
onTrack course administration and
participant progress tracking

Systems Development Project

5th semester datamatician education

Roskilde Business Academy, School of Computer Science

Project Period: August 2001 - November 2001
Sponsor

Plass Data Software A/S

Project Team
Carsten Fjelkstrup, Harvey Shaw, Jama Awil Dirir, Paul Trumble

Project Advisor
Associate Professor Michael Claudius

Permission to publicize is hereby given to Roskilde Business School to make this report
available to students and employees of the school.

______________ _____________ _______________ _____________
Carsten Fjelkstrup Harvey Shaw Jama Awil Dirir Paul Trumble

ABOUT THE COVER Evolution - "a process of continuous change from a lower, simpler, or worse to a higher,
more complex, or better state" as defined in the Webster’s Dictionary.

In 1961 the American President John F. Kennedy stated that by the end of the decade
America would put a man on the moon. This sounded the start of the American Space
Program, an immense undertaking with a tight schedule. New methods, tools, tech-
niques, technologies, and materials had to be explored, discovered and created. To
achieve the goal set by J.F.K the project was guided by evolutionary development rather
than attempting to take a “giant leap” in one step. Small steps of development and
progress provided the foundation for success. Nobody pictured working for 6 years to
produce one single vehicle for one single launch toward the moon. Instead the project
moved forward incrementally, constantly producing new and usable results on which
further advances could be based.

It is so with software development too. For success it is better in our opinion to break up
the total project into smaller, understandable and manageable iterations which result in
an evolutionary development where each step is based on the previous and each ends
with the project in some well defined understandable state, improving on the previous
and taking into consideration requirements that surface at a point later than the project
inception.

Foreword

Foreword

BACKGROUND This report is the result of a contact via e-mail to Plass Data Software A/S (PDS) in
regard to a 5th semester project and report for presentation and evaluation for the final
exam for the datamatician education at Roskilde Business Academy, School of Com-
puter Science.

Upon the positive reply from Preben Klavsen of PDS (no longer affiliated with PDS) a
meeting was arranged to discuss what the project group was interested in and what PDS
had under consideration. Initially PDS presented the idea of a web based FAQ applica-
tion, but another suggestion from PDS was a revised administration system for the train-
ing courses they have for their products as well as Microsoft products.

The team felt the course administration project had more content and it was clearly our
impression that PDS preferred that project as well. Upon our decision we informed PDS
and arranged a second meeting to further discuss what the initial ideas were concerning
the project.

At this second meeting we had a good long talk about what the project was about and
more importantly we met with Torben Pedersen, who is the administrator of the course
system. Torben was extremely patient and presented us with an overwhelming amount
of information on how the present system functioned, some of the problems and some of
the desires for the future.

The team left the meeting with lots to take into consideration. We met again just before
summer vacation to do some basic steps of project establishment such as determining
roles and creating an internal contract.

PURPOSE OF REPORT The main purpose of the report is to fulfill requirements for the 5th semester datamati-
cian examination. Additionally we are writing this report to learn to evaluate, be critical,
document decisions, use and increase our knowledge and sharpen skills learned
throughout our education. Last but not least, this report was written as part of the deliv-
erables of our contract with PDS.

TARGET READERS The primary readers of this report are: Our advisor, the external examiner, Benny Bech
and Torben Pedersen of PDS.

Reading this report would benefit datamatician students and others interested in provid-
ing better system development projects in the future than have been seen in the past, by
providing insight into the positive and negative experiences.

REPORT STRUCTURE The report starts with an introduction, which presents PDS’ profile, the problem defini-
tion and delimiting which tells what the concerns of the project will be. Chapter one is
about our project establishment. Chapter two discusses our systems development
method followed by a chapter on tools and technical prototyping. A brief chapter

Foreword

explains the initial requirements of PDS. Thereafter four chapters represent evolution-
ary iterations of the project, where Iteration 0 is concerned with prototyping the user
interface and the following three iteration chapters deal with Extreme Programming
iterations. The chapter entitled The Outcome presents an overview of the system.
Finally we have two chapters for the project evaluations and conclusion. The conclusion
may be read first as it provides a fast overview of what the project has dealt with and
results. At the end of the report are references.

Some people view the appendix as a “waste basket” however we strongly recommend
reading the appendix chapters, we have spent consideable time and energy making the
appendix a valuable reference. In our project, things that belong in the waste basket
have been placed in the waste basket.

ACKNOWLEDGEMENTS Our sincerest appreciation goes to Preben, Benny and Torben at PDS for expressing
interest in a group of datamaticians completing their education. This interest has been
extremely encouraging and the assistance, cooperation and patience of Benny and Tor-
ben have been priceless. PDS A/S also receives our thanks for allocating resources for
the purpose of the project.

Michael Claudius, our advisor, has provided inspiration, encouragement, assistance,
recommendations and information that without question have enabled us to achieve our
goals and therefore success with the project. To Michael we give our sincerest thanks
and appreciation for the invaluable resource he has been.

Counter Groups - Many thanks to MaRT group and Kenneth Tilsted for their mid-way
review of our documents, which also have contributed to raising the quality of our
project.

Camilla Trumble - for her thorough run through of our project to make sure that we had
dotted our i’s and crossed our t’s.

SPECIAL THANKS We would like to express our appreciation to the following people for their time and
patience in replying to our e-mails:

Lars Mathiassen, Aalborg University Center, Denmark

John Brewer, Jera Design,USA

Chromatic

Marty Hall, author of Core Servlets and JavaServer Pages

1.0 Introduction 1
2.0 Project Establishment 5
2.1 Project Charter ...5
3.0 Methods 20
3.1 System Development Method..20
3.2And The Winner Is! ...22
3.3 Extreme Programming (XP) ..22
3.4 Our Implementation of XP...24
4.0 Tools and Technical Prototyping 26
4.1 Tools...26
4.2 Technical Prototyping ..30
4.3 Server-side scripting ..35
5.0 Initial requirements 38
5.1 The Problem of Changing Requirements...38
6.0 Iteration 0 42
6.1 Prototyping User Interface ...42
6.2 Evaluation - User Interface, Prototype I, version 1..44
6.3 Evaluation - User Interface, Prototype I, version 2..48
6.4 Client/Server Architecture ...49
6.5 Database design..51
6.6 Conceptual design ..51
6.7 Logical design ..52
6.8 Alternatives ..54
6.9 Requested changes to user interface ..56
7.0 Iteration 1 57
7.1 Implementing Iteration 1..57
7.2 XP Iteration 1 ...58
8.0 Iteration 2 63
8.1 Implementing Iteration 2..63
8.2 XP Iteration 2 ...65
9.0 Iteration 3 70
9.1 Implementing iteration 3 ..70
9.2 XP Iteration 3 ...71
10.0 The Outcome 73
11.0 Project Evaluation 78
11.1 Evaluation of Products ...78
11.2 Evaluation of process ...79
11.3 Evaluation of Method...81
11.4 Evaluation of Development Tools ...83
11.5 Personal Evaluations ..84
11.6 Plass Evaluation ...86

12.0 Conclusion 88
12.1 Problem Description Answers..88
12.2 Overall project conclusion ...91
13.0 References 92

Appendices

Introduction 1

1.0 Introduction

PDS expressed a need for improvements in their training course administration.
Who and what exactly is PDS though? What questions arise from this need that
our project might be concerned with? Is difficulty in administering training
courses the fundamental concern of this project? A company profile, problem def-
inition and delimiting follow.

COMPANY PROFILE

TABLE 1. Company Profile

Name Plass Data Software A/S (PDS)

Address Tåstrup Møllevej 12A
4300 Holbæk

Telephone 59 45 50 00

Fax 59 45 50 50

WWW www.plass.dk

Director Bendt Plass-Nielsen

Employees Approx. 50

Certification Microsoft Gold Certified Partner

Branch IT software

Main Markets Dental, Real Estate Brokers, Financial
Institutions, Health Care,

Products DOMIDONT – Real estate sales administration,
 object oriented.
FYSIODONT – Administration for physical
 therapists
DATADONT – Dentist administration
XDONT – Newest Windows version of
 DATADONT
SHS – Physical Therapist administration
SBS – Sundhedsbranchens Betalings System
DVI - Disaster Victim Identification

Development
environment

Delphi

Customer Technical
Support

Hotline or e-mail

2 Introduction

PROBLEM DESCRIPTION PDS has multiple databases often containing redundant data, which leads to inconsisten-
cies and makes finding valid information a difficult task, although at this time PDS
would like to focus on their training course administration system.

CUSTOMER TRAINING
COURSES

For each software product there is a group of related courses for PDS and Microsoft
products, which interact with PDS software, available to PDS customers only. It is the
customer’s employees that are the participants or the customers themselves for smaller
businesses.

Administering user training courses has become a growing task for Torben Pedersen as
the number of participants and courses is increasing. Additionally, the number of per-
sonnel at PDS requiring information on the training courses and participants is growing.

Torben administers the system with Lotus Approach, an application and design he
inherited from his predecessor. Over time he has made adjustments to the design, but
such unplanned and undocumented adjustments eventually result in a system only one
particular user may understand and may even become incomprehensible for that person.

Design weaknesses in the present Lotus Approach system make using the system incon-
venient and are the partial cause of redundant data such as the same course participant
being created twice because of job changes. PDS points out that it is very difficult to
track where the participants are employed at any one time. No other data than partici-
pant names and their place of work are stored. There are no means for PDS to force
businesses or individuals to supply information on where they are presently employed
or other personal data in relation to their participation in courses. Avoiding redundancy
may not be possible as a unique way of identifying an individual person is difficult to
achieve.

MICROSOFT SQL SERVER
2000

Changing over to a large database system, SQL Server and migrating data in the
Approach system are the first steps PDS wishes to take toward achieving their goal of
increasing the usability, consistency, availability and ease of use of their data.

GROWING NEED FOR
INFORMATION

Additionally, the increasing number of users requesting information from the system
creates a need to provide various views and printed documents of the data. The views
should be accessible via an intranet connection to the database. The printed documents
must be in Word format, so the browsers functionality is not enough for printing.

QUESTIONS ARISE This gives rise to the following questions of concern to this project:

1. What systems development methodology is best suited for a relational database ori-
ented project or is a combination of methods best? What are the negative and posi-
tive consequences of these methods and what affects the positive and negative
aspects? We realize at this point in our education that a database is often a key part
of many computer systems. Yet, during our education we have not worked with a
methodology we find suitable for development projects where databases are con-
cerned. It seems anything that can shed light on an improved way of going about the
development would be helpful to us as well as developers in the future.

Introduction 3

2. Can we use an evolutionary systems development model with prototyping as both
the best and fastest way of developing a product which satisfies user requirements?
If prototyping is used as a method instead of a tool, what does the method include? It
is our initial standpoint that prototyping may be able to produce usable products
faster and better than Object Oriented Analysis and Design which seems to produce
much discussion and paperwork, but few tangible results a user/buyer would be
interested in. We would like to compare prototyping and Object Oriented Analysis
and Design and provide insight into our experiences with both, so that we and other
developers benefit from this in the future.

3. How will we approach intranet user interface design as it falls outside our experi-
ence?

4. Will the project produce the desired results for PDS, which is a usable first step or
two towards eliminating several of the many databases at PDS, reducing data redun-
dancy, improving data consistency, and improving the quality and availability of
information to PDS employees and customers? This is the key question to be
answered. Our success in taking the first steps and clearly showing the way to the
next steps, enabling PDS to pursue their intended strategy, will be a major determi-
nant of the project’s success. An alternative situation may be that we have succeeded
in our project, but have uncovered weaknesses in the suggested strategy for PDS’
data management that will permit PDS to rethink and improve their plan prior to any
continued development work.

5. It is not enough to implement.You also need to know things work and satisfy
requirements. How do you test and evaluate tests?

6. As many printed documents are needed, we will need to ensure this function is part
of the coming system. Previous projects have not had such a requirement with a high
priority, so it is not an area we have looked into, but it brings us to a real-world
requirement and must be given attention. When users on the intranet wish to print
out documents using a word processor, how is this accomplished? What are the
problems of using the browser printing functionality? What alternatives are there?

7. Coding - is there a better way? In our discussions with PDS we became aware of a
method called Extreme Programming. We are interested in finding out more about
this. We have asked ourselves, “What exactly is Extreme Programming”. Can it be
used in part or must the whole method be applied? Is this project a chance to apply
the method or part of it? How may it benefit software development? What are the
drawbacks?

8. The server is an expensive licensed product not readily available. How do we solve
the problem of the need for tools, software and hardware for project development?
If, in worst case, it is not possible to obtain the required resource, what are the alter-
native solutions?

9. How will the database server SQL Server affect PDS’ course administration as com-
pared to the Lotus Approach system now in use? What are the advantages and disad-
vantages of these?

10. How do we solve the problem of migrating data of different, perhaps incompatible,
types between Lotus Approach and SQL Server? Will it require manual entry? Does
the database provide facilities to assist with this? If there are choices what are they
and how do they compare?

4 Introduction

 PROBLEM DELIMITING 1. How important is the method for software development?

2. Can we advocate evolutionary systems development with prototyping? We will con-
centrate on a different approach to systems development with accent on an Evolu-
tionary Development model and Prototyping as a means of producing products
faster while satisfying actual user requirements, as compared to more formal meth-
ods used previously during our education.

3. Users will have access to the system via a user interface designed to run on an intra-
net via a web server. The web server will in turn communicate with the SQL Server.
How do you design the user interface in a way that provides users with an easy to
use, easy to learn interface, which assists users in performing their tasks?

4. Initial requirements will be gathered traditionally using interview, studying original
documents and forms, and observing a user. But what about requirements which sur-
face at a later phase of the project? How do you manage this?

5. Have we fulfilled PDS’ requirements providing them with the desired outcome of
the project?

6. How do you know if what you have done works? What means are there for testing
software under development and evaluating the results?

7. Printing documents viewed in the browser from Microsoft Word will be incorpo-
rated into the solution we produce. What problems does this present?

8. Is XP a new method worth delving deeper into and practicing in other projects? We
intend to investigate, evaluate and select elements of the method we find applicable
for our project and based on our experiences relate how we use XP, what was good
and what we did not like about it.

Outside the project scope

The following points will not be a concern of this project:

1. An evaluation of other databases than SQL Server
2. Server set-up and administration

3. Data migration
4. There will be no discussion on locating tools for a project

5. Security issues will not be dealt with
6. Graphics for the user interface - to some degree we can not avoid looking at simple

questions concerning fonts, colors, logical layout of user screens and field sizes.

7. Performance

Project Charter

Project Establishment 5

2.0 Project Establishment

A project is a complicated process, which includes the following fundamental ele-
ments: the assignment, interests, environment, resources, and methods. Achieving
the desired results of the project requires consideration of these elements in order
to make decisions for planning the project. It is important to remember that the
project is a dynamic process with changing conditions affecting earlier decisions,
plans and objectives and that many very important decisions must be made early
in the project when the information level is low. Evaluations in the second to last
chapter of the report will provide insight into the results of our decision

2.1 Project Charter

The charter is the key document of project establishment, binding together the project
setting, working practices and risks.

FUNDAMENTAL IDEA Our contact to PDS resulted in their expressing an idea for a project that, at its most
abstract level, is intended as the first step of a PDS strategy for consolidating data to
eliminate inconsistencies, simplify their data storage system and provide more informa-
tion of a higher quality to present and future internal as well as external users.

INTERESTS Every project has interested parties that are capable of providing the project with input,
but also expect something to their benefit out of the project. For the onTrack project
these interests are as follows:

• PDS: The firm has provided the project team with the foundation for the 5th semes-
ter final datamatician project. PDS is also providing manpower for consultation,
equipment and software where necessary and possible.

In return PDS has expectations of receiving a report and prototype that will enable
them to continue with steps to fulfilling their strategic goals concerning data.

• Advisor: Our advisor will input his expertise in systems development projects, anal-
ysis and design for software and knowledge concerning fulfilling the requirements
for the examination.

The advisor benefits from the project by gaining more experience in working with a
student project group. In addition, the project team should produce results that, due
to excellent guidance, are of such a nature that there is a personal degree of fulfill-
ment for the advisor.

• Project team: The team inputs its capabilities, energy, engagement, cooperation,
ideas, and hard work.

Expectations include attaining new skills, bringing other skills to a higher level, per-
sonal fulfillment in producing results, which are accepted and praised by other inter-
ests, and having a good, fun, social experience.

Project Charter

6 Project Establishment

• Counter groups: We have worked with counter groups previously and the benefits of
these meetings are highly dependent on the effort each group puts into the review of
material and the encounter meeting. Still we feel it is worth trying again, although
the benefits have not always been sufficient to justify the effort. Selecting the
counter group is an important consideration. The choice of the MaRT1 group was
made on the recommendation of the project advisor. Additionally Kenneth Tilsted2
expressed interest in our being counter groups. We have all worked with Kenneth
previously and welcomed the offer. Our expectations to the counter groups are thor-
ough feedback concerning the report document’s content, layout and typographical
errors provided at a review. We are expected to provide the same. The benefit to
both parts being an increase in quality of the work.

PROJECT OBJECTIVES Goals may be determined in relation to benefit of the product for an interested part, for
the product itself and for the process. Goals are not static nor inflexible. Therefore we
will at times adjust them periodically according to changes in the situation, or the need
to satisfy interests, opportunities or threats that may arise.

We strive for the highest possible exam grade. A brainstorming session in 2 groups pro-
duced this list of 3 points we believe are necessary to achieve this goal.

1. Innovative thinking

2. Thorough report
3. Excellent preparation for presentation and examination

Listed in the following table are our objectives and criteria for evaluation.

1. Maiken, Ricky and Thomas - Their project is: Galleri Faurschou (web and database)

2. Kenneth’s project is: CustomerTrack

TABLE 2. Objectives

Evaluation criteria

Benefit goals

Providing a usable foundation PDS can con-
tinue developing to improve their data stor-
age

PDS written evaluation

Simplifying Torben’s tasks in regard to
administration of training courses

Feedback from Torben

Improving data consistency Reduction of number of DBs in use

Product goals

Runs on SQL Server SQL Server database functioning

Graphic user interface simple and logical Result of user evaluation of prototypes

Document generation Can produce documents as per requirement
specification

Project Charter

Project Establishment 7

SIDE EFFECTS • Research prior to project start needed on SQL Server and development methods

• Increase of knowledge and skills, especially a gain of competency in regard to XP,
project organization, and automatized software testing

• Improving project skills: cooperative work, management, setting, evaluating and
reaching goals and creating plans

EQUIPMENT • 4 home PCs
• School PCs

• PC at PDS
• Printers, scanners and CD writers

TOOLS The next table lists the tools used for the project. For the reasoning behind the choices
refer to the chapter Tools and Technical Prototyping. There will be an evaluation of
these at the end of the project in the chapter Evaluations.

Produce a report with consistency through-
out. The problem description and conclusion
are in harmony with each other. There are
no cosmetic errors. It is a useful tool for
PDS and future students as well as the
project team, which results in the highest
grade achievable.

Team review at conclusions of project

Counter group’s review

Review by PDS

Result of exam

Process goals

Using development method not previously
used. If situation permits, perhaps creating
“our own” method.

Method used

Gain an understanding of and work accord-
ing to XP method if the situation permits

Software product without errors. All parts of
system represented in the prototype deliver-
able.

Delivery of intermediate and final products
on-time in the states expected

Plan, baselines with reports, project status
reports

Testing planned and applied Baselines, plans and test evaluations, XP
practices

TABLE 2. Objectives

Evaluation criteria

TABLE 3. Tools

Tool Purpose Comment

Publishing and writing

Adobe FrameMaker 6.0 Report writing

Adobe Acrobat 4.0 Report publishing Provides uneditable
copy

Project Charter

8 Project Establishment

PROJECT ADVISOR Associate Professor Michael Claudius became our advisor after we submitted a prior-
itzed list of choices. Michael was our first choice because he is in our opinion extremely
knowledgeable in the area of systems development and project work. Also all the team
members have had him both as a teacher and as an advisor in a previous project and we
felt that he would be our best choice to attain the highest level of quality in this project.

STAFF A project is a group effort. Recruiting the group requires selecting persons with comple-
mentary skills. The persons chosen for the 3Continents team all have the same level of
skills in many of the areas the project is concerned with. Our 4th semester elective
choices provide differentiation giving our group a broad spectrum of skills and knowl-
edge from analysis and design to object oriented programming and client/server pro-
gramming.

Characterizing the group, there are varying personal traits, which complement each
other and provide a degree of synergy. There is the talkative and the quiet. The analyst,
the thinkers, the lets’s get going, the organizational, the wait-for-last-minute and the on-
time is a priority types. All together a well balanced group in a position to reach the
project objectives.

Special consideration was also given in this project to create an international group. The
reason for this is, we are students from the first international datamatician class at Rosk-
ilde Business Academy. It seemed both reasonable and required to put together a group
comprised of people with varying international backgrounds for our final project, which
we can say has succeeded very well.

Microsoft Word XP Report writing

HTML

Microsoft Front Page 2002 HTML

Adobe GoLive 5.0 HTML

JSP/Java

Java 2 Platform (J2SE v 1.3.1) Java platform

Forte 3.0, Community Edition IDE for java, JSP

Database and Web Servers

Microsoft SQL Server 2000 Database 120 day evaluation

Tomcat server Web server Built-in to Forte

Internal File Distribution

WinAce 2.03 File compression

JDBC Driver

JTurbo 2.0 Java communicate with
SQL Server

30 day trial version

TABLE 3. Tools

Tool Purpose Comment

Project Charter

Project Establishment 9

Being in the international class is not a criteria that stands alone for recruiting the group
members. When joining forces experience has shown that our varying backgrounds is
an absolute strength. A project gains insight from viewpoints that would not otherwise
be recognized if the group was homogeneous. The cultural differences simply are a ben-
efit to the project.

Two characteristics each of the group members have in common are humor and ambi-
tion. We know that humor is a useful trait in getting through tough situations or for
changing the tone from the complete seriousness and deep indulgence of project work to
lighten the situation and provide a needed break. Our amibition level is high and we are
not hesitant to put in the effort necessary to achieve our goals.

ORGANIZATION Unlike a project organization in an enterprise, we had no basis organization to refer to.
This provided a degree of freedom to organize and work, not found in a real-life project.
On the other hand, it was not carefree freedom. We had responsibilites to each other and
our interests. To fulfill our objectives and satisfy interests we needed to prevent risks. A
properly designed organization is a good step in the direction of achieving this.

Based on the high risk situation of highly unprecedented development, both with respect
to the team, method, tools, products and time period of the project, we decided that an
organization of a more formal character would be best suited.

Taking this into account, management positions covering the key aspects of the project
were established. By placing this competence in one person’s hands, we felt that we
would always have at least one person to guide the rest of the team through the essential
areas thereby reducing the risks mentioned as making the project unprecedented. We
also expected this would ensure we covered all aspects of the project thoroughly. This
organization did not preclude anyone from being up-to-date and working with all
aspects. The reasoning for this is two-fold:

1. From a practical viewpoint, if a worst case situation arose where an individual had to
leave the project, another person would be in a position to take over that persons
responsibilities.

2. From an objective viewpoint, for us to achieve the highest results, everyone had to
know everything about the project.

Due to the unprecedented nature of the project, in particular its duration and complexity,
we felt that a project manager was a necessity in order to ensure someone had an over-
view of the entire situation and was in a position to maintain the project’s forward
motion via planning and control in order to reach objectives with the resources available
to us within the designated timeframe.

ALTERNATIVES We could have organized according to a democratic, everyone is equal principle. It is
our opinion that for larger projects and in particular unprecedented projects, this would
be a very high risk, although everyone would be equally responsible, this could also
mean equally irresponsible always assuming that others had taken care of things. It can
also be time consuming to have to agree on everything all the time, instead of having
certain aspects predetermined. It might be so such discussion could be enlightening and
even at times produce better results, but again, the goal was to eliminate some uncer-

Project Charter

10 Project Establishment

tainty by not consuming too many resources for each single decision. Note the project
manager position did not exclude discussion of his decisions if the need arose.

Another alternative organization might have been to use rotating positions, giving each
person the opportunity to work with each area of the project. This alternative was not
considered a good solution since during various phases of the project some areas are
more prominent than others, so a person would not have benefited much if for example
their turn came to be head database designer when there was no database work going
on!

The benefit of rotating would have been that in some way each team member had an
understanding of all facets of the project and this could lower the risk for the develop-
ment in general and in particular if one member was required to be absent for an
extended period of time. However, we believe our own requirement that everyone be
up-to-date and aware of all the aspects of the project covered this.

TABLE 4. Member Biographies

Member

All team
members

We have previously worked on 4 system development projects as part of
the datamatician education. Each project had emphasis on different
aspects of the education:

• Organizational behavior and enterprise related subject matter such as
TQM and Business Process Reengineering, Delphi/Pascal program-
ming and database design

• Object oriented programming with Java

• Distributed systems and client/server programming

Carsten

Fjelkstrup

I am "one of the locals", from Roskilde, Denmark where I have always
lived. Raised with Amiga computers and soldering irons, if I did not con-
sider myself a geek, others did. In the post-highschool educational maze,
I first chose electronic engineering but did not feel at home in this educa-
tion.

Time was not wasted though, as engineering opened the world of C++
programming to me, and I enrolled in the datamatician course at
Roskilde Business College.

In the 4th semester my electives were Object Oriented Programming and
Web Server Programming.

Project Charter

Project Establishment 11

Harvey Shaw I am from New York City, but have lived in Denmark since the 1970's.
Previous work experience has been in the transport industry. An interest
in IT combined with the need in society for people with a higher educa-
tion in IT led me to my decision to take the Danish datamatician educa-
tion.

My preferred areas of engagement are Java, SQL, project management,
and object oriented analysis and design.

4th semester elective subjects were Object Oriented programming with
weight on C++, and Web Server programming using ASP, JSP, and
Servlets.

Previous education and courses include: 2 years college, merkonom
(danish associate business degree) in marketing, PC certificate, basic
data principles, Concorde inventory control, PC-Plus financial system.

Jama Awil
Dirir

I come from Somalia. Denmark has been my home for almost 4 years.

I attended Somali National University from which I have B.Sc.(honors)
in agriculture and MSc (executive) in Computer Science from School of
Business and Commerce (an affiliated campus of Preston university in
Wyoming, USA) in Islamabad, Pakistan.

My 4th semester electives were Web server programming and Web cli-
ent programming, which covered different topics such as HTML, CSS,
XML, XSLT, DOM.

Favorite interests are working with database, OOAD, JSP, HTML and
CSS.

Paul Trumble I am from Ormond Beach, Florida. I have lived in Denmark since 1997. I
have a Bachelor's Degree in Criminology from Florida State University
and did some additional graduate study there.

To one degree or another, I have always shown an interest in IT and am
using this opportunity at Roskilde Business College to pursue those
interests. I have preferences toward working with project management,
Java, SQL and in particular, object oriented analysis and design.

My 4th semester electives were Advanced Object Oriented Systems
Development and Object Oriented Programming.

TABLE 4. Member Biographies

Member

Project Charter

12 Project Establishment

POSITIONS Any one of us could have filled any key position in the project. Appointments to posi-
tions were made on the basis of interest, strengths and what one had worked with in pre-
vious projects (perhaps wishing to have a different main responsibility in this one).

TABLE 5.

Position Name

Project Manager (PM)

• Maintaining cooperation, motivation, communication,
coordination and engagement in the project group

• Creating the overall project plan. Planning activities,
controlling resources

• Providing information to interests

• Establishing meeting agendas and leading project
group meetings

• Conflict solving. The project manager may make deci-
sions in order to resolve conflicts

• Keeping overall project goals in focus and checking
consistency of results with goals done in cooperation
with team

Webmaster*

• Creating and maintaining the 3Continents website
*The website is intended as a communication media only for the
project interests. It is not a project deliverable.

Harvey

Head Database Designer

• Determining and writing baselines
• Recommending necessary tools and evaluating related

methods

• Educate team members in regard to the selected tools
and platforms

Librarian - version manager

• Systematically maintaining paper documents
• Establishing and maintaining a system for document

and software versioning

• Establishing and maintaining back-up
System Administrator

• Software and Hardware installation

• System maintenance so that PCs are fully functioning
with necessary tools prior to the point they are needed

Carsten

Project Charter

Project Establishment 13

CONTACTS

Head Systems Developer

• Determining and writing baselines
• Evaluating alternative methods and tools

• Recommending a choice of methods and tools. Educate
team members in regard to the selected tools and meth-
ods

Report Editor

• Correcting submitted material for language or content
related errors

• Controlling documentation
• Report layout

Paul

Head Client/Server Web Architecture

• Determining and writing baselines

• Client/Server Tier architecture design
• Client side coding

• Web application diagrams
• User manual

• User interface design

Jama

Secretary Carsten - August

Jama - September

Paul - October

TABLE 5.

Position Name

TABLE 6. Contacts

Name Phone e-mail Address

Carsten Fjelkstrup 46 38 58 70

40 16 66 40

carstenf@tdcadsl.dk

Harvey Shaw 59 62 12 54

25 76 91 64

harvey.s@get2net.dk

Jama Awil Dirir 56 63 6230 jama@12move.dk

Paul Trumble 45 87 46 26 trumble@mail.tele.dk

Project Charter

14 Project Establishment

WORKING METHODS 1. Problem description and delimiting are project basis

2. Internal Meetings
• Daily according to an agenda. Discussion must follow the agenda. It is at the project

manager’s discretion to terminate a discussion. The project manager is responsible
for keeping the goal of the discussion in focus.

• Minutes will be recorded, but it is very important for everyone to make notes as the
report is concerned with the decisions during the project.

3. Decision making process

• Group discussion
• Consensus based on evaluation of the facts, options, disadvantages and advantages

• An impasse may be broken by the project manager, otherwise the advisor will be
consulted

4. Extreme problem situations may be handled using mapping techniques presented in
PSD (p.142)

5. The phase divided plan guides the work towards objectives
6. Formal evaluation and regulation are done at checkpoints using baselines

7. Interests
• Consulted regularly to ensure their influence, expected benefits and project success.

Advisor consulted at weekly meetings, PDS as needed.

8. Communication
• Ensures engagement, consistency, effective work and quality

• We are using face-to-face, e-mail, telephone and a project website as communication
media

9. Additional control

• Keep in Mind (KIM) documents for report, presentation and general, which is a
result of meetings. The purpose of these documents is to record points for action,
their status, deadline for results, and who is responsible.

• Weekly evaluations each Friday recorded in a table with points as agenda, results,
teamwork and presentations

• User tests will provide feedback for regulation of project
10. Performance of Work

• By group or sub-groups as needed

PDS

Benny Bech

Software engineer

59 45 50 00

PDS

Torben Pedersen

59 45 50 00

Michael Claudius claudius@rhs.dk

TABLE 6. Contacts

Name Phone e-mail Address

Project Charter

Project Establishment 15

• According to the selected methods
• According to the detail plans

MEETINGS It is required that the team members participating in a meeting are well prepared, having
read subject matter, readied notes, questions, suggestions and presentations as required.

Meetings will be held in the following manner:

• Internal Team Meetings - formal daily meetings. The PM creates the agenda
according to the plan and input from the team. The agenda will be followed in order,
but may be altered prior to start of meeting. Points arising not on the agenda may be
added on to end of agenda or noted for inclusion in the following meeting depending
on the actual situation. The secretary will record the important points of discussion,
decisions, assignments, ideas, and points for future action. Everyone attending will
take notes where applicable.

• Informal Team Meetings - will be held either at the end of each project phase or
once per month at a locale other than RHS where the project can be discussed in an
informal atmosphere. Minutes will not be taken at these meetings.

• Advisor Meetings - held once weekly to assess progress and results providing the
project team with positive and negative criticism, get advice based on the advisors’s
expertise. These meetings will start with a review of the previous meeting’s minutes.
The secretary will record these meetings and send the minutes to the advisor at latest
the day prior to the next coming meeting.

• Sponsor meetings - Will be held as needed at PDS headquarters though maximum
once per week. These meetings may be for the purpose of clarification, obtaining
feedback, evaluation, using the expertise available to the team from PDS, and testing
prototypes.

• Counter group meeting - This meeting, held at mid-way according to the project
plan, will take about 2 hours. Each team will present their thoughts and corrections
for the other. The purpose of this is to communicate the development teams new
viewpoints, insight and expertise with the goal of improving the quality of each
team’s products.

RISKS It is possible to look at the nature of a project from 3 viewpoints:

Degree of uncertainty, which from an internal viewpoint, looks at how much new
development is involved, availability of tools, choice of methods, and difficulty in
determining the assignment and goals. The external viewpoint looks at political and
technological developments and misunderstanding the products’ external environment.

Every project has predetermined conditions such as delivery deadline and maximum
available resources. By holding these up against uncertainty moments one gains
insight into the most critical risk factors.

This degree of uncertainty viewpoint seems to have the heaviest weight in our project.
At the outset we are an unprecedented team doing an unprecedented development with
new tools and techniques. There may be difficulties in obtaining the software necessary

Project Charter

16 Project Establishment

to do the project. There is uncertainty concerning the development method. The prede-
termined factors are manpower and deadline for project.

Degree of complexity is high if the the team cannot gain an overview of the assign-
ment. Breaking the total into sub-parts can be difficult if it is not possible to describe the
relationship of the sub-parts into the whole. Determining complexity may assist in
determining the need for ensuring coordination. A similar list of subjects as for degree
of uncertainty may be used to determine complexity.

Human Element is related to opposition to change and conflict concerning the
users. As our project is highly supported by the coming users, in particular the main
user, we do not believe the risk with this element needs more consideration.

We have evaluated risks with factors that fine tune the evaluation rather than just classi-
fying risks as high, medium or low. The following risk list takes into account risks by
giving the risk a degree, which is the likeliness for a risk to occur and weighting the risk,
a priority can be given to the risk, representing how strong its total affect would be.

Degree is likeliness for risk to occur. Degree x Weight = Priority. This points to areas of
particular concern.

TABLE 7. Risk Evaluation

Problem Degree Weight Priority Risk Solution

SQL Server
not available

5 5 25 Prototype
incompatible
with require-
ments

Documentation
explaining dif-
ferences
between the
actual and
desired

Unsuitable
Development
Method

3 5 15 Weak design,
deficiencies,
errors

Re-start project
if time permits.
Inform interests,
negotiate
change

Too tight
schedule

3 4 12 Cannot finish,
loss of motiva-
tion

Plan and con-
trol plan, re-
baseline.
Reduce fea-
tures and work
extra hours.

Team mem-
ber absent for
more than one
week

3 4 12 Cannot finish,
lack of quality

Assign extra
work. Revise
plan. Confer
with sponsor
and advisor.

Hardware/
Software fail-
ure

3 4 12 Completion of
activities
delayed

Have a team
System admin-
istrator

Project Charter

Project Establishment 17

RISK MANAGEMENT For all the risks, it is the project manager’s responsibility, in cooperation with the team,
to be on the defense, staying aware of developments with the potential to trigger a risk
and also for new risks. Observation of such situations requires action by the project
manager, which could require contacting interested parties and in a cooperative effort
avoid the risks from materializing. This would be pro-active risk handling, far better
than firefighting with resources in short supply but high demand. Naturally as the
project progresses the degree of risk falls for many of the risks such as abilitiy to work
with new tools, whereas others grow.

PLAN The structure of the overall plan is based on phases with checkpoints for baselines. The
reasoning behind this structure is manifold:

• Facilitate control of the direction of the project
• Provide insight into the project

• Enable the team to better adapt to yet-to-come parts of project according to events
that occured to-date and our learning experiences

• Make it possible for interests to exert influence for the most important decisions

• Ensure that pre-determined deadlines are kept

We would like to point out that prototyping is not a phase oriented approach to systems
development with clear cut analysis, design and implementation. Prototyping implies a
cyclic development with design, implementation and evaluation. However, for planning

New Software
Tools

3 4 12 Completion of
activities
delayed. Lower
quality prod-
ucts

Allow for learn-
ing time. Tech-
nical
Prototpying

Team low
experience

3 3 9 Low technical
quality

Assistance from
project review-
ers, advisors,
sponsor

Project Man-
ager absent

3 3 9 No work coor-
dination

Secretary is act-
ing manager

Changing
requirements

4 2 8 Delay Revise plan/
replace features
with new fea-
tures

Bad program-
ming

2 4 8 Prototype does
not run prop-
erly

Testing

Lack of com-
munication
with sponsor/
users

1 5 5 Misunderstood
requirements

Continue on
assumptions

TABLE 7. Risk Evaluation

Problem Degree Weight Priority Risk Solution

Project Charter

18 Project Establishment

purposes a Gantt diagram with a division into traditional phases of the total process pro-
vides a better overview.

In addition to the overall plan, detailed plans covering smaller intervals of approxi-
mately 2-4 weeks will guide the work performed. Detailed plan phases are subdivided
into the activities to be performed.

PLAN PRECONDITIONS Any plan is made with certain conditions in mind. If these conditions are not fulfilled at
any time along the way, a plan may fall apart. Every project will have a different set of
preconditions. Although the contents may be the same, priorities may differ. Precondi-
tions are naturally heavily dependent on risks.1

For the onTrack project plan to remain valid the following must not fail:

• Time is allocated between implementation phases for documentation as the report is
the first priority outcome of the project

• Time is allocated for adjustment after user review of prototype and results of user
functional tests

• The development method can be adapted to our particular project situation

• The team can rapidly assimilate all the new theory concerning our selected method
• Meetings with the interests, PDS and advisor are not delayed

ESTIMATING THE PLAN Several means were used to estimate the plan. They are:

• Own experience from the school projects

• Experience from other planning situations
• Reports from previous projects done at RHS

• Guesswork and intuition
• Partially dictated by method

While it is not formally documented, considerations included the best possible, worse
possible and middle situations for how much time and manpower activities would take.

TOP-DOWN / BOTTOM-UP Top-down / Bottom-up was used to determine the plan. With the pre-determined dead-
line, it was easy to work backwards, top-down, knowing how much time in all we could
use. It was more difficult to estimate bottom-up again due to the high degree of unprec-
edentedness providing little background to go after.

PROBLEM SITUATIONS There may at times arise problem situations which require attention if the plan is to be
correct. These situations can be of the nature that “participants have a feeling something
is wrong”, “do not know what it is and there might even be disagreement on whether
something is wrong at all” (PSD, p.142). Should we find ourselves in such a situation
we will use one of 3 mapping techniques: Diagnostic, Ecological or Virtual in order to
attempt to solve the problem (PSD, p142).

1. see Appendix Project Management

Project Charter

Project Establishment 19

PLAN EVALUATION It is fine to make a plan, preconditions, evaluate risks, but without any follow-up all of
that is meaningless. The project plan is created in phases of activities. During these
phases checkpoints will occur. At each checkpoint a baseline will be used to evaluate
the progress and status of the plan, expected products and services. As necessary adjust-
ments will be made to the plan and baselines to keep the project on track toward its
objectives. It should be noted that the need for adjustments can arise from being ahead
of plan as well as behind!

The plan was under constant scrutiny by the project manager. Noted deviations were
immediately acted upon by either altering the plan or re-allocating manpower.

BASELINE OVERVIEW Baselines are used as a means of checking project state at a specific checkpoint in time.
We have written baselines according to the template of PSD p.154. A baseline evalua-
tion report is written for each baseline to document the baseline evaluation and use for
revision of baselines and plans.

DOCUMENT HANDLING Weekly work should be submitted to the editor on Friday with FOREDITING in file-
name. Editor returns file with EDITED in filename.

The editor will go through documents each weekend. Each Monday he will present each
author with comments and suggestions on the submitted material. Document review
will be done according to a general document checklist in the form of a baseline.

CONCLUSION ON PROJECT
ESTABLISHMENT

We now have a solid foundation for continuing with the project after taking an in depth
look at internal and external resources, considering tools, risks and constraints on the
project. This provided us with material to design the project’s working methods, team,
create an overall plan, determine meeting formats with interests, evaluate our expecta-
tions and goals and how to reach these.

TABLE 8. Baselines

Number Title Checkpoint

01 Project establishment Aug 6

02 DB2 Database Sept 3

03 UI3 Prototype I, iteration 0 Aug 27

03 UI3A added for Prototype 1 Aug 30

04 XP Iteration 1.0, midway Sept 7

05 XP Iiteration 1.0, final Sept 17, 21

06 DB3, Database implementation Sept 17

07 XP Iteration 2.0 Oct 8

DM D-Mid Midway Doc Sept 26

D General Document baseline weekly, Mondays

System Development Method

20 Methods

3.0 Methods

What development model is suited for our project? Do we dare consider a different,
unfamiliar method? What are the ramifications of using a new method? This chapter is
documentation of our selection process.

3.1 System Development Method

INTRODUCTION The systems development domain has accumulated an increasing number of methods
throughout the years. When methods are considered in current practices, it is done with
the goal being improved organization as opposed to improving performance of the
present activities.

Many methods are based on a simple rational ideal. They assure that the involved par-
ties in a given project share the same, clearly defined objectives, that resources are
available and plentiful, and that it is possible to identify the different design options and
their consequences on the basis of analysis. (PSD, 16)

This, however, is seldom (if ever) the case. Projects usually take quite a different
course. This means the death of standard methods in practice.

There have been a number of empirical studies that indicate that a high degree of orga-
nization may actually be more important than knowledge of individual methodologies.
The study by Stout (1970) on required competencies for system development, shows
that the organizational and administrative competencies are perceived as more impor-
tant than technical and computer related competencies.

Another study by Vitalari (1983) suggests that there are at least 4 different activities that
characterize successful design in systems development: analytical reasoning, setting of
goals, formulating a strategy while maintaining flexibility and actively dealing with the
interface between the analyst and the user.

Conversations with experienced developers have illustrated that methods are typically
used in a very dynamic and liberal fashion where they are customized and used how the
organization sees fit. This, in combination with the above study results, lead us to
hypothesize that the lack of methodological knowledge is not a primary obstacle for
success.

Using the above information as a base it is our contention that the ingredients necessary
to successful development are: to highly organize the working practice, actively deal
with the interface between the analyst and user and to formulate a strategy that will
maintain flexibility of the project.

Armed with an idea of the necessary ingredients, it was time to figure out how best to
combine them into a cohesive working practice. Rather than use the one method that we

System Development Method

Methods 21

were familiar with, we decided that we would attempt to employ a method and an orga-
nizational framework that would apply to the project’s situation.

Our definition of project situation includes:

• Overall project goals
• Project risks

• Problem description
• Previously mentioned ingredients for success in a systems development project

We felt that because of the unprecedentedness of our project, we would pay particular
attention to the risks1 in our project. We needed a working practice that would allow
these risks to surface in a controllable environment. With this in mind, our customized
work practice was chosen in order to proactively combat risks from becoming reality
and achieve our project goals. Based on our project situation, we have determined that
our project situation dictates that our process should contain the following aspects:

• Early design of the user interface
• Very high degree of organization

• Thorough testing
• Evolutionary process

EARLY DESIGN OF THE
USER INTERFACE

By designing the user interface first, we hoped to avoid one of the common problems in
development projects, i.e., insufficient analysis of the user organization.

HIGH DEGREE OF
ORGANIZATION

According to the results of the aforementioned studies, this could be the most important
key to the success of the project. This is particularly true when using new practices.

THOROUGH TESTING Thorough testing was a must when one of our goals was to go from A to Z and make a
working product.

PROCESS MODEL We postulated that an evolutionary process would simplify the working process, partic-
ularly in terms of overview. This generally complicates planning, but we planned to
counteract that with our high degree of organization. We had experienced success in the
past with a similar model (the block upgrade model) and we therefore concluded that
the evolutionary model was a suitable choice.

We could have chosen to use the spiral model of systems development. Being that the
spiral model is risk driven, it could have been quite applicable, as we stated that we
wanted to pay closer attention to risks during this project.

Our strategy, however, was to evaluate and handle risks by using our high degree of
organization combined with a method that would help combat our risks and help

1. See Risk list

......And The Winner Is!

22 Methods

achieve the project goals. The difference being, it was not our plan to base our itera-
tions’ activities based on a current evaluation of the risks.

3.2And The Winner Is!

In June of this year, before the summer holiday, the group met to touch base and to
decide what to do and how to go about it. We knew that one of the main project goals
was to have a completed prototype. After some discussion and surface research, we
decided to look into evolutionary prototyping as a development method and eXtreme
Programming as possible method alternatives for our project.

The research resulted in the observation that evolutionary prototyping and XP were
remarkably similar. The main difference, as far as we were concerned, at this point was
that there were very few formal guidelines in evolutionary prototyping. After “growing
up” with Lars Mathiassen’s framework for systems development, where the steps are
much clearer, we considered that this was a little too much culture shock for our group.
Considering the similarities, we opted for XP’s slighly more disciplined approach.
Additionally, we found the idea of very short iterations, which augmented user feedback
and interaction, quite an attractive trait.

Through some forethought and a lot of afterthought we felt like XP was a more than
appropriate development method selection (considering the above text). The more we
learned about XP the more interesting and appropriate it seemed. It was nothing like we
had experienced before. This was a risk in and of itself, but we were diving in head first
armed with the premise that organization is possibly of more value than methodological
knowledge.

This is not to say that we abandoned the idea of prototyping all together. We decided
that we would use prototyping in order to implement the user interface. This seemed
feasible considering its evolutionary aspect. Furthermore, XP does not address the sub-
ject of user interface implementation and we had previously decided that we wanted to
try to implement the user interface very early in the project life cycle.

DATABASE As far as Connolly’s1 method for software development is concerned, we question its
overall value, but find valuable his steps on database design that ensure data integrity,
and will therefore implement them as a part of our methodology.

3.3 Extreme Programming (XP)

XP is a disciplined and deliberate approach to software development. It is meant for
projects with high risk, a small team and dynamic requirements. It emphasizes customer
satisfaction and promotes team work. The goal of XP is to improve the efficiency of

1. References, 21

Extreme Programming (XP)

Methods 23

writing software. This should be accomplished by streamlining complexity, delivering
top business value early and consistently, and reducing the cost of nearly inevitable
changes to the business rules, programming environment, or software design. Most of
these practices have been part of conventional wisdom for years, but rethinking their
interaction is the value of XP.

Extreme Programming is relatively simple. The central idea is to find the essential ele-
ments of creating good software, do them all of the time, and discard everything else.
Instead of using a design-code-test-debug-build-ship approach that takes each step in
order, XP says to design, test and build continually, review continually, ship early and
often. Programmers program and make schedule estimates. Managers should make
business decisions. Customers should choose the features they want and rank them by
importance.

XP offers several compelling features:

• Comprehensive unit tests
• Short release cycles

• Adding only what is needed for the current task
• Collective code ownership

• Continual improvement
• Adding features in the order of importance

BASIC XP APPROACH Here is how a typical Extreme Programming scenario could look from a programmer's
viewpoint. The procedure outlined here is quite general, but it will give you some idea
of the work flow in an XP environment.

• Customer lists the features that the software must provide

• Programmers break the features into stand-alone tasks and estimate the work needed
to complete each task

• Customer chooses the most important tasks that can be completed by the next
release

• Programmers choose tasks, and work in pairs
• Programmers write unit tests

• Programmers add features to pass unit tests
• Programmers fix features/tests as necessary, until all tests pass

• Programmers integrate code
• Programmers produce a released version

• Customer runs acceptance tests
• Version goes into production

• Programmers update their estimates based on the amount of work they have done in
release cycle

The following is an example of an original task card (Beck, p.88).

Our Implementation of XP

24 Methods

FIGURE 1. Original XP Task Card

The key with XP, as with any other process out there, is not to either accept or whole-
heartedly reject everything it says on a whim. Processes are principles, guidelines to fol-
low. You should consider them a map of the highlights of some exotic city you plan to
visit. Do you throw your entire holiday behind one guidebook, or choose the best bits of
a number of them?

3.4 Our Implementation of XP

XP is known for the twelve principles related to its method1. Our view of the twelve
principles is that they are idealistic and in some cases unrealistic. Some sources claim
that if you are not doing all twelve, then you are not doing XP. If this is true what we
have done is not XP either. We used the points that we considered had some value, were
applicable and realistic. The following is a brief list of the principles and a comment
about how we decided to approach each in the project.

PLANNING GAME Planning game involves stories [light weight use case] written by the customer. PDS
was not willing to dedicate the time necessary to do this so an alternative needed to be
implemented. We decided to go straight to task cards, which were normally derived

1. For a more detailed description of XP and its principles, consult the section on XP in the
appendix

Our Implementation of XP

Methods 25

from story cards. By designing the user interface first, we felt we had enough informa-
tion to write adequate task cards.

FUNCTIONAL TESTING
(BLACK BOX)

Traditionally in XP, functional tests are written by the customer and derived from the
story cards. Although we will continue to refer to this as functional testing, what it
amounts to is a walk-through of the software at the end of each iteration.

UNIT TESTING Unit testing is done before writing the code for a task. It was our intention to do this as
comprehensively as possible as this is one of the most valuable ideas of XP. We used
JUnit as our testing environment.

REFACTORING Refactoring basically implies restructuring of the system without changing its behavior
to remove duplication, improve communication, simplify, or add flexibility. This is a
necessary part of XP when the idea is to keep things as simple as possible from the start.
The goal is no duplicate code. This seems obvious and implicit, but important.

SIMPLE DESIGN Another fundamental aspect of XP is, “Make it simple today. Change it tomorrow if
necessary”. We decided to attempt this, but thought that the temptation would be diffi-
cult to thwart. Additionally, a simple design seemed to be a subjective idea.

METAPHOR This is supposedly used to make the architecture understandable. All it managed to do
was to confuse us. It is supposed to be a simple shared story of how the system is sup-
posed to work. This sounds like a system definition, but they are not exactly the same
thing. We found it difficult to come up with many real life examples and therefore, con-
cluded it was too ill defined to work with. We were confident that we could manage
with the information we had already collected.

COLLECTIVE OWNERSHIP Collective ownership means anyone can change code at any time. We did not really like
this idea. We figured that once code had been integrated and tested, then its good
enough. Change would not be made without formal review and compliance.

CODING STANDARDS Obvious/implicit.

CONTINUOUS
INTEGRATION

XP dictates that this be done every few hours or at least at day’s end. At day’s end
seemed like a more valid option for a group of programmers with our relatively limited
experience.

ONSITE CUSTOMER This would definitely fall under the category of idealistic principles. The idea that an
employee of PDS would come to school every day and stand there waiting for us to ask
a question would have been quite beneficial, but impossible. It is equally difficult to
imagine it happening in “real world” projects.

40 HOUR WORK WEEK Not applicable for local conditions.

Tools

26 Tools and Technical Prototyping

PAIR PROGRAMMING Although it might be slower than working individually on the code, we thought that it
would reduce risks and errors. This was a must.

SMALL RELEASES This was one of the main reasons that we chose XP as our development method. We
liked the idea of small releases and short life cycles because it would give us an excel-
lent overview of the task at hand and the status of the project. Additionally, it would
help make more accurate plans.

CONCLUSION METHODS In summation we conclude that the mixture of XP, prototyping and Conolly’s database
design steps will amount to our customized method for the project. Taking our goals and
project characteristics into consideration, we anticipate that this combination contains
the ingredients necessary for success.

4.0 Tools and Technical
Prototyping

The palette of tools for software development is immense. Can one use what is already
familiar? Are there new tools that offer desirable features? Do they offer more than
needed for the task at hand making them unnecessarily complicated? Are there trial ver-
sions for technical prototyping? How long does it take to become adept at working with
them? An evaluation of some of the possibilities is needed to make decisions. After
selecting a further step, technical prototyping is necessary for tools, which are central to
the project and for which there is a high degree of risk in their selection.

4.1 Tools

INTRODUCTION What tools to use is a decision based in part on selection of methods - some directly
specify certain tools, others provide a large degree of freedom in choice. As the word
tools implies, it is with these instruments, that the project deliverables are developed.
The following section provides some background and insight into how the major tools
of the project were selected.

ADOBE FRAMEMAKER 6.0 We have had previous experience with Adobe Framemaker v6.0. Although it is unlike
any other programs regarding layout, functionality and use, the final result proves that
this is one of the best technical writing applications around. For some purposes
Microsoft Word is adequate and since it is quicker and easier to use, we will end up
using it along with Adobe Framemaker. We do not wish to use Word as the primary text
editor as prior experience has proved frustrating in that slight differences in versions of
Word or preference settings make consistency a near impossible goal.

Tools

Tools and Technical Prototyping 27

ADOBE ACROBAT 4.0 As we do not expect external readers to have access to Framemaker, we decided to pub-
lish required documents in Portable Document Format - or PDF for short. This gives us
the possibility to restrict the further use of the documents, as we can and will limit it to
only reading the document in Adobe Acrobat Reader, and not being able to print, select
or any other method of reproducing that could reproduce our document.

HTML Each tool, however, has its advantages and disadvantages, the idea is not to discuss each
tool in detail, but to demonstrate the considerations that were included when choosing
our HTML tool.

The major points to look for are:

• Availability

• Ease of use
• Compatibility

• Required HTML knowledge

HTML-KIT Advantages

• Ability to edit multiple documents, to easily switch between them using the task bar

• Ability to create new keyboard commands by combining multiple built-in com-
mands

• Able to highlight spelling errors as you type or check spelling on demand

• Space for keeping web site project notes
• Search and replace single or multiple line text

• Real-time syntax highlighter with the ability to customize colors and font styles
• Validate HTML document with Tidy

Disadvantages

• Requires initial knowledge of HTML tags

• Most of time hands on the keyboard

MACROMEDIA
DREAMWEAVER 4.0

Advantages

• Stability and incredible capacity for advanced users
• Built-in FTP client (site manager)

• Possibility of changing between layers and tables without losing any of your docu-
ment’s structure

• Ability to create a model for the whole Web site and change the design just once,
Dreamweaver will take care of the rest

Disadvantages

• Requires long learning time

ADOBE GOLIVE 5.0 Advantages

Tools

28 Tools and Technical Prototyping

• WYSIWYG Cascading Style Sheet
• Drag and drop objects

• Easy-to-use dynamic HTML
• View and write HTML source code

• Automatically check HTML syntax, including compatibility with different browsers
• Unprecedented flexibility, as it saves user-defined features

• Dynamic content creation by Web sites that connect to ODBC a DB compliant data-
base

• Build-in JavaScript actions (ver. 5.0)

Disadvantages

• Pre-requirement knowledge of windows environment

MICROSOFT FRONTPAGE
2002

Advantages

• Easy to work with
• Visual add components

• Ability to retain formatting of text documents while converting them to HTML
• Automatically update links in the other files

• Direct preview of your document with IE, without starting the browser
• Familiar environment

Disadvantages

• Unnecessary HTML tags are inserted into the code making it difficult to read

• Limited selection of pre-built scripts
• Limited extensibility

• Cannot work with layers

HTML CONCLUSION Listing each tool’s capabilities is less useful than considering our use of them. Each
development phase has a suitable tool to maximize development methodology and min-
imize development time.

To start with we decided to use Frontpage 2002, as it offers all our needs in a simple
way. We later changed to use Adobe Golive as it does not insert unnecessary HTML to
our code so it is easy to read.

JAVA 2 PLATFORM We have chosen version 1.3.1 of the Java 2 Platform, Standard Edition (J2SE), as this
incorporates JSP v1.2.

FORTE FOR JAVA 3.0 For developing JSP pages and actually anything with Java-code, we have chosen Forte
for Java 3.0 Community Edition. Forte is a complete Integrated Development Environ-
ment (IDE) which offers compiling, debugging and running from within. A really good
feature of Forte, is that it has the Tomcat web server build-in, so you can test JSP pages
and Servlets, without having to rely on an external web server. You just run them like

Tools

Tools and Technical Prototyping 29

you would run a normal .class file and Forte itself takes care of the proper execution
method. Furthemore, Forte provides class-browsing as you type and color-coded syntax
highlighting.

JUNIT 3.7 We are using the JUnit framework for automating tests of our code. This was recom-
mended by several different sources.

MICROSOFT SQL SERVER
2000

It was dictated by Plass Data Software that we should use Microsoft SQL Server 2000,
as that is what they use as primary database. The thought of a product of this nature and
complexity caused some sleepless nights for the head database developer, but we dis-
covered that they were unreasoned, as SQL Server is actually easy to use and a much
more thorough and complete product than InterBase 6.0 that we used for previous
projects. This is not really a fair comparison, as InterBase is open source, but as goes
previous experience, InterBase is it!

JTURBO 2.0 To connect SQL Server with our Java code, we chose New Atlanta’s JTurbo JDBC
driver. There exists many JDBC drivers for SQL Server, so JTurbo was just a random
pick on the list. JTurbo is a type 4 JDBC driver, meaning that it translates JDBC calls
directly to the native protocol of the DBMS. Usually only the database vendors them-
selves can develop JDBC type 4 drivers, since the native protocol for a database is pro-
prietary to the vendor.

MICROSOFT INTERNET
INFORMATION SERVER 5.0
AND SERVLETEXEC 4.1

Although it is really out of the project’s scope, we have chosen the deployment platform
of the system. We will not be using IIS and ServletExec for our development, but at a
point in time, when PDS will be using our system, they will run it on these.

Running the JSP pages requires a web server capable of running Java. PDS’ current web
platform, Internet Information Server 5.0 (IIS) does not run JSP out of the box. There
exists a couple of stand-alone web servers, such as IPlanet, Resin and Tomcat Jakarta,
but to ensure best possible integration into PDS’ web platform, we suggested to run
everything on the IIS and to install the ServletExec ISAPI1 plug-in version 4.1. Servle-
tExec is a plug-in (sometimes referred to as “engine”) that enables IIS to run JSP pages
and Servlets, and since version 4.0 JSP 1.2 and Servlets 2.3 have been supported.

WINACE 2.03 For our internal file distribution we have chosen WinAce 2.03, because the ACE format
gives a much higher compression ratio than the ZIP format. Furthermore, WinAce is
capable of reading and compressing files in virtually any compression format available.
The ACE format also provides password-protection for information external parts
should not have access to.

1. Information Server Application Program Interface

Technical Prototyping

30 Tools and Technical Prototyping

4.2 Technical Prototyping

INTRODUCTION How do you? Can you? Is it like? Does it? What are the keyboard shortcuts? What con-
text menus are there? What are the systems requirements? These are some of the ques-
tions you ask yourself when testing a new tool. Your need is to learn how to work with
it to produce the desired results. It should fit with the method. Does it? In an XP project,
can the tool automate testing? Time is limited. Is there enough time for everyone on the
team to learn how to work with the tool? On the next pages we describe technical proto-
typing used in our project.

GENERAL
CONSIDERATIONS

Every tool has seemingly endless capabilities. Usually only a subset of capabilities are
needed for any one set of tasks and there are always several ways of using the function-
ality in a tool. This being the case, it is often best for individuals to experiment on their
own and find the working method that best suits them to achieve the desired results. We
followed this approach after investigating some basic, necessary points applicable to all
tools, which we list below.

• Are there special systems requirements? Can it run on school and home PCs?
• Is the tool readily available?

• What preferences need to be set differently from default settings?
• Can the basic functionality be learned within a very short time frame: 3 to 4 hours?

• Are there special requirements to where to place files for the tool to function?

The following discussion will only mention the above points if there were any special
requirements or difficulties.

MICROSOFT FRONTPAGE
2002

FrontPage 2002 is a RAD1 tool for HTML design. The first week’s development of the
Prototyping I phase was done with this tool. One of the project team developers had
enough familiarity with this tool to quickly teach the others the skills necessary to pro-
duce the required and desired outcome.

After using FrontPage for a week, we evaluated in discussion our experiences and the
code produced. What we found was that it was quite simple to design web pages in the
normal mode. Viewing an example mode simplified determining if the product had the
intended characteristics. In HTML mode we could review and change code as desired.

The major drawback to FrontPage is the generation of a healthy amount of extra code.
The reason for this is that the tools need to be so general and cover every situation.
However, in any given situation it is mostly garbage code and makes the code quite
unreadable. One of the tenets of our development method dictates that the code should
do the talking, so this was unacceptable. It also lacks the ability to drag and drop objects
onto the workspace.

1. Rapid Application Development

Technical Prototyping

Tools and Technical Prototyping 31

We decided to experiment with Adobe GoLive for writing HTML for the remainder of
the prototyping phase.

ADOBE GOLIVE 5.0 GoLive is an immense product for web development. The major differences we
observed between GoLive and Front Page were that GoLive generated less unnecessary
code and it had a visual approach using objects to design web pages. Therefore, building
web pages was very fast. We only needed to drag objects - buttons, forms and text fields
onto the working area.

As mentioned earlier, individual preferences for using tools required our technical pro-
totyping to include individual experimentation and learning, as unsystematic as this may
sound. We felt that a deviation from a step by step guideline was necessary for each
developer on the team to be most productive and have a satisfying experience working
with the tools. Each person discovers what they need as they need it.

Adverse aspects of GoLive are:

• Many small windows required to access objects. This can mean a very cluttered
screen and therefore a 19” screen is recommended to work comfortably.

• Icon meanings are not always obvious. Some have a mouse-over help text, while
others provide text in the status bar.

• Formatting tables is more demanding than Front Page 2000, i.e. formatting cell bor-
ders. It is necessary to use the Window > Inspector and adjust settings.

• Font sizes are a mystery. It seems extremely difficult to get the size you want. Some-
times an adjustment of -1 is needed. Sometimes what looks completely correct
comes up as something entirely different.

The key point is that project team members continually reported new knowledge to each
other so that all could benefit from it. By doing so, we had accumulated at least twice
the knowledge some standard guideline required approach to using the tool would have
reaped.

Learning to work with Adobe GoLive 5.0 takes considerably more time than FrontPage
2002. Once beyond the initial learning phase, GoLive seems to be an excellent tool for
rapid development of web pages without unnecessary code.

JUNIT 3.7 JUnit was designed by Kent Beck and Erich Gamma for the purpose of automatizing
java code tests. The advantage, as stated in the JUnit Cookbook (www.JUnit.org/Cook-
book), is that:

JUnit tests do not require human judgement to interpret and it is easy to run many at the
same time.

We expected learning how to test with JUnit would require more time and resources
than other tools. The 3 week activity plan for iteration 1 allotted 3 days for experiment-
ing with JUnit and allocated two members of the project team for the purpose of gaining
knowledge within two days, thereafter disseminating it to the others.

Technical Prototyping

32 Tools and Technical Prototyping

On the first day, the two developers only had an hour’s time to work with JUnit. They
wrote a simple PersonTest class to run the test and a Person class to test a method. It
was decided that testing was such a key element to XP that the best approach was to
gather all on day 2 for the purpose of experimenting with JUnit. This had both positive
and negative implications. The good thing was that everyone received the same knowl-
edge. On the other hand, very little was accomplished that day as we experienced diffi-
culties both compiling the simplest of Java code and running the tests! Compiling the
Sample codes in JUnit also proved problematic!

The problems incurred were due to classpath settings which can be set in Windows
2000 via the Control Panel > System > Advanced tab > Environmental Settings. How-
ever, some tools override this setting and this was the case with the next tool discussed,
Java Forte, which provides for selecting compilers and setting the classpath for these.
Eventually the classpath was set correctly and everything could compile but still we
could not run the JUnit test. The JUnit.framework package could not be found.

We called upon outside assistance as we were at a deadlock with JUnit and time was
being wasted. Lars Møller, one of our teachers, was available and with his assistance the
problem was solved, temporarily. The solution was that when opening the JUnit graphi-
cal interface we were not calling the package the class files were in. As an example the
correct line to enter at the prompt to run the sample test AllTests is:

java JUnit.swingui.TestRunner mypack-
age.testclasses.MyTests

We ran our own simple PersonTest and it came up with errors. Rather than debugging
this code though, we decided that time was better spent doing technical prototyping with
code we would actually use.

Again difficulties with classpaths held us back almost a full day. Our mutual under-
standing was that the classpath should point to the folder above the package with the
class files so that if you have C:\myjava\mypackage\myTestClassFiles
and C:\myjava\mypackage\myClassFiles the classpath should be
C:\myjava to get to both myTestClassFiles and myFiles but this did not function until
we pointed the classpath to the sub-packages of mypackage. At a later point, the class-
path settings actually did work by pointing to the folder above the folders with the class
files.

We have researched the Internet and other literature about classpath settings and asked
teachers, but still feel there is a need for a clear and concise report with a step by step
instruction on setting the classpath. Classpath settings remain a perplexing necessity.
Sometimes things function, other times not. Sometimes a re-boot of the machine is
needed other times not. Sometimes an application must be re-started, other times not. To
find the truth would require a longer systematic investigation into the question. As we
were able to continue with the settings we had, we did not do further prototyping to
understand the perplexities of classpath settings.

JUnit can be set to include updated class files each time a test is run so that one can
remain in the UI without returning to the prompt. The information in the UI is

Technical Prototyping

Tools and Technical Prototyping 33

• How many tests were run
• Were there failures. These are the expected ones, checked for by ASSERT in the

code.

• Were there errors. These are unexpected, e.g. out of bounds array index.

Shown here is the JUnit UI for where 3 tests have been run with success. For errors and
failures messages are shown in the windows, e.g., Java exceptions.

FIGURE 2. JUnit Interface

JUnit is a package, which does not present difficulties in itself for automating testing
once the Classpath settings are correct!

FORTE FOR JAVA 3.0
COMMUNITY EDITION

This IDE from Sun has immense capabilities. It is in line with other known IDEs such
as Borland’s JBuilder and Delphi, and Microsoft’s Visual products. The first thing we
noted was that the system requirement was a minimum of 128 mb ram. Forte, written
entirely in Java, requires a great deal of memory due to class loading. We were able to
obtain RAM upgrades from the RHS IT department and one of the team’s developers
purchased more RAM for his home PC.

We first wrote Java code for tests and a simple Java class. As previously mentioned, we
had compiling difficulties as a result of classpath problems.

Once the compiling difficulty was solved by getting the classpath to point to each pack-
age folder, we continued writing JSP code into which we placed our original XHTML
code. Some excellent features discovered here were the ability to compile and validate
the JSP/XHTML code and thereafter with a keyboard shortcut, running the code from
the built-in Apache Tomcat server was an easy step and an excellent feature. We experi-
enced no set-up difficulties with regard to the server and placement of files as compared
to jswdk 1.0.1 server we had worked with in a previous project.

Technical Prototyping

34 Tools and Technical Prototyping

The strength of Forte (hence the name?) is coding and running Java, JSP and HTML can
be done from the same environment. The figure shows a partial list of the templates
available in Forte.

FIGURE 3. Forte templates

We experienced a long delay in getting the set-up of Forte to function. It is important to
note that we started with version 2.0 and several days later the newer version 3.0 was
available from Sun. The newer version solved difficulties in getting classpaths to func-
tion and provided a better organization of the UI. Installation is simply a matter of run-
ning the install file. Classpaths do not need to be changed for working with Java files as
long as Windows classpath is set. However, the compiler needed a direct classpath set-
ting to find the JUnit. This is done in Forte by going to Project > Settings and opening
the compiler list where a selection of compilers is available. We used the fastJava com-
piler and set the classpath under this compiler’s Expert settings window. It was then
necessary to go to Project > Settings and double click on Java sources. From the default
Compiler a drop down box permits selection of compilers from which we selected fast-
Java. Once this process was completed we had a well functioning professional develop-
ment environment that is convenient and usable.

CONCLUSION ON
TECHNICAL PROTOTYPING

As to the choice of GoLive for HTML development, it seems so that this tool’s capabil-
ities and potential are far greater than Front Page. We selected to use Go Live because
we were not going to do a great deal of HTML coding and so we wanted something that
provided the visual capabilites Go Live does, well knowing there was a longer learning
curve involved in using this tool as compared with the speed of learning Front Page.

JUnit in itself presents no problems. Setting the classpath and knowing where to place
JUnit does. Once that is set, JUnit is a spectacular aide for running automatic tests.

Forte is an immense IDE requiring lots of time and training to learn to use. It is quite a
new tool and has its bugs. Still its potential and functionality are so beneficial that we
chose to continue using Forte during our project as the point is what better way to learn
how to work with the tool than by using it for actual development. It does impose a

Server-side scripting

Tools and Technical Prototyping 35

degree of risk, but we felt this would not impede us so much as to prevent the project
from fulfilling objectives.

Our experience has taught us that technical prototyping is a necessary step for any
project using new tools. The difficulties may seem to be insurmountable at times and
can consume exhorbitant amounts of precious time. In our project, difficulties with the
new tools used up the 3 days we set aside, plus 3 to 4 more days. We were fortunate
enough to regain some of the lost time as there was enough slack in the plan. However,
the difficulties would have been costly to us had this not been the case. At worst we
might have needed to begin an evaluation of tools over, reselect and do another round of
technical prototyping. This would have been disastrous for the project. Therefore we
will in any future project be aware of the need for technical prototyping and ensure that
it is planned for. Installing, setting-up and learning to work with new tools are not ele-
ments to be taken lightly - the project’s success is indeed dependent on this phase.

4.3 Server-side scripting

INTRODUCTION Deciding which technology to choose for server-side scripting certainly was not an easy
task. To limit the uncertainty of the language we would implement in, we narrowed
down to Active Server Pages and JavaServer Pages, leaving ColdFusion, CGI, PHP and
the like, out of the discussion. As the reader will realize after this section, for us, it really
came down to a matter of taste.

THE BUSINESS ASPECT PDS is Microsoft Gold Certified Partner, possibly meaning that they have a bias
towards Microsoft products. This is evident by looking at their choices of software plat-
forms.

• OS platform: Windows 9x/NT/2000

• DBMS platform: SQL Server 2000
• Application server platform: Internet Information Server 5.0

Furthermore, PDS has been doing some web site projects for customers, and these have
been done in ASP.

THE FLEXIBILITY ASPECT The good thing about JSP is that it can be run on virtually any computer platform avail-
able, as long as there is a virtual machine for it. There would also have to be an applica-
tion server, to process the client requests, of course. Because JSP has platform
independence, the server hardware and software can be replaced without any impact on
the ability to host JSP pages. One day the server hosting the JSP pages could be running
Windows NT on x86 architecture, and the next it could be running Solaris on UltraS-
PARC architecture, or maybe the more economically attractive; Free Linux on cheap
x86 architecture.

ASP only runs on either Microsoft Personal Web Server (PWS) or Internet Information
Server (IIS) - and PWS should not really be taken into consideration, as it is of limited

Server-side scripting

36 Tools and Technical Prototyping

use in the real world. Since IIS has to run on the Windows NT platform, the hardware is
limited to the x86 architecture1.

THE DEVELOPER ASPECT The scripting language of JSP is Java. The scripting language of ASP is VBScript or
JavaScript (or the variant JScript). We do not feel that it is clever to use valuable project
time to learn ASP and the accompanying JavaScript as we had enough risks related to
unprecedentedness already.2

The developers at PDS prefer ASP, probably because they are Microsoft Certified Part-
ners. We prefer JSP because we feel that ASP limits us and our possibilities.

JSP can use almost every class found in the libraries of Java. In ASP, if you want to go
beyond the scripting of JavaScript or VBScript, you have to use existing COM or
ActiveX components or build your own in a completely different language such as C++
or Visual Basic. Java has JavaBeans, which have the same syntax as all the other Java
code.

THE DATABASE ASPECT You could imagine SQL Server having problems running together with anything Sun-
related, as Sun and Microsoft are not exactly best friends, but luckily the third-party
JDBC driver JTurbo3 has been available for SQL Server since version 6.0. In fact Java
could access any DBMS through the JDBC-ODBC bridge, although it is far from the
optimal solution. ASP has native support for almost any DBMS through ODBC and
ADO.

THE FUTURE ASPECT As JSP is an open standard, it will rapidly adopt trends and technologies on the market.
ASP is a closed defacto standard Microsoft alone controls, this means that ASP will
only be getting new features if Microsoft thinks it is worth it. This could keep JSP one
step ahead of ASP at all times.4

CONCLUSION SERVER SIDE
SCRIPTING

If the platforms were not already determined, JSP would have had even stronger argu-
ments for it. You could say that we are going against the grain by selecting JSP over
ASP, as PDS is as Microsoft-oriented as they are.

Since this is a school project, we prioritize the process higher than the product, and we
feel more at home in Java than ASP. And the added risk of using an unprecedented lan-
guage should certainly be avoided if possible.

1. Microsoft also released Windows NT 4.0 for the Digital Alpha architecture, but it has now
been discontinued, after the release of Windows 2000

2. Some very standard JavaScript validation code is put to work on the client

3. Previously owned by Ashna, now acquired by New Atlanta, who also has the JSP/Servlet
application server and IIS-plug-in Servlet Exec

4. Microsoft’s new .Net technology might change this, but this is yet to be seen.

Server-side scripting

Tools and Technical Prototyping 37

CONCLUSION With the method determined, tools evaluated and where necessary technical prototyping
done, we turn our attention now to the initial system requirements.

The Problem of Changing Requirements

38 Initial requirements

5.0 Initial requirements

A computerized system can do anything or even everything depending on the cus-
tomer’s needs and resources. What are those needs? What provides business value and
what would be nice? Can one pindown requirements on which to base further develop-
ment? Should all requirements be gathered before any implementation? This chapter
focuses on a set of initial requirements gathered to provide us both with a basic under-
standing of the coming system and a point of departure for which to start the develop-
ment.

5.1 The Problem of Changing Requirements

INTRODUCTION The changing of requirements in a student project can be quite a risk, particularly when
one of the main goals of the project is to have a functioning prototype. We felt like
choosing XP was one way of lessening this risk.

XP is a very flexible method in terms of user requirements because it is actually the user
who determines an iteration’s coming features (except for the first iteration). In this
way, our project has an excellent chance of meeting user requirements. When the itera-
tions are as short as they are, the likelihood of costly changes to the user requirement
lessens due to frequent interaction and feedback.

In the event that a requirement change is requested by the company during an iteration,
the requested functionality replaces functionality that had similar resource demands. It
is not added to the list of things to do for the current iteration. Whatever is removed
from the iteration can then be implemented in a later iteration.

REQUIREMENTS
GATHERING

Following the informal meeting with PDS in June and a follow-up session on Aug. 10
with the key user of the system, the course administrator, we have come up with the first
set of requirements for the internal course administration system. For further require-
ments gathering we are relying on our systems development method. Each prototype
builds on the previous one, adding new requirements revealed at user evaluation of the
prototype. The following two tables illustrate and explain the initial functional and non-
functional requirements and tell how to validate them.

The Problem of Changing Requirements

Initial requirements 39

FUNCTIONAL
REQUIREMENTS

TABLE 9. Functional requirements

Requirement Operations/explanations Validation

Confirmation Print letter of acknowledgement

Print preliminary confirmation

Print late application confirmation

Print final confirmation

Print cancellation

Print course certificate (?)

Each document can be
printed from MS-Word
containing the relevant
data

Course Create, Read, Update, Delete (CRUD)

View list of Courses

Print list of Courses

Any type of course can
be created, edited,
deleted and viewed

Print list of coming
courses

Course Type CRUD Course numbers can be
constructed as they are
derived from the course
type and date

Error Handling Exceptions Stress and limit testing
produce error messages
in UI

CustomerNo HotlineNo must be called KundeNo
Term HotlineNo must not appear in new
system

Observation of UI, all
output and db meta data

Instructor Assign manually UI input field

InterestBank CRUD

Search for persons interested in a certain
course. Sort according to oldest date
interest expressed

Delete after X months

DB relation for holding
interested participants
Sorted list

Change system date and
see if warning appears to
delete a tuple in Interest
Bank

Location CRUD

Add to Course, Remove from Course

View list of Locations

Print list of Locations

As for course

Max participants On create course can enter max no of
participants permitted.

Course closed for new when max

Editable text field in UI
Read only when max
reached

Overview of com-
ing courses

Show in same line as course no other
course data

Example: 010801-XD2 Domi Plass
Data Software A/S PKL

Observe print output

The Problem of Changing Requirements

40 Initial requirements

Participant Create, Read, Update, Insert, Delete

Add to Course, Remove from Course

Add to Firm, Remove from Firm

View list of Participants

Print list of Participants

As for course

User Interface Graphic. According to norms/standards.
For example do not place a menu on
right side of screen. Logical, easy to
work with. Helps user perform the tasks
they do. Easy to learn. Error messages
should provide the user information on
the problem and with ways to solve it.

Present user should be
able to work with the
application within 1
hour as it is not a new
application, it is a simple
GUI and the user is
familiar with the prob-
lem domain. User feed-
back.

TABLE 10. Non–Functional Requirements

Name Explanation Validation

Process

Documentation User and developer documentation for
further development on the system after
onTrack project is completed and for
future users reference

The project report will
be documentation for
future systems develop-
ers

A user manual will be in
a text file as part of the
deliverables

On-line HTML help

Product

Maintainable Easy to update according to new require-
ments. Database can accept new entities
and attributes for existing entities

Interface can be updated easily as it is a
separate component from business logic
and data

Users create new table,
new attributes with suc-
cess

Adding/removing com-
ponents will be tested

The total functionality
should be maintained
regardless of the compo-
nents used

Reliable No system crash. Errors handled by
exceptions with clear messages to user

Stress and limit testing

TABLE 9. Functional requirements

Requirement Operations/explanations Validation

The Problem of Changing Requirements

Initial requirements 41

NOTE During our second requirements session at PDS, it was determined that creation of
tables for firms and instructors are not necessary. Firms are registered in another data-
base and there are too few instructors to maintain data about them. They are assigned to
courses manually. However, in order to use our knowledge about database design and
be able to test the db, we will create a relation for firm for maintaining data on these
entities. We also believe inclusion of firm in the database will be a future requirement,
which one would normally not build, but again as this is a school project we have cho-
sen to take the freedom to do so.

CONCLUSION INITIAL
REQUIREMENTS

With these requirements in hand, we are prepared to start the first development itera-
tion, which is prototyping the user interface.

Usable System must help user accomplish the
tasks user needs to perform with as little
use of the mouse as possible. Build in
use of TAB order to assist work

User feedback on miss-
ing, wrong, or poor
design/ implementation

Mouse clicks never
more than 3 for any task

Security User login to system required Cannot access db with-
out logging in to server

Work Practices Do not let system change present work
practices

User can operate system
within 2 hours of train-
ing

TABLE 10. Non–Functional Requirements

Name Explanation Validation

Prototyping User Interface

42 Iteration 0

6.0 Iteration 0

How can the user interface be designed to best assist the user to do their work?
This question is answered in the following chapter. This chapter also includes sec-
tions on Client/Server architecture and database design. What tier model is appli-
cable and what are relevant considerations for an intranet solution? How does an
XP mindset (where you solve tomorrows problems tomorrow) affect the design of
the database?

6.1 Prototyping User Interface

INTRODUCTION We do not go into the details of graphic design of the user interface design - that is the
subject of different literature such as (Shneiderman). What we want to make clear is that
by involving the user, a fundamental part of evolutionary prototyping, one is in a better
position to create an appealing, useful, helpful, work-task assisting, easy to learn and
easy to remember user interface.

THE SYSTEM’S FACE One can take the viewpoint that the user interface (UI) is the singularly most important
part of a system. The UI is what the system looks like to the user. It is the face of the
system to the outside world. It is what the user first meets and is where the user does
their work. If the UI is not appealing in layout, easy to learn to work with, permit ease of
doing tasks, provides proper error messages and help, then many errors will occur while
operating the system and at worst, the user will quickly develop a negative attitude
toward the system, resulting in the system’s demise.

JOB FOR GRAPHIC
DESIGNERS

Creating a user interface is a task for specialized developers. Often graphic designers
are called upon to assist or do the job especially since UIs are most often today Graphi-
cal User Interfaces (GUI). Our education has in no way prepared us for doing proper UI
design nor are any of the group members graphic designers, psychologists or inherent
UI designers.

EVOLUTIONARY
PROTOTYPING

How then could we best design a UI, focusing primarily on its ability to provide the
functionality the users expect to do their work and less on the esthetic aspects? Once
designed, can we not continue using the prototype by adding functionality we won-
dered? We might have used a RAD1 tool to create a throw-away prototype and quickly
create a UI for evaluation, but it seemed senseless to spend time on something and
throwing it out, especially in light of the fact that this is a short-term project, rather than
continue with the prototype for development. We decided to prototype the GUI as an
evolutionary prototype, one that would be built upon by incrementally adding function-

1. Rapid Application Development tool such as Delphi

Prototyping User Interface

Iteration 0 43

ality resulting in a final prototype at the project conclusion that would be a usable sys-
tem, although not an entire system. This being the case, the prototype was implemented
with the tools we selected for the actual development. Prototype I is termed a horizontal
prototype, i.e., it is just the UI without functionality.

GOALS OF PROTOTYPE I When designing a UI, the designer asks two questions:

1. How can the system provide the user with information?

2. How can the user provide the system with information?

Intranet User Interface for the database administrator:

• Provide capability to access and manipulate data according to requirements
• Provide capability to input data

• Provide familiar work environment with known terms and concepts
• Provide a logical easy to learn and work with user interface

• Prevent unwelcome surprises for the user

PROTOTYPING PROCESS The implementation of the prototype is straightforward HTML.

A 3 week detail plan guided us from the project inception, through collection of initial
requirements, implementation of the prototype, developer and user evaluation.

USER EVALUATION The user interface is best developed with user involvement taking into account their
needs, experience and capabilities.

“It is impossible to judge user interfaces from an abstract description. Prototyping is
essential for user interface development (Sommerville, 323)”.

Our project plan took into account the fact that a user evaluation would occur and that
the evaluation might mean going back to the drawing boards to revise the prototype.
Our user evaluation took place at PDS1, where Torben Pedersen (course administrator)
and Benny Bech represented the company.

Evaluation of the prototype is the step in the prototyping process where the real benefits
of prototyping come to light.

The following sections answer the questions:

• How did we benefit from prototyping the user interface?

• Were there any drawbacks to the method?
• What changes would we suggest?

1. see Appendix Prototyping

Evaluation - User Interface, Prototype I, version 1

44 Iteration 0

NOTICED BENEFITS • Our relationship with PDS was strengthened by the close contact needed to evaluate
and evolve the prototype. Building the relationship in this manner improved commu-
nication and cooperation in regard to further design of the system.

• We were able to quickly develop and improve the UI. Given the importance of a
good UI, we feel this was of crucial benefit early in the project. Having a usable UI
accepted by the users prevents total rejection of the system at a late point in the
development.

• The users are motivated as they see understandable results quickly as compared to
diagrams and textual descriptions they do not understand or have time to read

• Our impression is that time is saved attempting to analyze, design, and document
these activities prior to any implementation activity. We are aware that at some point
in time there is analysis, design and documentation.

• Requirements uncovered that were missed or not properly understood during initial
requirements gathering1

• Finding functions seems to be easier with the UI at hand as it represents the func-
tionality of the system

DRAWBACKS As a method, prototyping does not prescribe clearly how to go about the development.
Four steps are listed in much of the literature (Arthur p.72-73) but they are not described
in detail. This leaves much leeway for the developers to design the method to fit the
actual situation, but for the project team it seemed the method was too open - a “road-
map” to follow was missing.

CHANGE After the prototyping phase, a discussion lead us to the following thoughts on improve-
ments we would consider for the prototyping method.

• Time might have been saved by providing screen shots to the user in advance of the
actual evaluation of physical screens. This might have prevented misunderstandings
concerning layout, use of text labels, missing or unnecessary fields.

AFTERTHOUGHT We realized that it was actually quite good that the first prototype was so simple, since
we did not have any real basis for determining the desired layout and graphics. We were
able to represent the functionality, but only through the user evaluation could we cap-
ture the users requirements to the UI design.

6.2 Evaluation - User Interface, Prototype I, version 1

The prototype of the UI was evaluated in two ways. First by the team at school and at
the end of the phase by the users. Both evaluations were done as interactive tests with
manual input by the user/developer and observation by the developers. As a result of the
fact that we used evolutionary prototyping as the development method for the UI, eval-
uation was an inherent part of the method, in particular the user evaluation.

1. see Appendix Prototyping

Evaluation - User Interface, Prototype I, version 1

Iteration 0 45

INTERNAL EVALUATION The internal evaluation was determined in advance of any coding with the following
purposes:

• Testing the navigation to uncover dead links

• Validating the number of mouse clicks to get to any page - the goal was less than
three1

• Check tab-order. Must jump to next form field to be filled out

• Investigate to see if the layout appeared logical according to the work description
• Ascertain if the UI would appear to be self-explanatory to a user

PROCEDURE As Prototype I has no functionality, the balance of the value of evaluations was
expected to come from the user evaluation.

INTERNAL EVALUATION The results2 of our first evaluation and our first real experience with a planned evalua-
tion were as follows:

TABLE 11. Systematic Evaluation

What to do How we did/could do it

Make it clear what you wish to evaluate Written description prior to implementa-
tion

Explain why you are evaluating Discussion prior to description of evalua-
tion

Divide evaluation work into small manage-
able activities

Evaluation plan

Use care in selecting test data and predict the
results

User input on what data to use for tests and
written descriptions

Different people plan and run the evaluations Roles were reversed in group between
those responsible for a unit of code and
those evaluating

Tests must be repeatable Automatic testing using JUnit and precise
descriptions of tests where JUnit was not
applicable

Be aware of the difference between debug-
ging and testing

Group discussion

Run several evaluations. Record and analyze
the results. Plan the next steps

Evaluations run according to a plan.
Results recorded by an observer and
reviewed by team.

Systematize results in notebooks, database,
etc.

Small sample database created to illustrate
how this might work

Evaluation results must be expressible Plain English text with simple explanation

1. See section on requirements for this and other points

Evaluation - User Interface, Prototype I, version 1

46 Iteration 0

Navigation

Out of 10 links from the main page about 70% were dead due to missing/wrong file
names in links or missing files. Likewise was the result for links from individual pages
to home.

The number of mouse clicks to get to any page is one. Navigating on pages can be
accomplished without any use of the mouse, but with tabs. For this result to be repro-
duced by the user requires some practice and user documentation explaining this fea-
ture.

Form fill-in

The Reset button did not function in two instances, clearing the form as intended. A user
instruction about the date format in the Course_create form was not emphasized enough
to make the user aware of the need for entering the correct separator in a list of dates.
Under Course_type_create a text field for materials should be changed to a text area
providing more flexibility and improving readability. Several forms needed reorganiz-
ing of the positioning of text fields and labels as in some instances they are too far from
each other and in others too close. There should be a standard distance in the set-up for
these objects. Each screen has a vertical line separator between the left menu column
and the form. This line is too long, making scrolling necessary.

CONCLUSION OF INTERNAL
EVALUATION

At the outset of the evaluation planning it seemed trivial and hardly necessary to evalu-
ate a simple user interface so we were skeptical about the value of the time spent on this
activity.

We were more than surprised by the results of the evaluation and felt quite relieved that
we “bothered” to plan, run and evaluate the results, as it might have been detrimental to
the further progress of the project had we presented our first prototype to the users with
many of the simplest features such as a hyperlink not functioning between the main
page and the primary pages of the application!

USER EVALUATION The purpose of this user test was to check that requirements were fulfilled both concern-
ing UI design and that all central functionality was represented in the UI.

The test plan was briefly explained to the user. The user started according to the script
while the developers made observations and filled out a scheme with results. Shortly
after the start of the test, the user and observer from PDS were questioning where capa-
bilities for various functions were placed as they had not yet seen them. The test plan
from here on was in effect dropped. The situation became quite chaotic and was seem-
ingly losing value because of its disorganized nature. The PDS user and observer,
although IT professionals, assumed the role of regular users, quickly jumping to conclu-
sions and unsystematically trying to experience and observe the UI, making it difficult
to provide consistent and usable feedback that could pinpoint the negative and positive
aspects of the prototype.

2. See Appendix - Test for the actual test procedures and results

Evaluation - User Interface, Prototype I, version 1

Iteration 0 47

It became apparent that the forms that were created for observation were not entirely
useful in this situation as much more than what they took into account was discussed.

We concluded that for an evaluation to truly have value, the planned test must be under-
stood by the user, strictly followed and observations recorded. Discussion afterwards
would be welcome, but here too there must be control and direction if the results are to
be used for analysis of the evaluation and revision of the prototype.

RESULTS After the user evaluation the team compared notes and the test form. The results of the
user evaluation and our thoughts are presented here.

Evaluation form

There were two dead links. Screens for create and edit could be reduced to one screen.
More uniformity between screens would be desirable. One screen had the wrong page
heading due to the familiar Copy/Paste phenomenon.

Labels should use either the standard terminology such as “GEM” or the company ter-
minology. Text fields should vary in size according to the size allocated for data.

A better separation of the functionality on each screen was needed. Explanation of input
formats, e.g., dates, was missing.

The location screen requires five separate comment fields.

Finally it was stated that we did not make adequate use of the browser functionality for
navigation and that there should be many more links.

THIS WENT WRONG Although we had tested and revised the GUI, dead links appeared because after a minor
change, we did not test again. Copy/paste as often does, resulted in some wrong text on
a page. To some degree, non-uniformity between screens was uncovered, although we
strived as much as possible to create uniformity. The user felt that the new UI was too
new and that it even required changing work practices. The test procedure was not fol-
lowed and the resultant evaluation with discussion was chaotic.

THIS WENT RIGHT In our follow-up discussion the value was clear to us. Fast feedback produced fast
change, which helps avoid more serious errors late in the project.

DISCUSSION We concentrated heavily on the fact that the users did not follow the test guidelines.
They were not evaluating in any organized fashion and this was surprising to us. It was
interesting to note that although the session was so chaotic we were able to compile use-
ful material and that all our notes and observations were quite unanimous.

It seemed to us that our first shot at the UI indeed fulfilled the user requirements. The
problem was that during earlier interviews, PDS placed no restrictions on the UI, even
when asked. PDS said that they were open to new ideas and that they did not particu-
larly like what they had.

Evaluation - User Interface, Prototype I, version 2

48 Iteration 0

Some new requirements though seemed to contradict what was clearly previously
expressed. In particular the user now wanted to use the browser functionality of naviga-
ble links and was not concerned with number of mouse clicks1. This was clearly in
opposition to the original requirements of low mouse usage. It was fortunate that we had
the forethought to make it as simple as possible to avoid too much wasted work.

CONCLUSION OF USER
EVALUATION

Although we deemed the session chaotic, the results turned out to be quite useful and
we felt that the next version of the prototype would certainly be closer to what the users
required. It also provided us with “food for thought” as to what we might do differently
for the second prototype evaluation. We decided that a better plan and explanation of it
to the user organization and a run-through by the developers first might help by forcing
the users to see the entire picture before jumping to conclusions and going off track
when they “took the wheel”.

The evaluation was essential to the continuing project’s success. It was an excellent
experience for us and it was fun. Such an evaluation requires that you, the developer, are
open-minded and prepared for anything. It is important to remember that the feedback,
though it may seem harsh at times, should be received in a positive light.

6.3 Evaluation - User Interface, Prototype I, version 2

As a result of the changes to version 1, new evaluations were run both with the develop-
ers and the users. Instead of a form for recording observations, notes were made directly
on hard copy screen shots. This proved to be more effective than attempting to fill out a
pre-defined form, which in many instances would often have too little space for certain
points, too much for others and none for yet others!

With the screen shots in hand and the notations on them it was a simple matter to go to
the keyboard and revise the screens. The users were provided with a choice of three dif-
ferent layouts of the user interface.

Additionally, the user evaluation was organized as a list2 of points that would be fol-
lowed, including estimated times for each point. The test program was mailed in
advance along with the three interface versions.

SUMMARY DEVELOPER
EVALUATION

The main points are listed below:

• Overview of future courses
- Only screen with OK menu Fonts.

- Left align table headings and data

1. One can navigate between links via the cursor but it requires much “tabbing” to get the desired
link

2. See Appendix Prototyping

Client/Server Architecture

Iteration 0 49

• Participant
- Adjust Logo size

• Register - needs complete reworking

SUMMARY OF USER
FEEDBACK

Submitting screen shots for evaluation prior to the physical evaluation of Prototype I,
version 2 proved to be a very useful technique. The users had time to observe and con-
sider the material in their own environment at a point in time best suited for them. This
meant that we removed an element of surprise from the physical evaluation, so that
requests for change at the physical evaluation were more qualified than at the first eval-
uation.

The real benefit became apparent at the physical demonstration in that the quality of the
feedback was raised both because it was possible to structure the evaluation and keep to
the plan and the users were prepared in comparison to the blind demonstration for the
Prototype I, version 1. It is also likely that the quality of the feedback was raised
because this particular interface included the implementation of more specific demands,
where the first was our guess at what they would like.

We would like to point out that there still were numerous changes requested, but both
the developers and users were quite satisfied with the results of the session. To support
this Torben, the DBA stated

Jeg ser frem til at bruge systemet. Allerede nu ser det meget bedre ud end det, vi har i
dag.

CONCLUSION
PROTOTYPING USER
INTERFACE

Our opinion is that prototyping as a method can be useful in combination with parts of
other methods, in that prototyping itself is not a detailed methodology. This means the
developers must design their own prototyping method, which can be designed according
to the developer’s organization or perhaps better according to the situation of the devel-
opment where time, economics, personnel, user organization, technology and tools can
be taken into consideration as factors that would influence the project strategy.

Documenting the steps taken and positive and negative results is necessary to improve
the process and most important, make it possible to do it again.

We find prototyping the UI an imperative step in a project similar to ours
where we are not building upon an existing UI, but creating a new one from
scratch and time is very short. Had we built upon an existing UI, many key ele-
ments would be pre-determined.

6.4 Client/Server Architecture

INTRODUCTION XP weakly addresses the topic of architectural design. We therefore have found it diffi-
cult to decide where to place this section. Despite the fact that XP does not address it,
we found it is relevant to our project.

Client/Server Architecture

50 Iteration 0

EVALUATION Normally things to consider in a discussion of client/server architecture are perfor-
mance, flexibilitiy, interoperability, security, and scalability but since the system is run-
ning on an intranet, some of them require less attention.

Performance

Being that we are developing an intranet solution, the bandwith usage plays a lesser
role. The fact that the clients are always connected and the speed of the corporate net-
work, to a large extent, eliminates bottlenecks and latency.

We decided to have JavaScript to perform basic error handling and validation on the cli-
ent. This lessens the traffic between the client and the business logic. It is true that the
additional scripts have to be sent to the client upon the initial request for a page, but
overall it lessens the traffic between the client and the business logic, as only valid data
is allowed to leave the client.

Flexibility

With our business logic tier, we have split up the functionality from the presentation.
Therefore it is possible for further development to exchange, e.g., the presentation logic,
but still use the same beans that we have developed. Similarly, the seperate database
logic can be exchanged with another DBMS or another means of storage, if the need
arises.

Interoperability

It is also important to keep in mind that the systems PDS uses internally, share informa-
tion via the SQL Server, so this way the course administration system is coupled to the
other systems. This ensures the highest possible degree of consistency.

Security

As the system is running on an intranet, security does not play a major role. Information
has to be protected, so accidental modification and deletion are avoided. At some point,
there might be a wish to publish courses or lists for car pooling on the internet pages of
PDS, and then security becomes an issue.

CONCLUSION Considering the known facts about the implementation platform, there really were not
many choices regarding the number of tiers. As PDS uses SQL Server as primary data-
base, and the fact that we have decided to use a seperate tier to handle business logic,
gives us a 3-tier architecture. The additional functionality on the client, in the form of
JavaScript, results in what we like to call 2.5-tier.

Database design

Iteration 0 51

6.5 Database design

INTRODUCTION Starting database design without doing the usual object oriented analysis and design
leading to a class diagram being wrapped into entities in an E/R diagram, was a new
experience for us. PDS provided us with the database that the existing system was run-
ning on, and our design is based on the interviews, the design of the user interface and
the tables of the existing database, to the degree we felt sensible. Sensible in the way
that we did not want to affect our system with the bad design of their existing database
system. The current administrator of the courses has inherited the database from his pre-
decessors, and this is clear based on the amount of fields and seemingly awkward fea-
tures and ways to use the system. One of the causes of the existing database design
being so bad, could be that the Lotus Approach database is a kind of graphical tool for
designing database applications, so you can click-and-drag your way through the entire
design process, which eventually lets you get away with many things without you ever
knowing what the relational model is about.

Designing the new tables so they are somewhat similar to the existing ones, eases the
process of migration. We broke down every screenshot given from PDS and analyzed,
which fields were represented in the databases. As the given Lotus Approach database
only supports very primitive data types, we quickly saw the advantage in migrating to
SQL Server. This reduced the amount of wasted space, not to mention the huge differ-
ence in capabilities and scalability of the two. Furthermore, SQL Server provides cen-
tralized storage and company-wide access to information.

DESIGNING A FLEXIBLE
SYSTEM

When you, as a developer, face the user’s wish for a database design that is not optimal,
you can take one of two paths.

One is “do what you’re paid for”, and design the database as the users dictate, regardless
of bad design issues. By doing so, you ensure future work and salary of your fellow
developers, so that is not necessarily bad.

The other is dealing with these issues with a clear conscience by creating a flexible and
more fundamentally sound design. This eases the future development beyond the scope
of the current development project and saves time and money when doing so. Consider-
ing the relatively little amount of additional time necessary to implement a flexible and
more correct design, it seems like the most obvious choice.

The intention of our design has therefore been making a flexible and future-proof data-
base. However, good ideas we have come up with from time to time, have been dis-
carded in favor of a design that corresponds to the requirements and business constraints
from PDS. Also, we have to keep in mind the principle of keeping things simple and
implementing what is necessary now, deferring what might be needed later.

6.6 Conceptual design

The initial iteration of database design resulted in the following diagram1.

Logical design

52 Iteration 0

FIGURE 4. Conceptual ER

COURSE In the current system, the unique identifier for a course is the date and the course type
separated by a hyphen (e.g., 120901-MSW). As this is an attribute derived from the start
date and the course type, we quickly decided to split it up into the start date and the
course type. After further consideration, we dropped this idea, as this pattern of naming,
according to PDS, does not necessarily hold true in the future. Therefore the dependen-
cies dealt with under normalization steps of the logical design do not hold true.

FIRM As the system should work together with the existing systems at PDS, the Firm entity
was designed so it was a simpler version of the Firm table on their SQL Server. We
were given the metadata for this table on their SQL Server, but decided not to use it, as
it contained many fields we did not use and therefore would only spawn more confusion
amongst the developers. As the tables contain nealy identical fields, a big effort should
not be required when adopting the system to PDS’ SQL Server.

STANDARD LETTER Every time the system is ordered to update a participant’s information and the state of
application has changed from the previous stored there has to be sent a letter informing
the participant about this. The participant receives multiple letters throughout the appli-
cation period.

6.7 Logical design

COURSE DATES The dates of a Course, which initially was a multi-value attribute, was given its own
entity. Since a Course can last more than one day, and several courses can be held on
one day, we had a M-N relationship. However, splitting the relationship did not lead to a
solution to the problem. The relationship is fine, however, since the Course date entity
contains the primary key of its parent entity.

1. See survival kit in Appendix XP for entity explanations and attribute listings.

Location Is held at
1

Course
M

Is of

M

Course
Type

1

Participates
in

M
Person

N

Is
employed

by

M

Firm

1

Logical design

Iteration 0 53

FIGURE 5. Relationships for Location - Course - Course_date

PARTICIPANT In the Participant entity, each tuple is uniquely identified by a number automatically
generated upon insertion. This was not exactly our idea of a primary key, but PDS stated
that was the way it was now and the way it was going to be. All PDS saves for a partici-
pant is the name and the company they work for, thus having two participants with the
same name working at the same company is therefore likely to happen. It poses no
immediate problem to have doubles, but when you want to track down which courses a
certain participant has taken - then which one of the two participants is it? Introducing a
new attribute of date of birth or even CPR-number would help solve this problem, but
PDS does not want to ask every participant applying for a course about this. It is highly
unlikely that two persons with the same name would be working at the same place, and
PDS accept this way of handling the issue.

ADDRESS ATTRIBUTES Due to the standard letters that the system must generate, the address attributes are split
up into address, city, etc., to control consistency and formatting in the way this informa-
tion is entered. This ensures that the letter head containing the address (amongst other
information) will be presented in an identical manner for all letters. The firm entity is
already running in the separate phone system that PDS themselves have developed.

FIGURE 6. Logical ER

Course Is held on Course Date

N

M
Is held atLocation

M1

Location Course
M

Is of

M

Course
Type

1

Person

Is
employed

by

M

Firm

1

Is held at
1

Becomes

Participant

1

M

M1
Takes

Standard
_letter

M

Receives

N

Alternatives

54 Iteration 0

6.8 Alternatives

INTRODUCTION XP preaches that tomorrow’s problems should be solved tomorrow. The above design
reflects what we consider to be the simplest possible design with that in mind. It can be
difficult, however to contain one’s thoughts on possible solutions and future improve-
ments. Therefore we have included this section of alternative design ideas to show we
have thought ahead, but have tried to follow XP as close as possible.

INSTRUCTOR Although PDS did not request a separate Instructor entity, we saw it was a good idea for
future features. If Instructor is just an attribute in the Course entity, you cannot deter-
mine which courses a specific Instructor is qualified for tutoring. It is also impossible to
store other information about the instructor, such as his/her phone number, e-mail, and
maybe even his/her schedule. Including these attributes can open the possibility for a
complete human resource management system.

FIGURE 7. Alternative relationship for Instructor - Course

When we considered the 1-to-M relationship of Course and Instructor, we realized that
there is chance that the 1-to-M does not hold true in the future. Therefore, you could
design it as a M-N relationship and then split it up and get a middle entity. It could also
be an idea to make a relationship between the Instructor, Course_type and Location.
Course_type because you could tell which instructors were capable of teaching which
course_types. Location because an instructor might be permanently assigned to a geo-
graphic region, thus he/she would be the preferred choice for a course in his/her area.

LOCATION - COURSE -
COURSE_DATE

A better way of representing the Location - Course - Course_date relationships is to
make a ternary relationship between them, as shown below. Since ternary relationships
are not desired, this relationship would be transformed into a new intermediate entity.
By introducing this relationship, you can determine which dates you are using a certain
location, without knowing which courses are held there. This would ease the adminis-
tration when booking locations outside PDS, and at the same time it gives you the possi-
bility to know how many people are attending a location on a specific date, which is
desired information for the kitchen.

Instructor
1

Leads Course
M

Alternatives

Iteration 0 55

FIGURE 8. Alternative relationship for Location - Course - Course_date

TIME AND PLACE When looking at the attributes of the entities in the Location - Course relationship, try-
ing to determine the attributes for the intermediate entity, we realized that there actually
is no need for the separate Course_date entity. As a date is specific to a location (or vice
versa), it only makes sense to store the date together with the Location at which the
course is being held. The new entity between Location and Course is Time_and_place.

FIGURE 9. Time_and_place

For future applications of the system, this model easily lets you expand the
Time_and_place to hold many locations for one course. It is possible that the Instructor
entity could have a relationship to the Time_and_place entity too, and thus becomes a
piece in the overall puzzle of booking locations and booking instructors at the right
times.

Again, these are alternative ideas of our own, but could be implemented in the future, to
improve the system.

CONCLUSION DATABASE
DESIGN

At one point during the making of the ER diagrams we had an entity called
“Letter_queue”. The idea was to put it in to keep track of letters not printed. Had we
gone through the typical activities involved in problem and application domain analysis,
we would have realized that an attribute in participant called “printed” would have been
enough to keep track of who needed letters printed. The idea behind making an ER dia-
gram is to model persistent data in the system. We were thinking too much about imple-
mentation. A statechart diagram would have helped us to avoid this situation. Thanks to
our advisor’s comment we were quickly over this problem.

As we brought up concerns of wasted storage space on the server machine by keeping
irrelevant and/or outdated information in the database, PDS made us realize that it is
cheaper to just add a new harddrive, than to use time during development or even worse
- during maintenance - to remove unwanted information.

Location
1

Course

Is held
at/on

Course Date

M

M

Location
1

Course
1

Has
Time_and

_place

M
Has

N

Requested changes to user interface

56 Iteration 0

Designing the database was a constant effort to hold back on the good ideas for future
use of the system, and only designing what was necessary for the system to run. The
specific rules for, for example, deleting a person that is currently assigned to a course, or
whether to leave the persons of a deleted company in the database has not been our con-
cern. That is also why we, in the physical design, have only addressed simple table cre-
ation and data manipulation.

6.9 Requested changes to user interface

• None or very limited scrolling

• Correct tab order
• Limit use of color

• Do not use Hotline number
• Unless they provide information to the user do not show primary keys

CONCLUSION ITERATION 0 Iteration 0 was a milestone in the development. A lot occured during this iteration.
Using evolutionary prototyping we were able to design a user interface which, fulfilled
user requirements to the interface. Decisions were also made in this iteration in regard to
client server architecture and the database was designed. The following chapter, Itera-
tion 1, will be concerned with building a skeleton system, which represents all the basic
functionality of the overall system. It is here we enter the world of Extreme Program-
ming.

Implementing Iteration 1

Iteration 1 57

7.0 Iteration 1

Its one thing to read books and articles on XP, but how is it to use it in practice?
How is it writing tests before coding? Is XP as simple as it seems? What problems
will we experience using it for the first time? This chapter presents experiences
with our first taste of XP.

7.1 Implementing Iteration 1

Unlike the following iterations in XP, the first iterations’ functionality is, in a sense,
predetermined. In later iterations the customer determines the features to be imple-
mented by using certain criteria. The idea in this iteration, however, is to try to create a
skeleton of the system, regardless of how rudimentary it may be. The purpose of this is
to represent the system’s architecture. The following text is based on our experience try-
ing to implement these elements while using XP for the first time.

SCOPE At its outset, this iteration’s intended scope consisted of:

• All creates - each of the beans and the corresponding Java Server Pages
• Print letter - one letter for one person

• Register participant to a course

The following table task estimation is at the outset of each chapter, Iterations 1 - 3.The
figures in the table were determined in the following manner.

TASK ESTIMATION The rightmost column is a calculation of the total daily hours available for task work. A
factor of 67% is used. This number is based on a statement by Benny in relation to PDS’
working methods. The project manager determined maximum possible hours per day
that could be strictly used for coding. The number was entered and based on the factor
the Total Daily Hours could be determined. This figure is then doubled taking into con-
sideration the two pair programming teams.

XP Iteration 1

58 Iteration 1

FIGURE 10. Iteration 1 task estimates

TEST Test methods for opening and closing the database, and determining whether or not
what we inserted into the database actually was inserted.

OUTCOME It was necessary to postpone register participant until the next iteration. We chose to do
that over prolonging the iteration.

• Create Course, Course_Type, Firm, Location and Person
• Print standard letter with only partial data from database

7.2 XP Iteration 1

During the first iteration, we did not use all of the prescribed methods that we eventu-
ally ended up implementing in later iterations (not to the same degree at least). We felt
that because of the fact that this was the first time that we are going to try XP practices,
we should not drown ourselves in them. We decided to do some of the things in a rela-
tively superficial way. You might say that it could be compared to a technical prototyp-
ing of our method. It turned out to be a good idea.

PLANNING GAME The business has not been involved enough for us to have benfited. Benny said that this
was probably our biggest problem in trying to do an XP project - getting enough user
involvement. We asked if he thought it was possible to get the user involved as much as
XP requires. To this he provided an example of a customer relationship PDS has, that is
so close that although the idea of an on-site customer is not the reality, the relationship
over phone lines provides the same result. The main reason we cannot get the close rela-
tionship we need with the business is that this is a student project and would require too
many PDS resources. Also, our initial project outline did not include anything about
XP1, so PDS was not aware contact this close would be desirable.

ITERATION 1 Sept 1 - Sept 14

Task Estimate Result Difference Total daily hours Hours available 32,00 % OK 0,67
M 1009 3,00

Course_type create 4,00 4,00 0,00 T 1109 1,50 Estimate 22,00 Tot 0,00
Firm create 3,00 2,50 0,50 W 1209 4,50
Location create 2,00 7,00 -5,00 T 1309 5,00 Difference 10,00 Available 0,00
Person create 3,00 7,00 -4,00 F 1409 2,00
Course create 2,00 8,00 -6,00 Total 16
Print 8,00 9,00 -1,00

Total estimate XP 1 22,00

Total Result 37,50

XP Iteration 1

Iteration 1 59

The developers have participated in estimating features and recording actual time usage.
Our project process model fits with PDS’ own in that they have been making evolution-
ary improvements over time on their existing software. We selected what stories the
first iteration included based on the fact that the first iteration should, when completed,
represent a skeleton system. In addition, the order of coding these stories was decided,
although we forgot to include which stories the XP1 baseline was concerned with, only
the number of stories it was to have completed out of the entire XP1 iteration, which
had two baselines.

PAIR PROGRAMMING Pair programming was not used at the very beginning of the iteration as it had been a
long time since the group members had done some Java coding and one member had
never seen JSP before this project. We, therefore, decided that it would benefit us in the
long run to start this iteration’s work together (as much as possible).

TESTING Testing was one of the pieces that we did on a more surface level. It was clearly under-
stood by all how important testing was. Still we ran into difficulties after a few simple
tests were written and successfully run. The reasons for this are several:

• Compelling urge to get on with the work, not taking into consideration how much
could be saved by having properly designed test cases

• Difficulty in determining what to test, possibly because we were working on a sim-
ple application without much calculation but many reads from and inserts to a data-
base

• Concentrating on JUnit automatized testing, perhaps not taking into account other
testing possibilities such as visual observation and own test methods

• XP Iteration 1 included technical prototyping. This took much more time than
planned for, and so there was pressure to complete the code needed to run the user
functional test, rather than following all the XP practices we intended to.

• User functional test was not written by customer. The test was really a technical
walkthrough, which first was done by the developers and then copied by the user.
The reason is as explained above, PDS was not prepared to partake in a XP project
with the level of business-developer interaction such a project requires.

XP dictates that you should not test trivial things. We had difficulty determining what
was trivial and what was not. It seemed like everything was trivial. In the interest of
time (and lack of experience writing tests) we wrote very few simple tests. As we wrote
them for one they seemed to all be the same. We realized that we had gone about deter-
mining tests in a very unsystematic way. What we did to prevent this in future iterations
was we decided to make a list of test candidates, just as one would make a list of candi-
date classes in object oriented analysis. Regardless of how trivial they seemed, we doc-
umented them and then narrowed them down to a list of relevant tests, which was then
divided into two lists. One of them was things that could be tested in JUnit and the other
one was made up of things that needed to be tested by other means, entitled Observa-
tion.

1. We first heard about XP from PDS

XP Iteration 1

60 Iteration 1

REFACTORING It is necessary to point out that although we place this section here in XP1, it does repre-
sent an accurate view of the process. Because we were behind schedule, the following
refactoring was done in between iterations. Since the work applied to the iteration
1code, we decided to place it in this section of the report.

One of the first things that we realized was a need for an equals method for testing pur-
poses. It was necessary to compare whether or not the changes are what they should be
for all tests where changing the database was a question. Additionally, we addressed the
following refactoring concerns:

In fact, without making the user interface in advance, we feel that it would have been
extremely difficult to know whether what we had was right until we did functional tests
at the customer. We considered this to be a major weakness in the XP method. Nowhere
in any of the literature we encountered was the user interface design mentioned.

TASK CARDS Kent Beck was right on the money when he claimed in his book on XP that simplicity is
not easy. We found it very difficult not to think ahead when writing the task cards. This
was compounded by the fact that we chose to express the task cards in pseudocode. The
pseudocode quickly illustrated when reusable code was likely, so it was difficult not to
make things like helper classes from the very beginning. What we did instead was to use
the task cards to document when we saw a pattern of functionality occurring. Later,
when it was time to do some refactoring, we had a head start by referring to the docu-
mented ideas from the task cards.

Normally in XP, the task cards are derived from the story cards written by the customer.
You might wonder how we knew if our task cards were complete or if we had imple-
mented all of the functionality necessary to fulfill the requirements of a story that was
never even written to begin with. We felt that the numerous interviews and constant dia-
logue with PDS, as well as the fact that we had already implemented the user interface,
gave us an extremely solid ground to make decisions about task card functionality. After
a short stint using task cards we decided to change the format of the cards themselves
from their original form. This was not only necessary because of the fact that we cus-

TABLE 12. Iteration 1 refactoring

Java JSP XHTML

DB util class No open/con-
nect

Alignment of code

Open/Connect called in methods
accessing DB

Remove all TF, TA, SB etc.,
e.g., tf_name

Class names match table names Check that all attributes have
values

Tests in one suite to run when inte-
grating

Check all tags for end

Remove all unnecessary code

XP Iteration 1

Iteration 1 61

tomized what our task cards would contain, but also very helpful when it came time to
do refactoring of the code. The following is an example of our customized task card.

TABLE 13. Engineering Task Card

Date: ___________

Story number: ____________ Software engineer:_____ Task estimate:_____

Task Description: Course_Create

JSP Bean

• Call Personal_Create.JSP

• Call get_course parameters from form (course_no.,
course type, dates)

• Call set Course_bean (course_no., course type,
dates)

• Call open DB
• If PK exists, generate HTML error message

• Call store DB
• Call close DB

• Create Course bean with applicable variables

• Set bean fields (also checks fields)
• Get bean fields from DB (for testing)

• Store in DB
• Open DB

• Close DB
• (Equals x 2) for testing

Software engineer’s notes:

Error messages (required field empty, invalid inputs, exists already once committed)

Things yet to do:

Comments:

XP Iteration 1

62 Iteration 1

ESTIMATING THE TASKS One company that tried to develop using XP said that making accurate estimates was
one of the toughest things to do. When trying to make estimates, they made what they
considered to be an optimistic, a pessimistic and a realistic estimate for their tasks. They
then took these three values and divided by three and that was the estimate. The out-
come was that the time it took to implement the tasks exceeded their most pessimistic
estimate! These were professional developers. We figured that if they had been that far
off we should consider this a major project risk and this was one instance where updat-
ing the risk list accordingly was warranted. We then decided that we were going to take
the measures necessary to avoid this from happening to us.

We had no experience with coding where you write test code before you do the actual
code, nor did we feel that we had enough coding/estimation experience to make any-
thing close to an accurate “guesstimate” for how long it would take us to implement an
individual task card. Therefore, in order to create more accurate time estimates, we
thought that it would be smartest to express the task cards in pseudocode. Additionally,
we decided to further divide the tasks into two different categories (JSP and Beans).
Being that we were doing testing with JUnit, we could implement the beans indepen-
dently from the JSP by running a main method in the test class. By doing these two
things, we thought that we would get a better feel for how to best estimate tasks for each
domain.

GENERAL PROBLEMS One of the problems we had was that we did not have a functions list or a data dictio-
nary for the non database code. Even though we had a database data dictionary we often
did not refer to it. We were constantly changing names of functions and variables
around and not changing things everywhere. Because of the sometimes mystical nature
of the error messages we were getting, we would spend hours on an error where we
were calling a table Person instead of Persons. A function list and data dictionary would
have helped us here if we used it.

CONCLUSION ITERATION 1 We found it very difficult to work with the new method in this iteration. It is not
unproblematic taking on a new method and tools. Our degree of organization was slip-
ping in the face of this unprecedentedness. Some of the problems may have been pre-
vented through planning such as allowing more time for technical prototyping. Others
would not be recognized until actually working with the method.

Testing in XP requires a major adjustment, both because we had never done testing pre-
viously in connection with systems development and it requires a completely different
mindset to write tests prior to coding. The difficulties prevented us from using the
method as thoroughly as we would have preferred to.

As far as not using pair programming, we found it very beneficial because of the degree
of unprecedentedness. However, this also meant we did not complete the iterations
planned features as we based the estimates on two working groups.

At times we were discouraged by the difficulties, but the results of the user functional
test provided encouragement as at this early stage the developing system was stated as
being an improvement in comparison to the existing system.

Implementing Iteration 2

Iteration 2 63

8.0 Iteration 2

Now that we have some very slight experience with XP we ask can we run an itera-
tion as a true XP iteration following the method as prescribed? Or is it more diffi-
cult than it appears? Will XP still impose problems and what might they be? How
will we provide solutions to problems experienced in Iteration 2, so that the third
iteration is an improvement over the previous 2? Here follows our report on itera-
tion 2.

INTRODUCTION According to XP, the functionality of every iteration after the first is to be determined
by the customer. The customer bases the decision of which features to included in a
given iteration by placing them into 3 categories. The category with the highest priority
is the one including features that the system cannot live without. The next includes fea-
tures with a high business value. The last includes features that would be nice to have.
Being that this is the second iteration, it includes those which the customer feels that the
system cannot live without.

Because of the time pressure we experienced during the last iteration, we decided to try
to cut down this iteration’s functionality and try to concentrate a little more on our
working practice.

8.1 Implementing Iteration 2

Following the display of the first iteration’s delivery, PDS decided that this iteration
should include the following:

SCOPE • Register Participant to a Course

• Overview page displaying the coming courses, their respective participants and
other course related information

• Error handling - one of the major requests for this iteration

The Task Estimate table for Iteration 2 follows.

Implementing Iteration 2

64 Iteration 2

FIGURE 11. Iteration 2 task estimation

OUTCOME • Register participant

• Overview without links
• Error handling - For required input for each page

• SQL Exceptions output to user interface

ERROR HANDLING Many different types of error handling exist, as far as our project is concerned we
address only errors as a result of user actions. Even so, we have only implemented a part
of these, as handling every thinkable error would crave a vast amount of time - more
than available for this project. It would be out of the scope too, as demonstrating our
capacity to handle this facet of software development is the goal here and some exam-
ples of error handling fulfill that goal.

Where and why

As the system we are developing is using the 3 tier approach there are several ways and
places to carry out the error-handling. As we have learned in the 3rd semester, the basic
rule is detecting and handling the errors as close to the source or cause as possible.

Even though the system we are developing is similar to a regular internet-application,
the fact that it is running on an intranet provides greater bandwidth and lower response
time to the system. Thereby it gives us more free hands to make the choices we want
regarding placement of the functionality, without being dictated by the connection
between the client and the server. It is limited what is possible and sensible, as the sys-
tem runs in a browser from pages hosted on a web server.

The client tier

All the web pages contain forms, so we have chosen to use JavaScript to perform field
validation before sending the forms to the server. This is to ensure that required fields
are filled out. JavaScript is loaded to and executed on the client after the request of a

I TERATION 2 Sept 27 - Oct 5

Task Est imate Factored Resul t D iff Tota l da i ly hours Group hours 37,00

Overview Part 1 7,00 11,93 5,00 6,93 F 2809 3,00

Part ic ipant 8,00 13,64 10,25 3,39 M 0 1 1 0 3,00 Estimate 23,00

Error Course_Type 5,00 8,52 6,00 2,52 T 0210 3,50

Error Course (added) 3,00 5,11 4,00 1,11 W 0 3 1 0 3,50 Dif ference 14,00

0,00 0,00 0,00 0,00 T 0410 3,50

0,00 0,00 0,00 0,00 F0510 2,00

Tota l 18 ,50

Tota l est imate XP 2 23,00 39,20

Total Resul t 25,25

Total Dif ference 13,95

Factor resul t / factored est imate 0,64

XP Iteration 2

Iteration 2 65

page. When the user wishes to submit a form, the JavaScript is executed and performs
the desired validation and appropriate error messages will pop up if any errors were
encountered. As JavaScript is executed on the client, it can only perform simple syntax
checking and not perform, e.g., checks for doubles in the database.

Alternatively, we could have submitted the forms to the business logic tier, and then
detected the errors there. As the pages sent to the client do not contain JavaScript with
this solution, in an ideal world (users not making errors) you could say that less data has
to be downloaded to the client. Realistically, though, it would in fact require additional
network traffic, as the page containing the form would have to be sent back as many
times as the user submitted it with errors.

Since the system is running on an intranet, this would also be a viable solution, but to
occupy bandwidth this way is bad architectural design.

The business logic tier

As the information sent from the client to the server, it is wrapped into beans. Errors
detected in the business logic tier and in the database will be stored in a list of errors,
and then be shown to the user.

The database tier

The final validation is performed when the beans perform database operations through
the ontrack.util.Db class. Here the database will throw back exceptions if there, e.g., is a
violation of primary keys and foreign keys. Violation of foreign keys should, however,
not be a reality since it is only possible to pick amongst valid values of foreign keys,
which are always contained in the referenced table. The methods performing the data-
base operations will catch the errors and send them on to the beans, so they can be
shown to the user and necessary action can be taken.

8.2 XP Iteration 2

We decided that during this iteration we would try to increase our degree of organiza-
tion in order to handle the problems that we encountered in the last iteration. One of the
additions during this iteration is our XP Survival Kit, which is designed for this very
purpose.

THE XP SURVIVAL KIT This is an invention by one of the group members in an effort to further organize and
assist the work processes. At the point of inception it was made up of a 3 ring binder
containing the following information:

• JUnit Documentation (just in case)

• Data Dictionary (which includes functions and attributes of each bean and the data
dictionary of the DB tables)

• All of the task cards

• Database doc

XP Iteration 2

66 Iteration 2

• Screen shots

The idea was that this should be used as a reference when doing pair programming in
XP. It was designed to help clear up some of the existing problems. The only problem
was that it was not used enough in iteration 2 because it was not in a binder yet. This
would be rectified before the beginning of the next iteration. On the occasions it was
used, it was quite helpful.

CODING When we stick to code a little, test a little, things work. Using the SQL Server query
analyzer to test SQL statements in Java code reduced difficulties with SQL code embed-
ded in Java.

TASK CARDS According to XP, you should integrate code at least daily. During the previous iteration,
we found that there were occasions where the individual task took longer to successfully
implement than the day was long. In order to avoid this problem we decided that we
would split up tasks into two different cards if necessary.

TESTING We still had difficulty using unit testing due to the change in mindset required. It was as
if as soon as we sat down at the computer we would forget about testing until we were
half way through the code. Hopefully using the Survival Kit will help with this during
the next iteration. As a result of our experiences with the functional test of the last itera-
tion, we created a new, more organized format1 for the customer to follow. It was not
followed to the degree we set out, but the overall meeting was more organized than the
last.

TASK ESTIMATION XP prescribes the use of a velocity factor, which is arrived at by comparing the result to
the estimate. For the following iteration one takes the estimate and multiplies it by the
factor from the preceeding iteration, assuming that your estimates were off by X amount
as per the factor. The factor from Iteration 1 is 1.75 and so our estimates were multiplied
by this number giving a total estimate requiring more time than our Group Hours Avail-
able. As the factored figure and Group Hours Available were so close we decided the
goal for the iteration was the first 3 tasks, optimistic that these would be accomplished
within the time allocated or less in that the difference between the unfactored estimate
and factored amount were so far apart. As it turned out we did use quite a bit less time
than the factored estimate. Fear not though! We did not take a one week holiday. The
remainder of the time was used by adding a new task (in red on chart) and still the chart
shows a difference. Actually, we probably used more time all in all, but the figures are
cleaned for technical difficulties with Forte that easily took 6 hours of our time during
Iteration 2!

A highly visible wall chart improved participation in the following up on and recording
of time consumed.

1. For new format see appendix

XP Iteration 2

Iteration 2 67

INTEGRATION We had a real problem with this. It was actually not a result of this as much as it might
have been the collective ownership idea. We could have done a better job with integra-
tion as well, but the fact of the matter is that we would have a task card written. Occas-
sionally, we unexpectedly found the need to change things in a class that was already
written. The problem was that during the span of a day’s worth of coding with a limited
number of existing classes, both teams changed the same classes without realizing it
until it was too late. This caused some delays.

REFACTORING Java

• Create superclass containing:

- Methods general for all beans
- protected List error_list = new ArrayList();
- protected Db db = new Db();
- checkErrors()
- showErrors()

JSP

• Use include file for JavaScript (this idea was not implemented as the solution to
include a JavaScript file in a JSP file was not found)

• Import statements in one line

Although we will still have to include some from in between iterations, we did a little
better job of refactoring during this iteration than we did the last. One of the refactorings
we did turned out to be quite beneficial.

Originally we made a bean corresponding to each table. When we were implementing
the registration of a participant to a course we needed to fill a drop down box full of the
coming courses. In order to do this, it was necessary to compare a course’s begin date
with the current date and return where begin date was greater than the current date.

Because PDS said that it should be possible to hold a course for up to 4 days, it made
sense in the database to have a table for course dates in order to avoid many nulls in a
course table full of one or two day courses. We realized, however, that we would reduce
code complexity by putting the dates into the course bean. We, therefore, did just that.
We kept our database design intact and changed our way of thinking about bean/table
relationships in order to simplify the code for this situation.

To illustrate another of this iteration’s refactorings, we formerly had a GetBeanType
method that would extract the beantype from an SQL string. The problem was that it
only worked when the SQL statement had a given format. To solve this problem we
added a setBeantype() method to our methods that call the DB access methods.
This would supply the type of bean to create rather than extracting it from the SQL
statement.

//determine type being queried - needed to create new bean in SQLSelect

XP Iteration 2

68 Iteration 2

public String getBeanType (String query){

 /*remove "SELECT * FROM "*/

 String bean_type = new String (query.substring(14));

 /*remove WHERE clause if exists*/

 if (bean_type.indexOf(" ") > -1) {

 bean_type = bean_type.substring(0,bean_type.indexOf(" "));

 }//if

 return bean_type.toLowerCase();

 }//getBeanType()

 public List getAllFromDB() {

 List beanlist = new ArrayList();//Also refactored out to just return result of db.SQLSelectAll

 String query = "SELECT * FROM Course";

 return db.SQLSelectAll("course", query);

 } // getAllFromDB()

By providing the SQLSelectAll method with a parameter for the beantype we were able
to remove the method getBeanType from our code.

SUPERCLASS The addition of the Course_Admin superclass helped to reduce a good deal of repeating
code lines and tied together all the bean classes of the system. An example of repeating
code lines found in each bean were:

try{

 String query = “INSERT INTO Person VALUES ('"+

 this.getCustomer_no() + "','" + this.getName_() +

 "','"+ this.getComment() + "')";

 db.SQLInsert(query);

 }catch (SQLException sqlex){

 error_list.add(sqlex.getMessage());

try{

 bean = db.SQLSelectAll(bean_type,query);

 return bean;

 }catch (SQLException sqlex){

 error_list.add(sqlex.getMessage());

 }

The error_list field and DB instance were moved to the superclass plus all calls to the
DB. An example of the resultant code for the bean classes is:

public void storeInDB() {

this.setSQLString("INSERT INTO Person VALUES
('"+this.getCustomer_no() + "','" + this.getName_() + "','"+
this.getComment() + "')");

XP Iteration 2

Iteration 2 69

super.storeInDB();

 }//storeInDB()

A minimum of 4 lines of code were saved in each class by this refactoring and the code
is more readable. Exceptions are handled by single methods instead of each bean having
Insert and Read DB methods handling exceptions.

SOLUTIONS THAT NEED
MORE WORK

Debugging - Some team members still have a tendency to change more than wise, mak-
ing observation of results difficult. This makes debugging take longer than necessary.

Inconsistent DB - We used our data dictionary but not enough. Single DB accessed via
network helped.

Version control - Although we backed files up daily in an integrated ACE file which
was date/time stamped in its name, there were several mix-ups of versions. We will
allow more time for integration and concentrate more on this as version control is vital
for success.

NEW REQUIREMENT
CANDIDATES

• Error messages after submit should be shown in box similar to error messages used
for form validation

• Change layout of overview - number of days in right column, number of partici-
pants to right, no column headings

• Confirm a submit
• Possibility for registering a participant and a new person on course page. This is a

reversal back to the original suggestion from team of as few as possible links. Doing
this would support eliminating both Person and Participant pages.

• Save submitted data until it is submtted without error, eliminating need to re-enter
data in form

• Show list of courses and their participants on Participant page

CONCLUSION ITERATION 2 Our reducing the functionality in order to do a more thorough job paid off. We still did
not complete all that we would have liked. We were able to complete some refactoring
within the time alotted, but not all of it. We also did a poor job testing although better
than in the first iteration.

The following chapter, Iteration 3, is the last XP iteration of the project. At its termina-
tion the system should be in the state expected according to our project objectives, i.e., a
functioning prototype, which can either be developed further or used as an example for
PDS to solve the problems originally posed to us in regard to administrating courses and
participants and reducing the number of databases in the company.

Implementing iteration 3

70 Iteration 3

9.0 Iteration 3

With two XP iterations behind us, basic up-start problems should be in the past.
Our familiarity with tools should be so that the various difficulties they presented
are gone, although experience says new ones will certainly arise! Can we reach our
project goal of providing a prototype system PDS can use for further develop-
ment? What implementation is required to accomplish this? Do we have enough
time? The following presents the third and last iteration of the project.

9.1 Implementing iteration 3

INTRODUCTION This is the last iteration of the project. The previous iterations 0 - 2 have resulted in a
user interface, a skeleton system with limited functionality and some error handling.
There has been a smooth transition between iterations, where the growth and capability
of the system is apparent at the end of each iteration. This final iteration will not com-
plete the system, but will provide a very useful prototype as a foundation for further
development as was the goal set by PDS.

SCOPE The iteration’s scope will include implementation of the following tasks:

• Overview Part 2 - active links to a Course

• Course Part 2: Participant management - change a participant’s status or remove
them from a course

• Print - complete standard letter in Word with all necessary data. This is a continua-
tion of iteration 1 task Print.

• Date - a utility task necessary to work with date types converting from the HTML
form to beans to SQL Server formats. It becomes apparent as work proceeds that not
all tasks represent features, such as this one concerning dates.

• Person Edit - provides the capability to change a person’s name, comment or the
firm number they are associated with. This task requires a comparison with an exist-
ing database tuple, asking the user for confirmation that they wish to overwrite the
existing tuple or cancel the job. (comparison not implemented)

• Should the previous tasks be completed ahead of the time estimate a task for error
handling for Participant will be included in this iteration

XP Iteration 3

Iteration 3 71

FIGURE 12. Iteration 3 task estimation

TESTS Tests will be written for Participant bean as this was not done during iteration 2 when
the bean class was created. Every test suite will be integrated to the All_tests suite and
testing will be done daily at every integration.

REFACTORING We see a possibility to refactor the database class to make it more general and will work
toward this goal.

OUTCOME Iteration has resulted in the following being implemented:

• Functionality
- Print standard letter - Application received

- Search for firms, persons, courses, course_types, locations, participants
- Edit a person’s name or firm number

- Edit a participant’s relation to a course
- Change a participant’s status

- Course dates can be applied

9.2 XP Iteration 3

TASK ESTIMATION Having a basis for estimates it seemed easier to find a viable estimate for the tasks.
Being easier however, does not make something more correct. With our prior estimates
fresh in mind we were pessissmistic with this iteration’s estimates and as a result we
completed tasks in far less time than the estimate.

ITERATION 3 Sept 27 - Oct 5 Varies daily
Task Estimate Factored Result Difference Total daily hours Hours available 38,00 % OK 0,67
Overview Part 2 3,00 1,93 3,50 -0,50 F 1210 3,00 % based on PDS est.

Participant Manage 8,00 5,15 0,00 8,00 M 1510 2,50 Estimate 38,00 Tot 4,00
Print complete 8,00 5,15 5,00 3,00 T 1610 3,50 Total for a day, varies

Error Participant 3,00 1,93 0,00 3,00 W 1710 3,50 Difference 0,00 Available 2,68
Date 8,00 5,15 6,00 2,00 T 1810 3,50 Max coding time
Person Edit 8,00 5,15 0,00 8,00 F1910 3,00

M2210 2,50
Total 19,00

Total estimate XP 1 38,00 24,47

Total Result 14,50

Total Difference 23,50

XP Iteration 3

72 Iteration 3

TESTING The addition of a daily practices document to the survival kit at the beginning of this
iteration helped provide the discipline we might have been lacking in prior iterations. It
gave us a work practice to follow to ensure that testing was done on a regular basis. We
nearly doubled our total number of tests. Some of the new tests were: Date converting to
and from strings and java.util.Date; Printed/Not printed and Participant state changes;
and Update person.

REFACTORING There were 3 methods in the Course_Admin superclass for inserting, updating and
deleting from the database. By refactoring we were able to reduce this to a single
method that takes SQL strings which either insert, update or delete from the database as
the Statement class method executeUpdate()is used to execute all of these
against the database.

CONCLUSION ITERATION 3 As expected we did XP most comprehensively in this iteration. The process was
smoother than in the previous iterations and we could concentrate on accomplishing the
work at hand as we were more accustomed to using the method.

XP Iteration 3

The Outcome 73

10.0 The Outcome

New methods, new tools, an unprecedented development project with lots of risks
some higher than others or with more weight than others. So how did it turn out?
Could we build a prototype system fulfilling the initial requirements and those pri-
oritized for development during the iterations? Here we present an overview of the
prototype system in the state at which we leave it at the projects conclusion.

THE ROLE OF DIAGRAMS IN
XP

In his book on XP, Kent Beck states that there is nothing wrongwith designing software
with pictures instead of a mental or textual model of the system. In fact, he admits that
pictures can provide help in certain situations. He claims that the problem with pictures,
however, is that they provide some kind of feedback, but insulate you from others. The
unfortunate part is they insulate you from the type that teaches you the most - like, “Will
this run the tests?” “Does this support simple code?” These kinds of questions can only
be answered by coding.

The XP strategy is that anyone can design with pictures all they want, but as soon as a
question comes to light that the code can answer, then turn to the code. The pictures are
not to be saved. Kent Beck’s objection is not to pictures, but to trying to keep multiple
forms of the same information synchronized.

Throughout the project we attempted to follow the tenets of XP as closely as we felt was
reasonable. This being the case, we worked without many diagrams. The ones that we
provide in this section of the report are simply to provide the readers of the project with
overview that may not be apparent otherwise.

LOGICAL VIEW The idea behind the following diagram is to get an abstract understanding of how the
web application is built up, from different files.

The application starts with “Index.jsp” file. This file generates HTML code to the client
side. On this page there are links for all other pages. As you hit one of the links, you find
the corresponding JSP file of that page, which generates corresponding HTML file in
form format to the client side. Again the submission of the form generates a JSP file,
which builds an HTML page to the client side. The pattern nearly is the same for all
links from “index” page. The submit method will be Get, instead of Post, because there
are no security issues on this web application. On the other hand, for development pur-
poses we can see the parameters being passed of that link on the URL address.

Taking space into consideration, we do not illustrate all the files with each file’s links
due to the mentioned repetitive pattern. Each generated HTML file has a link to the rest
of the JSP files, as you have seen on the navigation map.

XP Iteration 3

74 The Outcome

FIGURE 13. UML Logical View

CLASS DIAGRAM The class diagram is generated using reverse engineering, and shows the final structure
of the classes. The Course_admin superclass provides functionality and attributes com-
mon to each of the bean classes. The relationship the superclass has with the subclasses
is inheritance for extension.

IndexIndex <<builds>>

<<links>>

Locatio
n

Submit

Locatio
n

Submit

Locatio
n_crea

te

<<submit>>
(Get)

<<builds>>

<<Redirect>> Locatio
n_crea

te

<<builds>>

Course
create
submit

<<links>>

<<submit>>
(Get)

<<Redirect>>

<<builds>>

Course_
Search

<<Redirect>>

Course Course

Course
create
submit

<<builds>>

Course
Type

Submit

course
Type_
create

Course
Type

<<links>>

<<builds>>

<<Redirect>>

<<submit>>
(Get)

Course
Type_
create

<<builds>>

Course_
Manage

ment

<<Redirect>>

XP Iteration 3

The Outcome 75

FIGURE 14. Class diagram

NAVIGATION MAP A Navigation map is a view of the Web solution showing how PDS will navigate it. The
following figure shows the navigation map generated following the meeting with PDS.
Each line of the diagram shows the number of clicks it takes to get to that screen. At this
level we do not know exactly what each screen will look like or even what each specific
screen we will have, so we focus on identifying logical pages. Once logical pages are
identified, the navigation map looks at how PDS will navigate from one logical page to
another, as well as the major features provided by the logical screens.

+Db()
+closeConnection()
+getConnection()
+getDbinstance()
+SQLDelete()
+SQLinsert()
+SQLSelect()
+SQLSelectAll()
+SQLSelectint()

-con
-driver
-password
-url
-username

util::Db

+Course_Admin()
+addtoErrorList()
+checkErrors()
+getAllfromDB()
+getBeanType()
+getError_list()
+getFromDB()
+getIntFromDB()
+getiter()
+getSQLString()
+setBeanType()
+setSQLString()
+updateDB()

-bean_type
-error_list
-sql_string

beans::Course_Admin

+setXxxx()
+getXxxx()
+Course()
+date2SQLdate()
+getAllFromDB()
+getFromDB()
+sqldate2Date()
+string2Date()
+date2String()
+equals()
+storeInDB()
+toString()

-assigned_persons
-comment
-course_no
-course_type
-date1
-date2
-date3
-date4
-days
-instructor
-location_no
-max_person
-room_no

beans::Course

+setXxxx()
+getXxxx()
+Course_Type()
+equals()
+getAllFromDB()
+getFromDB()
+storeInDB()
+toString()

-comment
-course_type
-description_
-end_time
-materials
-start_time

beans::Course_Type

+setXxxx()
+getXxxx()
+Firm()
+equals()
+getAllFromDB()
+getFromDB()
+storeInDB()
+toString()

-address1
-address2
-city
-contact_person
-customer_no
-email
-fax
-found
-name_
-phone
-postcode

beans::Firm

+setXxxx()
+getXxxx()
+Participant()
+deleteFromDB()
+equals()
+getFromDB()
+getOverview()
+getPrinList()
+staroInDB()
+toString()
+updateDB()

-course_no
-order_no
-person_no
-printed
-state

beans::Participant

+setXxxx()
+getXxxx()
+Location()
+equals()
+getAllFromDB()
+getFromDB()
+storeInDB()
+tostring()

-address
-city
-comment
-directions
-email
-fax
-food
-location_no
-name_
-overnight
-phone
-postcod
-practical
-www

beans::Location

+setXxxx()
+getXxxx()
+Person()
+equals()
+fillSelect()
+getAllFromDB()
+getFirmPersonsFromDB()
+getFromDB()
+storeInDB()
+toString()
+updatePerson()

-comment
-customer_no
-name_
-person_no

beans::Person

XP Iteration 3

76 The Outcome

FIGURE 15. Navigation map

The above figure seems like an unusual navigation map, but it satisfies the user require-
ment (PDS). PDS needs to have a link to every page that make the navigation between
pages easy. If the user aborts an action and wants to immediately do another action on
another screen, he/she should neither need to go back to the main page (overview) nor
have to look for the other options, but go directly to the desired screen.

OUTCOME The completion of the 4 iterations resulted in a system with the following features:

• User Interface
- Screens for Course, Course_Type, Firm, Location, Overview, Person, Participant,
Print

• Functionality
- Create Course, Course_Type, Firm, Location, Person, Participant

- Print standard letter - Application received
- Search for firms, persons, courses, course_types, locations, participants

- Edit a person’s name, firm number and comment
- Edit a participant’s relation to a course

- Change a participants status

- Overview page displays coming courses (with links) and their respective registered
participants

• Error Handling

- Error message unless required fields on any page are filled in
- Error message for primary key violation

• On-line HTML help implemented outside of the iterations

Overview Print

Course TypeCourse

Person Register

Location Firm

XP Iteration 3

The Outcome 77

CONCLUSION THE
OUTCOME

The system is left in the state that fulfills the objectives of the project both for PDS and
the development team. It is now a foundation for future development whether PDS
wishes to continue with the onTrack system or develop one from scratch based on the
knowledge gained from the project.

Evaluation of Products

78 Project Evaluation

11.0 Project Evaluation

This section is to be considered a tool for future projects. In the following we
gather our experiences and evaluate them with the aim of providing useful infor-
mation for ourselves and others in coming projects. We evaluate the product, pro-
cess, method, tools and events of the project. Our basis is our experiences,
deliverables, and the minutes.

11.1 Evaluation of Products

USEFULNESS IN THE USER
ORGANIZATION

We conclude the project with a product that in Benny’s words was of a nature that “if
implementation had been completed it would have made replacing the present Lotus
Approach course management database immediately possible”. This was satisfying and
motivating to hear. It was good to be involved in a product where the potential future
users expressed they were looking forward to working with it and it was better than their
present application.

Had this not have been a school project we would certainly have completed develop-
ment of the product.

TECHNICAL EVALUATION We successfully implemented a database with the required SQL Server. SQL Server is
an immense database product, yet it seemed fast and simple to get started with. To those
of us who have worked with Interbase, SQL Server appears as an exciting product with
so many features and capabilities that one could probably use a few years studying this
product. We would welcome the opportunity to learn more about and work with SQL
Server again.

The JTurbo driver caused some problems along the road, because it was 30-day trial
version only. Approximately 30 days actually, because sometimes it ran more than 30
days! When it finally expired, we did not print out the exception that told it had expired,
and that definitely caused a lot of frustration.

Although our initial thought was to use Internet Information Server and ServletExec, for
best possible integration with PDS’ systems, the ease of using the Tomcat web server
built in to Forte quickly convinced us otherwise. Tomcat sometimes needed to be
abruptly shut down and restarted to make it realize that some of the JSP files were
updated. Instead of having to use an external web server, which we would have to start/
stop all the time, we could run the JSP pages straight from Forte.

REPORT We are aware that the report can be difficult reading. We could have left out alot of the
considerations we included and made the project simply devoted to XP. This may have
provided a clearer “red line”, but we feel this wouldn’t have resulted in the same quality
product. Due to the fact that some of the XP practices were not applicable and some of
the topics we addresses are not addressed at all in XP we often found it difficult to

Evaluation of process

Project Evaluation 79

decide where to place some of the sections. Consequently we chose a chronological
ordering of the sections to reflect the work practice as closely as possible.

11.2 Evaluation of process

TEAMWORK IN PROJECT
GROUP - SUGGESTIONS
FOR IMPROVEMENTS

May - August

The group was formed spring of 2001. Not long after we held our first meeting with
PDS. Already at that early point, we were becoming a well established team. We had all
worked together before either on projects or doing class work, so we were not com-
pletely unfamilar with each other and this was a help toward us quickly becoming a
coherent team. During the first weeks of the project it seemed there was summer vaca-
tion “hangover”. By the end of the first month, we were well functioning in our roles,
and everyone actively participated at the meetings. Once going it was full speed ahead.

September

During this month a lot was happening both in regard to working with new tools, cod-
ing, documentation, and meetings so we were fully occupied and being so occupied
meant the opportunity for setbacks was great. It must be said that although we had our
moments of frustration, as a team, there was always a spirit present that kept us moving
forward and dealing with the adversity.

October

At this point the team is functioning optimally.

Sugggestions

Activities and task assignments need to take into consideration when team members are
joining a project after a long vacation break as there is a start-up phase involved for
these persons before they are functioning at the expected level.

HOW THE ACTUAL
COMPARED WITH THE
PLANNED

The plans were mainly beneficial to the project manager. It seems neither the team
(other than who should bring bread!), the advisor nor PDS were particularly interested
in the plans. Without them it would have been impossible to regulate the project’s pro-
gess, and the plans were constantly being controlled and revised by the project manager.
The result of this was that every detail plan, although updated regularly, was completed
on time, with the desired deliverables. It was very useful to break the overall plan into
subplans for each iteration.

The overall plan held throughout the project with minor changes. Since it is not detailed,
it is easier to keep in line with this plan, as compared to the detail plans.

Suggestions

Discuss progress according to the plan regularly to increase team awareness of the state
of the project.

Evaluation of process

80 Project Evaluation

MAJOR EVENTS August

Prototype evaluation in week 34. Despite our best convictions that we had made the
simple, easy to use UI design as per our initial requirements, the users gave tough cri-
tique of the UI we presented. In view of the fact that this feedback and opportunity to
revise is desirable when doing prototyping, we expected to have to do some re-working
and this was planned for. The timeplan required change though as it was not possible to
meet with PDS earlier. We were able to continue other work, so this was not a major
setback. Here we would like to point out the importance of providing enough slack in
the plan to revise after tests and evalutations.

September

XP Iteration 1, skeleton system complete September 14. This was delayed one week due
to technical setbacks, and in particular several days after the infamous September 11
attack on the World Trade Center, where our concentration on the project was under-
standably not at its best and a good deal of time was spent discussing the situation.

October

Iteration 3 brought the development to its completion. We reached our goals for the
software product and the report. The produced software could result in the elimination
of a database at PDS and simplify the course administration. We feel highly satisfied
with the produced report

WORK ENVIRONMENT We were extremely fortunate to have a meeting room at RHS where we could work.
Generally the school provides a poor environment - for example there are no rooms for
groups to work without extrernal noise and interference and few visual aide materials.
We consider our good fortune as a very influential factor on the results.

CONTRACTS Although we had our internal contract, it was not necessary to refer to it during the
project since there were no conflicts. As far as the external contract goes, it is always a
necessity. We were fortunate enough to have worked with a sponsor that fulfilled every-
thing in the contract and we believe we also fulfilled our obligations so the contract
remained “in the drawer” for the project duration.

COOPERATION WITH PDS The cooperation has been excellent. Correspondance from us to PDS receives quick
replies. Meetings were productive for both parts and there was never difficulty in
arranging them. Benny and Torben at PDS are excellent partners. They are as engaged
and motivated by the project as the project team. Benny and Torben provided lots of
good feedback and advice. It was a tremendous benefit that they were IT professionals.

COOPERATION WITH
OTHER INTERESTS

• Advisor - has been a pleasure to work with. His gift of overview was often quite
helpful when we needed some “fine tuning” We were happy about the fact that he
was open to our attempt at a customized method, especially when we know what an
OOAD advocate he is. In fact, it seemed that because our project was not quite as
conventional as most others was quite a motivating factor for the advisor.

Evaluation of Method

Project Evaluation 81

• Counter group - The MaRT group had been difficult to get in touch with at first as
they started working later than we did. However, both MaRT and Kenneth Tilsted
put a tremendous effort into the mid-way evaluations. This reinforced our belief in
the benefit of this type of arrangement, although as mentioned earlier, previous
experience has not always provided us with such reinforcement.

Suggestions

Plan at minimum four hours for a review meeting where each group has two hours for a
review of about 40-50 document pages. Allow at least four hours for reading the mate-
rial.

EVALUATION OF INITIAL
RISK LIST

The following are comments on the risks where are evaluation was far off.

• Availability of SQL Server – The degree was set too high, at five. The reason for this
was that at the time of evaluation PDS had not reported back as to the possibility of
using their license. We had not any awareness of SQL Server being available in a
trial version, as it turned out it was from Microsoft.

• Unsuitable development method – Degree was a little too high in consideration of
the amount of research we did and the time we took to evaluate whether or not it was
appropriate.

• Too tight schedule – The degree should have been lower and the weight higher, with
the resultant priority a lower value. In retrospect we can see how accuracy improves
for time estimates due to the shorter iterations and task estimations in the method.

• Hardware/Software failure – This should have had a higher weighting as the effect
such failures can have can be catastrophal as we experienced with the JTrubo JDBC
driver expiration.

New software tools – The priority should have been considerably higher because not
only did we have new tools, but most were new to us. Individually they are not neces-
sarily a major risk, but when using them in combination, the risk grows.

11.3 Evaluation of Method

TESTING In the beginning there were some in the group that had difficulties with understanding
the value of tesing before coding. In retrospect, all doubters became advocates.

Prior to this project, we had very little if any “real” experience with testing. As far as we
were concerned, testing was something you did when you were done with code (if you
had time). It was a definite adjustment of mindset to try to think about writing tests
before code.

What we learned was that writing test before writing code provided several advantages:

• Made us think about the code before we began
• Ensured that we actually applied tests in our project

Evaluation of Method

82 Project Evaluation

• Helped ensure that we had successfully integrated code

PAIR PROGRAMMING This was a big help in our project. We were all quite rusty with Java and one of the
group members had never done server programming. As far as our student project is
concerned we found it invaluable. It can be iritating at times to constantly have another
looking over your shoulder commenting on what you are doing, but it also ensures that
what is being done is thought through.

We get the impression that it is not widely practiced in the real world due to the fact that
it is probably difficult to convince an employer that it actually pays off to pay two peo-
ple to sit in front of one computer. We question how essential this is to the success of an
XP project.

REFACTORING It was definitely interesting to do refactoring. It was a neat experience to actually design
code based on a concrete need. One of the problems with refactoring in XP, however, is
that you do it after/as you code. Since refactoring is taking code that works and making
it better and smarter when needed, when the situation exists that you are pressed for
time, what suffered was the degree to which we did refactoring. It basically takes the
place that testing often takes in other types of projects - “We’ll do that later if we have
time”. This is why we did not do refactoring to the degree that it is possible.

OVERVIEW OF THE
WEAKNESSES IN XP

• Does not explain many alternatives to method ideas

We have obviously come to the conclusion that XP is often idealistic in its ideas. Per-
haps because the method is as young as it is, it lacks ideas to possible alternatives to
their idealistic suggestions. This could be because providing alternatives would mean
the death of XP. All of the sudden XP’s twelve points might boil down to 6 useable ones
and then there is no method left.

• Assumes “extreme” level of customer interaction

When XP does not provide alternativcs, in addition to being quite idealistic about cus-
tomer involvement, seems to make full implementation of the method unlikely. We
were forced to make several adjustments to the original idea of XP, not only on the
grounds that

• No discussion of user interface design

This seemed to be a major weakness of the method. In our opinion this would be an
alternative to making it necessary for the user to write story cards. Creating a quality,
accepted user interface not only provides you with understanding how to represent a
skeleton of the system (necessary to determine iteration 1 features), but also results in an
excellent overview of what features will be needed and what they will need to do. With-
out doing this first, really would have made it difficult to use as much of the method as
we did. With it we were able to go directly to task cards.

• Task cards

Evaluation of Development T ools

Project Evaluation 83

It was difficult for us to see, based on what was provided in the Kent Beck’s book on
XP, the overall value of task cards over story cards. We felt that the additional informa-
tion provided did not add much value for the developer. By writing the task cards in
psuedocode, it gave the developer an excellent start on deciding what things to test, a
better idea of what the task entailed and was a big help in providing more accurate time
estimates.

11.4 Evaluation of Development Tools

WERE THE DEVELOPMENT
TOOLS SUITABLE FOR THE
METHOD?

Two tools in particular - GoLive 5.0 and Forte 3.0 require further comment.

GoLive 5.0

GoLive is an excellent tool for rapid development, which the user interface prototyping
was. It is not so intuitive to use. Icons can be difficult to discern the meaning of. Some
features are puzzling like setting font sizes and table borders. Still it seems like this is a
tool worth working with and learning more about.

Forte 3.0

This IDE can be used for everything it seems. JSP, Servlets, HTML, Java, CORBA,
RMI. You get the picture - this is big. The built in Tomcat server was great working
with after our previous experience with jswdk 1.0.1. Tomcat just runs at the push of the
F6 button - no problem, no special set-up, file placement or anything.

On the downside, the tool seems moody! For no apparent reason one gets a “BROKEN
FILE” error! We do not know what causes it but we believe the solution to get running
again is deleting the class file, the temporary java~ file and then recompiling. However,
just as the problem arose inconsistently, the solution’s effect seems inconsistent as well.
This is a serious problem. If you get a broken file error, you simply cannot work!

All in all, the verdict on Forte is it seems a little too complicated and full of bugs with
the capability of completely bringing development teams to a standstill too often for too
long. There must be a simpler way to work with JSP, Java, a web server and a database.

Suggestions

GoLive is a tool with a wide range of features and time should be alloted for technical
prototyping of up to as much as a week depending on how deeply into the product the
project needs to go.

Find simple tools that have just the functionality needed for the development and if they
work for you, stick with them.

Set aside lots of time for technical prototyping. Maybe run some small projects just for
this purpose as it is necessary to follow along with change. Even though you have some-

Personal Evaluations

84 Project Evaluation

thing that works that should not prevent you from investigating and finding improve-
ments that can be used for your development.

11.5 Personal Evaluations

CARSTEN Before we started the project, our minds were made up on using XP, even though we
knew virtually nothing about it. The name of the method alone was so appealing, that
we had to find out more about it. Discovering a method that had analysis and design
built-in in the coding was an answer to my prayers; being the "natural born program-
mer" I am.

The challenge of using an unprecedented development method proved to be fruitful in
my opinion. Project-wise, we started designing and programming the product much ear-
lier in the project, thus we now have a system that fulfils the requirements stated by the
user organization. The code is, however, far from optimal, as the practice of doing it the
simple way first, often caused dirty code.

It is unfortunate that we did not have the time to do more refactoring. I think that refac-
toring is one of the real strong sides of XP, because this provides an incredible insight of
the code written by others. Compared to just reading the code, this optimization forces
you to really understand the code. Had we had more time to refactor, the code would
also have looked a lot nicer. In conjunction with the notorious tests you write before you
code, you tend to experiment a bit with the code, as running the test quickly punishes
you with a fat red line, if your ideas were wrong!

Communication and cooperation within the group was fine, despite our differences. We
each had our formal and informal roles, and were respected for this.

This is the longest project I have ever been on, and I must admit that I was exhausted at
the end, but it was without a doubt the best semester of the entire education.

HARVEY The onTrack project was a fantastically positive experience. As shown time and again
with projects, they provide the best opportunity to experiment, evaluate, select, make
mistakes and learn an amazing amount. This vastly expands one’s capabilities to work
with the theories, methods and tools. In particular, I enjoyed the great opportunity of
working more with JSP, Java and SQL.

My teammates were as good as they come for working together on a project. Carsten,
“the fastest mouse in the west”, it seems has an innate capability of knowing where to
find tools, what their keyboard shortcuts are and how to work with them, besides being
quite a good programmer. Paul insures that what is done is logical and of a very high
quality. He demands, rightly so, justification and where necessary clarification for what
is stated. Jama has the ability to “see through the smoke when there is a fire”. He res-
cued us from a major setback when nothing seemed to work quite suddenly. By realiz-
ing the need to output exceptions, Jama got the information that our trial version JDBC
driver had expired!

Personal Evaluations

Project Evaluation 85

Everyone actively contributed to discussions, decisions, problem solving, implementing
the code, documentation work and last but not least the joking and clowning. Don’t get
the wrong impression - the lighthearted moments undoubtedly contributed to the
project’s success. And that indeed is what I call this project, a success. We reached our
goals of creating a functioning product to the user’s satisfaction, we experimented with
new methods and tools, we put ourself to the test and we passed. Something else I feel
that truly made the project the success it was and as good an experience as it was, is the
fact we worked with professionals in an IT company that were a pleasure to work with.
Being project manager provided an additional viewpoint for me. It became obvious that
when one is involved both in the project as an active participant and as the manager, the
workload is tremendous, but I feel my role was important and helped keep the entire
project on track.

JAMA The following paragraphs describes shortly my point of view of this report as a process
product and group.

As a report seems an excellent product according to the time frame. It contains the
major sections of the most reports, which are:

• Background

• Evaluation study questions
• Sample, data collection, instrumentation

• Findings
• Conclusions

As a process it was difficult and full of unprecedented activities. There were a great
responsibility of each member at every section. Even though it is called some other
names, the main thing that I’m missing is the phases of traditional system development
method of this school “OOAD”.

As a group work we gained an excellent knowledge on each side horizontally as topics
involved in this project, and vertically as individuals.

Finally I would like to thank my colleagues with their respect of each other and their
great work. In addition I would like to thank Michael Cladius, our advisor, for his bright
and consistent consultations.

PAUL For me this project has been quite a learning experience. I am proud that we were suc-
cessfully able to implement an entirely new method. We were able to achieve all of our
project goals and in the expected time frame (with a little extra work). When things did
go wrong in the project, however, I often thought that the problems could’ve been
solved through increased organization.

Earlier in the report we write that organization might have a bigger impact on the suc-
cessfulness of a project than prior methodological knowledge. At the end of the project,
this is still my contention. Despite the fact that our organizational efforts were one of
the reasons we were able to accomplish our project goals, things would have run

Plass Evaluation

86 Project Evaluation

smoother had we been able to attain an even higher level of organization. This, in my
opinion, was due to the fact that it was a student project.

In the real world, where project managers often are not directly involved in develop-
ment, the project manager can concentrate on just organizational activities. I think that
in a real world forum (and everything else being equal) this transition from one method-
olgy to another would have run smoother.

In our project, our PM not only had managerial duties, but had to be an active member
in the group, which inevitably takes some focus off of organization. If we could have
had one person that did just PM work, things would have run a little more smoothly.
Under the circumstances, no one else I know could have done a better job handling both
tasks.

As far as the process is concerned - I cannot argue with the results. We were able to
accomplish all of our project goals and were more or less able to keep on schedule
(which seems like quite an accomplishment in this industry).

One thing that I personally questioned with the method was how designing the simplest
possible design can conflict with leaving the system in an easily maintainable state.
Solving today’s problems today, as XP says to do, might get software developed
quicker, but what happens when maintenance is required? The simplest design does not
necessarily result in the smartest design. I find it hard to believe that the diagrams that
Kent Beck says to throw out, do not become quite useful here. This however, could be
solved by doing what we did and create digrams at the end of the project using reverse
engineering.

As far as the group itself is concerned, I am very pleasd with the way things worked out
- although not surprised. Each group member brought a “little something” to the group
that the other three did not. When I consider how well we got along with each other
(even under stressful situations), I don’t think that a better overall group could have
been formed from our class.

11.6 Plass Evaluation

Da vi (Plass Data Software A/S) snakkede med 3Con i forsommeren og skulle stille
dem en opgave, stod vi med en teoretisk, og ikke særlig gennemtænkt opgave. Da vi
mødtes med dem havde vi fundet en ny og mere konkret opgave, som vi i PDS gerne
ville have løst. Efter lidt snak blev vi enige om at bruge den nye og mere konkrete
opgave, nemlig at lave et nyt kursusadministrationsprogram. Vi var 2 personer som
havde kontakten til 3Con, Benny Bech, systemudvikler, og Torben Pedersen, service-
konsulent og kursusadministrator.

I vores snak kom vi ind på værktøjer og arbejdsmetoder, bl.a. at PDS normalt benyttede
Borland Delphi og SQL databaser. Vi snakkede om at vi var begyndt at kigge lidt mere
konkret på Extreme Programming, og at vi i virkeligheden havde benyttet flere af prin-
cipperne i forvejen uden at vi vidste at det var XP.

Plass Evaluation

Project Evaluation 87

3Con snakkede om at løse opgaven i Java og SQL-server ved brug af XP. Brugen af XP
anbefalede vi at de skulle genoverveje, da der ellers ville være for mange nye teknolo-
gier at lære i forbindelse med dette projekt, samt at vi (PDS) ikke ville have nok tid til
det.

Undervejs i projektet havde de også skruet ned for ambitionen omkring XP, men altid
meget samarbejdsvillige. Vi havde mange spændende diskussioner om brugerinterface,
bl.a. hvor vigtigt det er at systemet skulle ligne noget andet man kendte, for ellers
virkede systemet uoverskueligt og uforudsigeligt. Vi havde også mange sammen-
ligninger mellem hvordan tingene kørte i dette projekt og hvordan det kørte i et normalt
PDS projekt. Vi brugte meget tid på at forklare hvordan vores forretningsgange er, i
forbindelse med kursusadministration, hvordan vi gør i dag, og hvordan vi ønskede at
gøre fremover. 3Con forstod hvad vi ville have og kunne derfra prioritere de forskellige
dele af programmet. 3Con spurgte os om hvilke teknologier vi benyttede, til web-serv-
erløsninger, vi svarede at vi benyttede ASP, og selvom vi benyttede anden teknologi
end 3Con som ville bruge JSP, valgte de at fortsætte med JSP, som de kendte. Klogt
valg, da der ellers ville komme flere usikkerhedsmomenter ind i projektet.

Når vi havde ændringsforslag, sikrede 3Con sig at de havde forstået ideen, også selvom
mange af forslagene ikke ville kunne implementeres pga. manglende tid. Men så kendte
de ønsket og kunne sikre, at de ikke lavede noget som besværliggjorde implementering
af ønsket senere.

Projektet gik som det går med de fleste projekter, nemlig meget fremdrift i starten, fordi
starten er primært visuel, og senere i projektet er det implementering af funktionalitet
samt fejlhåndtering. Vi havde dog lidt svært ved at vide niveauet, fordi vi ikke havde
haft samarbejde med datamatikere før.

3Con er gode til at opfange ønsker til funktionalitet og få dem implementeret, men man-
gler lidt erfaring omkring test, så der ikke vi ikke skal finde småfejl når vi tester.

Systemet der er leveret er ikke et helt færdigt system til brug i produktion - det har nogle
fejl, og mangler lidt funktionalitet. Havde systemet været færdigt, ville det uden tvivl
have afløst vores nuværende Lotus Approach løsning. Det nye system er langt nemmere
at bruge, da det er et program lavet til dette formål og ikke et tilrettet databaseprodukt.
Det er også en meget stor fordel at data lagres i en Microsoft SQL-Server. Disse data
kan vi så bruge i vores andre systemer, som f.eks. vores telefonsystem.

Alt i alt mener vi det samlede projektforløb er gået godt, og vi har fået en meget bedre
ide om hvordan et sådant kursusadministrationsprogram skal laves, og hvad det skal
kunne.

Tak for et godt iderigt, konstruktivt og udviklende samarbejde, samt for mange gode
timer.

Benny Bech og Torben Pedersen

Plass Data Software A/S

Problem Description Answers

88 Conclusion

12.0 Conclusion

MISSION ACCOMPLISHED Add thing that I’ve written earlier in the semester.

The following are the conclusions we make based on our initial questions and a final
overall project conclusion.

12.1 Problem Description Answers

1. How important is the method for software development?

The question is extremely broad. The first thing to consider is what is the expected out-
come of the process - a running system, lots of documentation, a prototype or some
combination. Also it is necessary to consider the nature of the project with questions
such as: Will it run over a long period of time, how many people are involved, how big
a system is being developed.

What we have experienced is the result of using our method in comparison to the Lars
Mathiassen method, the one we are familiar with, is that the result is not exactly the
same, i.e. Lars Mathiassen´s method results in a great deal of documentation which can
be useful when doing inevitable maintainence, whereas XP does not.

2. Can we advocate evolutionary systems development with prototyping? We will con-
centrate on a different approach to systems development with accent on an Evolu-
tionary Development model and Prototyping as a means of producing products
faster while satisfying actual user requirements, as compared to more formal meth-
ods used previously during our education.

Evolutionary development provides the benefit of having a completed and approved
product faster, on which further development is possible. The process was simplified by
having the total development broken down into segments, of which an overview was
possible as compared to needing total comprehension of the complete system. The focus
of each iteration is placed 100% on that iteration,s goals and this makes planning and
goal setting less complicated but more work.

3. How will we approach intranet user interface design as it falls outside our experi-
ence?

We used evolutionary prototyping updating the user interface according to user feed-
back. It paid off to make three versions of the user interface. We got fast results and sat-
isfied the user’s requirements on the interface.

Problem Description Answers

Conclusion 89

4. Initial requirements will be gathered traditionally using interview, studying original
documents and forms, and observing a user. But what about requirements, which
surface at a later phase of the project? How do you manage this?

XP handles changing requirements by reevaluating at the beginning of each iteration
what unimplemented features have the highest priority including any new requirements
that arise. Our experience with the method verifies this claim, for example presenting
participant history in the user interface was not implemented because other features
arose and were given a higher priority. In a real life XP project, this would have been
reevaluated in a later iteration.

5. Have we fulfilled PDS’ requirements providing them with the desired outcome of
the project?

Overall, PDS was content with the outcome of the project. They expressed that 3Con
(the group) is good at listening, comprehending and transforming the requirements into
the desired features. They stated that if we had time to finish the product, it would have
replaced their current Lotus Approach system. Because our system is a specialized
product versus the adopted off-the-shelf solution, it makes it a lot easier to use. As it
stands, PDS think they have a much better idea of what the system should be able to do
and how to do it.

6. How do you know if what you have done works? What means are there for testing
software under development and evaluating the results?

We have learned about the value of testing before coding. First of all, it ensures that you
do testing, it helps you think about the code before it is written. We consider automated
unit testing a necessary step when you are intergrating code from multiple developers.
You know you have successfully integrated the code when you can run the tests and
they pass.

Another thing we learned, however, is that tests only produce results for what actually is
tested. We relied too heavily on the tests that we had. Successfully run tests only tell
you that what you have tested for will run, not that all of your program functionality will
run!

Kent Beck states you should not test the trivial things, but fails to elaborate what trivial
means. Our experience is that you find out the hard way what is not trivial. Therefore,
we did not write tests for things that perhaps should have been tested. It is at the point of
integration when what is trivial or not becomes apparent.

Finally, we point out that automated testing saves lots of time in the long run. The diffi-
culty is realizing this in the short term when it seems very time consuming and requires
a change of mindset and working practices.

7. Printing documents viewed in the browser from Microsoft Word will be incorpo-
rated into the solution we produce. What problems does this present?

What seemed to be a major concern at the outset of the project, both for PDS and the
developers turned out to be a simpler question to answer. It is done simply using
HTML, a browser and dynamic data from the database.

Problem Description Answers

90 Conclusion

However, we did not answer the question in full. We were unable to create functionality
to print multiple documents in a batch. An unanswered question is, is it possible to cre-
ate a page break when printing from the browser?

8. Is XP a new method worth delving deeper into and practicing in other projects? We
intend to investigate, evaluate and select elements of the method we find applicable
for our project and based on our experiences relate how we use XP, what was good
and what we did not like about it.

In addition to the critique given in the chapter entitled Evaluation, XP is is not a method
for beginners. XP assumes that one has previous experience with system development.
As previously stated, in our section on the selection of the method, we conclude that
specific methodological knowledge is not of utmost importance, however, general
knowledge about the traditional phases of system development is a prerequisite to suc-
cessfully using XP.

Thanks to our previous teaching on Lars Mathiassen’s method, we felt we were able to
tackle XP, which has vaguely defined phases. Had our education started with XP it
would have been extremely difficult to do an XP project.

For all of the “bad press” XP has received both inside and outside of this report, XP has
many positive aspects.

• short iterations – increases degree of developer/ user interaction, easier to plan for
and get an overview of two weeks rather than two months

• task estimation – breaking work up into smaller portions helps you monitor the pro-
cess

• unit testing – makes you think about code in advance, automatizing tests eases test
of entire program,

• flexible to new requirements - lessens risk of costly changes late in the develop-
ment process

• user/developer interaction - could be very beneficial if attainable

Overall project conclusion

Conclusion 91

12.2 Overall project conclusion

During this project we wanted to do things that we hadn’t done before. We wanted to
push ourselves. We wanted to know what life was like on the other side of the fence.

Our projects in prior semesters, although abundant with learning, lacked things like,
having runnable tests, what having user accepted code entailed, what it was like to start
with user interface design, what it was like to go from A to Z. It was time to be bold,
time to look at things from a new perspective.

In the beginning we were unsure of how implementing a method, primarily comprised
of XP practices, would turn out. Working with XP practices was a definite adjustment
for a group of “Mathiassenites”. In retrospect, we are quite happy with the choice and
the result, although it was not always easy.

XP is still in a young phase of its life span. Some of its principles are idealistic and
unclear. Still, given its benefits and some fine tuning of its weaknesses, we find that XP
has alot of potential. It is difficult to say whether or not using XP is the reason we were
able to accomplish our goals, but it definitely was an integral part of our overall method
success.

Overall project conclusion

92 References

13.0 References

BIBLIOGRAPHY 1. Andersen, Niels Erik et al. Professional Systems Development - experiences, ideas
and action. Teknisk Forlag. 1986. Translated to English, 1999. Planning and control-
ling systems development projects.

2. Arthur, Lowell J. Rapid Evolutionary Development - Requirements, Prototyping and
Software Creation. John Wiley & Sons. 1992. Why and how of evolutionary systems
development. ISBN 0471536334.

3. Biering-Soerensen, Stephen et al.. Haandbog i Strukteret Program Udvikling.
Teknisk Forlag. 1991. Older book, but still a much relevant information on improv-
ing software development, in particular using SPD, structured program develop-
ment.

4. Connolly, Thomas et al. Database Systems - a practical approach to design, imple-
menation and management. Addison-Wesley. 1999. Everything on databases -
rdbms, odbms, distributed, sql, web, datamining, warehousing and network data.
Uses a running case study.

5. Delaney, Kalen. Inside SQL Server2000. Microsoft Press. 2001. THE authoritative
SQL Server2000 book. ISBN 0-7356-0998

6. Furseth, Inger and Everett, E.L..Opgaveskrivning - hvordan kommer jeg i gang - og
bliver færdig? Translated from Norwegian by Ole Thornye. Preparing for and writ-
ing a final thesis.

7. Gundelach, Peter. Rapportskrivning. Gyldendal. 1984. Practical advice on report
writing.

8. Hall, Marty. Core Servlets and JavaServer Pages. Prentice Hall. 2000. Coverage of
servlets version 2.2 and JSP version 1.1.

9. Riis, Jens O.. Grundbog i Projektledelse, Forlaget Promet. 1996. Concerns establish-
ing, structuring, controlling, evaluating project management.

10. Shneiderman, Ben. Designing the User Interface - Strategies for effective Human-
Computer Interaction. 3rd Edition. Addison-Wesley, 1998. For designers, managers
and evaluators of interactive systems on designing, implementing, managing, main-
taining, training and refining the user interface of interactive systems.

11. Sommerville, Ian. Software Engineering, Addison-Wesley, 2001. 6th edition. Sys-
tem engineering "bible". ISBN 020139815X.

12. Viera, Robert. Professional SQL Server 7.0 Programming, Wrox Press. 1999.
Developer oriented book including MS’s Transact SQL, database design, migrating
data, data distribution, querying

 NOTE 1. Børjesson, Anders et al. Projekt Håndbogen for Datamatiker uddannelsen i Rosk-
ilde. 2001. Unpublished. Roskilde Handelsskole, Datamatiker skolen. Test edition -
advice on project work and report writing for datamatician students.

2. Birch, Peter. Råd og tips - hovedopgaven på datamatikeruddannelsen. Prosa 2000.
Can request from Prosa at http://www.prosa.dk.

Overall project conclusion

References 93

3. Fournier, Michael. Vejledning i rapportskrivning. Prosa 2000. Can request from
Prosa at http://www.prosa.dk.

WEBOGRAPHY 1. www.extremeprogramming.org
2. www.junit.org

3. www.mssqlserver.com/faq
4. www.serversidescripting.com

5. java.sun.com
6. www.sun.com/forte/ffj

7. www.newatlanta.com/support/jturbo.jsp

REPORTS 1. Jensen, Mette et al. Kostrådgivning via Internet. 2001. Unpublished. Roskilde Han-
delsskole, Datamatiker skolen. E-business and a website.

