new Parameter[] {

 new Parameter("Name", "Pavadinimas", false, Types.VARCHAR),

 new Parameter("Code", "Kompanijos kodas", false, Types.VARCHAR),

 new Parameter("Address", "Adresas", true, Types.VARCHAR),

 new Parameter("VAT_Code", "VAT kodas", true, Types.VARCHAR),

 new Parameter("Website", "Internete svetaine", true, Types.VARCHAR)

 };

 }

 public static ProcedureInsertClient getInstance() {

 return procedure;

 }

}

package procedures.control;

import connection.Connector;

import procedures.model.Parameter;

import procedures.model.Procedure;

import java.sql.CallableStatement;

import java.sql.SQLException;

import java.sql.Types;

import registration.model.Entity;

import registration.model.Registerable;

public abstract class ProcedureController {

 public static final Connector connector = new Connector();

 public abstract Object call(Procedure p, Registerable obj) throws SQLException;

 /* Bad practice - needs refactoring */

 public CallableStatement setParameters(CallableStatement s, Parameter[] p, Entity entity) {

 try {

 Object[] attrs = entity.enlistAttributes();

 for (int i = 0; i < attrs.length; i++) {

 System.out.println(attrs[i]);

 }

 System.out.println(p.length == attrs.length);

 for (int i = 0; i < p.length; i++) {

 if (attrs[i] == null) {

 s.setNull(i + 1, p[i].getJdbcType());

 } else {

 switch (p[i].getJdbcType()) {

 case Types.CHAR:

 case Types.LONGVARCHAR:

 case Types.VARCHAR:

 case Types.CLOB:

 s.setString(i + 1, (String) attrs[i]);

 break;

 case Types.BIGINT:

 s.setLong(i + 1, (Integer) attrs[i]);

 break;

 case Types.INTEGER:

 case Types.TINYINT:

 s.setInt(i + 1, (Integer) attrs[i]);

 break;

 case Types.BIT:

 s.setByte(i + 1, new Byte(attrs[i].toString().substring(0,1)));

 break;

 case Types.REAL:

 case Types.DOUBLE:

 s.setDouble(i + 1, (Double) attrs[i]);

 break;

 case Types.FLOAT:

 case Types.DECIMAL:

 case Types.NUMERIC:

 s.setFloat(i + 1, (Float) attrs[i]);

 break;

 default:

 s.setNull(i + 1, p[i].getJdbcType());

 break;

 }

 }

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return s;

 }

}

package procedures.control;

import connection.Connector;

import java.sql.ResultSet;

import java.sql.Connection;

import java.sql.CallableStatement;

import java.sql.SQLException;

import procedures.model.QueryProcedure;

import procedures.model.Parameter;

import procedures.model.Procedure;

import procedures.control.ProcedureController;

import reader.model.Body;

import registration.model.Entity;

import registration.model.Registerable;

public class QueryProcedureController extends ProcedureController {

 public QueryProcedureController() {}

 public Object call(Procedure procedure, Registerable obj) {

 boolean success = false;

 Connection conn = connector.connect();

 CallableStatement statement = null;

 ResultSet rs = null;

 try {

 StringBuffer buffer = new StringBuffer("{call " + procedure.getName());

 Parameter[] params = procedure.getParams();

 for (int i = 0; i < params.length; i++) {

 }

 statement = conn.prepareCall(buffer.toString());

 buffer = null;

 rs = statement.executeQuery();

 success = true;

 return rs;

 } catch (SQLException e) {

 e.printStackTrace();

 connector.disconnect();

 conn = null;

 return null;

 } finally {

 if (success) {

 try {

 rs.close();

 statement.close();

 } catch (SQLException e) {

 e.printStackTrace();

 } finally {

 rs = null;

 statement = null;

 connector.disconnect();

 conn = null;

 }

 } else {

 rs = null;

 statement = null;

 conn = null;

 }

 }

 }

}

Excel Reader Component

package reader.control;

import org.apache.poi.hssf.usermodel.HSSFCell;

import org.apache.poi.hssf.usermodel.HSSFRow;

import org.apache.poi.hssf.usermodel.HSSFSheet;

import org.apache.poi.hssf.usermodel.HSSFWorkbook;

import org.apache.poi.poifs.filesystem.POIFSFileSystem;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.Iterator;

import util.MyException;

import reader.model.Body;

import reader.model.Header;

import registration.control.ErrorChecker;

/**

 * Reader based on Jakarta POI API operating only on Microsoft Excel files with

 * .xls extension. Reads the data from specified file into application specific

 * <code>Entity</code> and <code>EntityBatch</code> objects that can be reused

 * later on. The only requisite is an object of <code>Header</code> class which

 * specifies attributes of the columns in the excel file. Any IO, file or

 * header errors are checked and <code>MyException</code> is thrown if error

 * occurs.

 *
For latest information on Jakarta POI API visit

 * POI website

 *

 * @see Header

 * @see MyException

 * @author R.Laucius, V.Tolvaisaite

 */

public class ExcelReader {

 /**

 * Reads the columns specified in header object from given excel file.

 *

 * @param file a path to excel file needed to be read.

 * @param header header indicating column attributes of the excel file.

 * @return data from given excel file in structured format.

 * @throws MyException is thrown when file location cannot be found or file

 * is corrupted.

 */

 public static Body read(File file, Header header) throws MyException {

 // Check for any header errors

 ErrorChecker filter = new ErrorChecker(header);

 List<List> rowList = new ArrayList<List>();

 List columnList = null;

 FileInputStream fis = null;

 POIFSFileSystem filesystem = null;

 HSSFWorkbook workbook = null;

 HSSFSheet sheet = null;

 HSSFRow row = null;

 HSSFCell cell = null;

 Object value = null;

 short cellCounter = 0;

 short rowCounter = 0;

 int nullCounter = 0;

 try {

 fis = new FileInputStream(file);

 filesystem = new POIFSFileSystem(fis);

 workbook = new HSSFWorkbook(filesystem);

 } catch (FileNotFoundException e) {

 throw new MyException("Failas \"" + file + "\" nerastas.");

 } catch (IOException e) {

 throw new MyException("Sistemin? klaida.");

 }

 sheet = workbook.getSheetAt(0);

 final short columnCount = (short) header.getColumnCount();

 // row begins

 while (rowCounter <= sheet.getLastRowNum()) {

 row = sheet.getRow(rowCounter);

 if (row != null) {

 Iterator i = header.getHeaderIterator();

 columnList = new ArrayList();

 // iterate through columns

 while (i.hasNext()) {

 cell = row.getCell(cellCounter);

 if (((Boolean) i.next()).booleanValue() == true) {

 if (cell == null) {

 value = null;

 nullCounter++;

 } else {

 value = filter.getCellValue(cell);

 }

 } else {

 if (cell == null) {

 nullCounter++;

 }

 value = null;

 cellCounter--;

 }

 columnList.add(value);

 cellCounter++;

 }

 i = null;

 if (nullCounter != columnCount) {

 rowList.add(columnList);

 }

 nullCounter = 0;

 }

 rowCounter++;

 cellCounter = 0;

 columnList = null;

 }

 // row ends

 Body body = new Body(rowList.size(), columnCount, null);

 Object[][] result = new Object[rowList.size()][];

 Object[] record = null;

 for (int i = 0; i < rowList.size(); i++) {

 body.addRecord(rowList.get(i));

 record = rowList.get(i).toArray();

 result[i] = record;

 }

 rowList = null;

 header = null;

 fis = null;

 filesystem = null;

 workbook = null;

 sheet = null;

 row = null;

 cell = null;

 value = null;

 filter = null;

 return body;

 }

}

package reader.model;

import java.util.*;

public class Header {

 private List<Boolean> values;

 public Header() {

 values = new ArrayList<Boolean>();

 }

 public void addColumn(boolean isSelected) {

 values.add(isSelected);

 }

 public int getColumnCount() {

 return values.size();

 }

 public Iterator getHeaderIterator() {

 return values.iterator();

 }

}

package reader.model;

import procedures.model.Procedures;

public class Body {

 private Procedures relatedProcedure;

 private Object[][] data;

 private int count = 0;

 public Body(int rows, int cols, Procedures proc) {

 data = new Object[rows][cols];

 this.relatedProcedure = proc;

 }

 public Body(Object[] data, Procedures proc) {

 this.data = new Object[1][];

 this.data[0] = data;

 this.relatedProcedure = proc;

 }

 public int getColumnCount() {

 return data == null? 0: data[0].length;

 }

 public int getRowCount() {

 return data == null? 0: data.length;

 }

 public void addRecord(java.util.List record) {

 if (count != data.length)

 data[count++] = record.toArray();

 }

 public Object[] getRow(int index) {

 return data[index];

 }

 public Object[][] getData() {

 return data;

 }

 public void setValueAt(int row, int column, Object value) {

 data[row][column] = value;

 }

 public Object getValueAt(int row, int column) {

 return data[row][column];

 }

 public Body join(Body b) {

 Body body = new Body(this.getRowCount() + b.getRowCount(),

 this.getColumnCount(), relatedProcedure);

 for (int i = 0; i < this.getRowCount(); i++) {

 body.getData()[i] = this.getRow(i);

 }

 for (int i = this.getRowCount(); i < body.getRowCount(); i++) {

 body.getData()[i] = b.getRow(i - this.getRowCount());

 }

 b = null;

 return body;

 }

 public String toString() {

 StringBuffer sb = new StringBuffer();

 for (int i = 0; i < data.length; i++) {

 for (int j = 0; j < data[i].length; j++) {

 sb.append(data[i][j] + " ");

 }

 sb.append("\n");

 }

 return sb.toString();

 }

 public void setRelatedProcedure(Procedures relatedProcedure) {

 this.relatedProcedure = relatedProcedure;

 }

 public Procedures getRelatedProcedure() {

 return relatedProcedure;

 }

}

package registration.control;

import org.apache.poi.hssf.usermodel.HSSFCell;

import org.apache.poi.hssf.usermodel.HSSFRow;

import org.apache.poi.hssf.usermodel.HSSFSheet;

import org.apache.poi.hssf.usermodel.HSSFWorkbook;

import reader.model.Header;

import reader.model.Header;

import util.MyException;

public class ErrorChecker {

 private Header header;

 public ErrorChecker(Header header) {

 this.header = header;

 }

 public void check(HSSFRow row) throws MyException {

 // ... to be implemented ...

 }

}

Core of Utility package

package util;

public class MyException extends Exception {

 public MyException(String message) {

 super(message);

 }

}

package util;

import java.util.ResourceBundle;

import java.util.Locale;

public class Local {

 public static ResourceBundle menu;

 public static ResourceBundle person;

 public Local() {

 menu = ResourceBundle.getBundle("resources/MENU", new Locale("lt", "LT"));

 person = ResourceBundle.getBundle("resources/PERSON", new Locale("lt", "LT"));

 }

}

APPENDIX E: Class diagram drafts
[image: image42.png]
Figure 41: Registration component model classes

[image: image43]
[image: image44.png]
Figure 42: Excel Reader package
[image: image45.png]
Figure 43: Grouping and List package
APPENDIX F: User stories priorities

	Story no.
	Story name
	Customer priority

	Developer estimates

	001
	Item Registration
	10

	-

	002
	Supplier Registration
	09

	-

	003
	Object Restructuring
	02
	**
	-

	004
	Client Registration
	07

	-

	005
	Person Grouping
	03

	-

	006
	User Login
	02
	**
	-

	007
	Item Selection
	10

	-

	008
	Extensible Options
	08

	-

	009
	Excel Reader
	10

	-

	010
	Form Maker
	09

	-

	011
	PDF Maker
	04

	-

	012
	Open Dialogue
	05

	-

	013
	Search
	10

	-

	014
	E-mail Sender
	03

	-

	015
	Printer
	08

	-

	016
	Comments
	02
	**
	-

	017
	HTML Maker
	01
	*
	-

	018
	Automatic Backup
	06

	-

	019
	Form Designer
	08

	-

	020
	User Admin
	02
	**
	-

	021
	Excel Writer
	01
	*
	-

	022
	Networking
	08

	-

	023
	Localization
	08

	-

� Evaluation 1 – possibility of risk factor occurrence, the scale is from 5 (very high) to 1 (very low)

� Evaluation 2 – severity of risk factor, the same scale as of possibility evaluation

� Standardized management activities are enlisted in [Sommerville 1997]

� Look at the figure 5: Competitive Strategy

� In order to emphasize an advantage of the current “Salmeda” situation, we will remember one statement that was said by our teacher Klavs Frisdahl during one of the business lessons. He stated, that the route to the target (see figure 5) through the upper left edge is always more paying than going the other way.

� Harvard Business School Professor; leading authority on competitive strategy and economic development; the author of 16 books and over 100 articles.

� Activities, that compose the inner circle of M. Porter Value Chain Model, see figure 7.

� This activity belongs to the category “Outbound Logistics”, however is performed together with “Marketing and Sales” activities.

� Recall in the page 15

� The practice of using workers from outside the company.

� Look at the outer circle in the figure 7: M.Porter Value Chain model on page 17.

� For XP detailed explanations visit [XP Core] and [XP Magazine]

� Source: [RUP Websurfin]

� For UML specification go to [UML Spec]

� Source: [MSF Whitepaper]

� Further, we will call planning process the “Planning Game” following the XP naming

� XP recommendation is that 3 would be a load factor for all initial iterations

� We say “release integration” when system is deployed after release, respectively with iteration

� Most of the risk evaluation is addressed in [Beck 2000]

� Actor is a party that interacts with the system being outside it. An actor may be user, other system or device.

� The language of the stories is not original user language, as we have translated them from Lithuanian to English and formulated in more technical way.

� Non-Functional Requirement

� During development process this requirement probably will be moved to another story.

� By saying “Business Object” we mean an object from users’ point of view that will be processed by the system. Business Objects are Supplier, Item, Client, Person, Group, Item Selection, Form, and Email Template.

� View the requirements in the table 2 „User Stories“. Each User Story is marked with a NFR derived from it (story).

� Look at the table 5 “Measurement Criterions of Non-Functional Requirements”

� God forbid!

� Read them in the table 5: Measurement Criterions of Non-Functional Requirements

� Further on, we will label our class diagrams as “layered” because of MVC class separation. Inside diagrams we denote model classes as “M” layer, controllers as “C” and view as “V”.

� Dependencies point to the story number. The “w” notation shows weak dependence, “s” – strong. Strong dependency means that story cannot be implemented without first coding the needed story, while weak dependency just states its affiliation to the story, but it can be implemented without implementing the linked story first. The “***” notation means that story is related to all other stories, in this case story estimation cannot be accurate.

� Every object that needs to be printed in Java, should implement Printable interface and print(…) method, which works almost the same as paint(…), just instead of painting on the screen it draws what needs to be printed to the printer page.

� Noted as an arrow on release taskbar

� Attributes are unified to a single Candidate Key

� Xxx stands for every logical table: Person, Client, Supplier, etc

� DML is a part of SQL language, directed for data manipulation – Data Manipulation Language

� Client is customer-organization.

� Person might be a customer as well as a contact person of customer-organizations or suppliers.

� This activity is included in the release plan exploration phase, see planning game, page xx

� data fields, combo boxes, check buttons, etc

� Registration Instruction specifying which Object attributes will be registered

� Entity stands for Object in Use Case Body

� Update Preferences specifying which Object attributes will be updated in case Object exists.

� Invalid_Object Log holding Invalid Objects

� The scale is from 01 – the lowest to 10 – the highest priority

[image: image46.png][image: image47.png]_1160667071.vsd

_1161618049.vsd

_1161627462.vsd

_1161627503.vsd

_1161618092.vsd

_1161505258.vsd

_1161589103.vsd

_1161606204.vsd

_1161606275.vsd

_1161543798.vsd

_1161444177.vsd

_1161449472.vsd

_1160927365.vsd

_1161349290.vsd

_1160409954.vsd

_1160588338.vsd

_1157485593.vsd

_1159023248.vsd

_1159024431.vsd

_1159021963.vsd

_1157485553.vsd

