Table of contents

71. Introduction

71.1. The Company

71.2. The purpose of this document

71.3. The Structure of the report

82. Inception

82.1. Problem definition

82.1.1. Introduction

82.1.2. Systematic ® Pc Pack

82.1.3. Microsoft ® Navision C5

82.1.4. Web Shop

92.1.5. The problem

91.2. Project Scope

121.3. Product Vision

121.4. Methodology choice

121.4.1. Why to choose iterative process model?

121.4.2. Iterative software engineering process

131.4.3. Methodology

141.4.3.1. Roles

151.4.3.2. Disciplines and workflows

201.4.4. Conclusion to the methodology choice

201.5. Planning and reporting the process activities

211.5.1. Reporting activity and monitoring the process

221.5.2 Planning activity

221.6. Business modeling [process]

231.6.1. Why to perform business modeling?

231.7. Business modeling [product]

241.7.1. Company profile and structural analysis

241.7.2. External/internal and SWOT analysis

251.8. Conclusion to business modeling

251.9. Requirements capturing [process]

251.9.1. Use Case Modeling [process]

261.9.2. Use Case Modeling [product]

281.9.3. Non-functional requirements capturing [product]

291.10. Conclusion to requirements capturing

291.11. Planning the next iteration

301.12. Conclusion to inception

312. ELABORATION

312.1. Managing the process

312.2. Requirements

312.2.1. The objective of revising requirements [process]

322.2.2. Functional requirements [product]

342.2.3. Non-functional requirements [process]

342.2.4. Refinements to Supplementary Specification [product]

372.2.5. Conclusion on non-functional requirements

382.2.6. Conclusion to requirements

382.3. Business case [process]

382.4. Business case [product]

382.4.1 Finding conceptual classes

412.5. Conclusion to Business modeling

422.6. Refining the vision [process]

422.7. Refining the vision [product]

432.8. Revisiting the risk list [process]

442.9. Revisiting the risk list [product]

452.10. Defining a Candidate Architecture [Process]

452.11. Defining Candidate Architecture [Product]

462.11.1 Software Architecture

482.11.1.1 Architectural goals and constrains

482.12. Conclusion to Defining Software Architecture

482.13. Prototyping

502.13.1. Developing the prototype

502.13.1.1. Architecture of the prototype

502.13.1.2. Prototype architectural layers

552.13.2. Prototype Testing

562.13.3.1. Testing results

572.13.3. Conclusion to the Prototyping

572.14. Process monitoring and planning activities

572.14.1. Monitoring the process

582.14.2. Planning next iteration

593. Construction

593.1. Managing the process

614. Construction Iteration I

614.1. Planning the iteration

614.1.1. Evaluation criteria

614.2. Requirements [process]

624.3. Supplementary requirements [product]

634.4. Functional requirements [product]

634.4.1. Use-case changes for Main Success Scenario

644.4.2. Conclusion to requirements

644.5. Architecture developing

644.5.1. General system architecture

654.5.1.1. ASP.NET application structure

664.5.1.2. System architecture adaptation

664.5.1.3 Conclusion to general system architecture

674.5.2. Conclusion to architecture development

674.6. Extending the prototype: Use-case implementation [process]

674.7. Extending the prototype: Use-case implementation [product]

684.7.1. Constructing synchronization components

684.7.1.1. Constructing the synchronization component [PcPackWriter]

724.7.1.2. Constructing the Synchronization component [C5Writer]

724.7.1.3. Constructing the Management component [KIS Admin]

734.7.1.4. Constructing KIS database

754.8. Component testing

754.8.1. KIS Admin component testing

764.8.2. PcPackWriter component testing

764.8.3. Conclusion to component testing

764.9. Component integration

774.10. Process monitoring and planning

774.10.1. Process monitoring

774.10.2. Planning the next iteration

774.11. Conclusion to Construction Iteration I

785. Construction Iteration II

785.1. Planning the iteration

785.1.1. Evaluation criteria

795.2. Internal component integration [KIS Admin and PcPackWriter]

795.2.1. Indicating internal components integrity

805.2.2. Component integration

815.3. Extending the prototype: Use-case implementation [process]

815.4. Extending the prototype: Use-case implementation [product]

825.4.1. Constructing the synchronization components

825.4.1.1 Constructing synchronization component [C5Writer]

935.5. Internal component integration [KIS Admin and C5Writer]

955.6. Component testing

955.7. Process monitoring and planning

955.7.1. Monitoring the process

965.7.2. Planning next iteration

965.8. Conclusion to Construction Iteration II

976. Construction Iteration III

976.1. Planning the iteration

986.1.1. Evaluation criteria

986.2. Functional requirements [process]

996.2.1. Functional requirements [product]

996.2.1.1. Use-case changes for Main Success Scenario

1006.2.2. Conclusion to functional requirements

1006.3. Extending the prototype: Use-case implementation [process]

1006.4. Extending the prototype: Use-case implementation [product]

1016.4.1. Constructing the system KIS shop component

1026.4.1.1. KIS shop structure

1036.5. KIS shop component testing

1036.6. Components integration

1046.7. Process monitoring and planning

1046.7.1. Monitoring the process

1046.7.2. Planning the next iteration

1046.8. Conclusion to Construction Iteration III

1057. Construction Iteration IV

1057.1. Planning the iteration

1057.2. Requirements [process]

1057.2.1. Functional requirements [product]

1057.2.1.1. Use-case changes for Main Success Scenario

1077.2.2. Conclusion to requirements

1077.3. Extending the prototype: Use-case implementation [process]

1087.4. Extending the prototype: Use-case implementation [product]

1087.4.1. Developing the KIS Shop component

1097.4.1.1. Discard “shopping cart “registration

1097.4.1.2. Developing Order data insertion to the KIS database

1107.4.1.3. Developing user interface

1117.5. KIS Shop Component testing

1117.6. Component integration activity

1127.7. Process monitoring and planning

1127.7.1. Monitoring the process

1127.7.2. Planning next iteration

1127.8. Conclusion to Construction Iteration IV

1137.9. Conclusion to Construction

1148. Transition

1148.1. Planning the iteration

1148.1.1. Methodology changes for Transition phase

1158.1.2. Iteration evaluation criteria

1168.2. Final system integration

116Integrity aspects

1178.3. Final integration testing

1188.4. Deployment strategy

1198.5. Monitoring the process

1198.6. Conclusion to Transition phase

1209. Project Conclusion

1209.1. Experience

1209.1.1. Teamwork

1219.1.2. System development

1229.1.3. Project management

1229.1.4. Researching

1229.1.5. Experience in problem solving

1239.2. Product Future Considerations

1239.2.1. Developing the current version of the product

1249.2.2. Developing the product by applying alternative system synchronization solutions

125APPENDIX A: Project plan

137APPENDIX B: Project Establishment

147APPENDIX C: Project Methodology

156APPENDIX D: Inception iteration Assessment

162APPENDIX E: Elaboration iteration Assessment

169APPENDIX F: Construction Iteration I Assessment

177APPENDIX G: Construction Iteration II Assessment

185APPENDIX H: Construction Iteration III Assessment

192APPENDIX I: Construction Iteration IV Assessment

198APPENDIX J: Transition Iteration Assessment

203APPENDIX K: Business model

216APPENDIX L: Use-case Model

227APPENDIX M: Supplementary Specification

234APPENDIX N: Product Vision

248APPENDIX O: Software Architecture Document

284APPENDIX P: ODBC driver for Microsoft® Navision C5 Development solution

316APPENDIX Q: Product Pre-release Description

322APPENDIX R: Risk list

329APPENDIX T: Testing Procedure

335APPENDIX S: Prototype test 1.0

340APPENDIX U: KIS Admin Test 1.0

345APPENDIX V: KIS PCPack Writer Test 1.0

350APPENDIX W: KIS Admin Test 1.1

354APPENDIX X: KIS Admin Test 1.2

359APPENDIX Y: C5 ODBC driver test 1.0

365APPENDIX Z: C5 ODBC driver test 1.1

369APPENDIX A1: KIS Shop test 1.0

377APPENDIX A2: KIS Shop test 1.1

385APPENDIX A3: Prototype test 2.0

404APPENDIX A4: User Manual (How to import file to C5)

411APPENDIX A5: codes for Elaboration iteration

431APPENDIX A6: codes for Construction iteration I

475APPENDIX A7: codes for Construction iteration II

509APPENDIX A8: codes for Construction iteration III

528APPENDIX A9: codes for Construction iteration IV

1. Introduction

This document is a report for the 5th semester project, produced by the Datamatician students of Erhvervsakadamiet Roskilde between of 25th August and 3rd November.
1.1. The Company

“Keycard” (hereinafter also called the Company) is a sales company, the supply of which consists mostly of the equipment, used for electronic lock systems. As part of the sales is performed in the physical shop of the company, the rest of the business process is executed by selling products online.

1.2. The purpose of this document

This report provides the evolution process of the IT-system, which is used by the company now and which is going to be developed according to the needs of the company. Our project team is going to build a module, which will be responsible for the extending existing system functionality – it will synchronize the components of the existing system. So, the IT-system we are going to develop, we have named KIS – Keycard Integration System.
1.3. The Structure of the report

Considering the iterative system development process model, more precisely Rational Unified Process (RUP), which was taken as the main guideline through the development process, this document is organized to follow the major phases of RUP, which are:

Inception

Elaboration

Construction

Transition

The report consists of four major parts according to the phases of the developing process; the main goal of these parts are to report the activities performed during each phase and any initialization, changes or conclusion of any document produced through the system development process.

Any documents, produced through the development process of this project, are included in the Appendix.

2. Inception

Inception phase as defined by RUP is an initial phase in the software engineering process. All the activities performed through this phase are initializing the project; at this stage of the process, our task is to decide if the project is worth doing. We are going to determine the resources needed and formulate the scope of the project.

2.1. Problem definition

2.1.1. Introduction

Before defining the problem, we are going to give a general understanding of the existing system, which is used in the Company now. In the next sections, short descriptions of existing system’s components are presented.

2.1.2. Systematic ® Pc Pack

As the company’s business process is mostly based on the on-line sales, Post Danmark handles the product delivery to the customers. Systematic ® Pc Pack (hereinafter Pc Pack) is an application, which gives a print out packet “ready to go” labels with all information, necessary to deliver the product to the customer and payment of expenses to Post Danmark. “PcPack” is a component of the existing system, used in the company now.

2.1.3. Microsoft ® Navision C5

Microsoft ® Navision C5 (hereinafter called C5) is an accounting system, used for storing the information about the orders and keeping track of them. Moreover, the application supports the service of processing the information for “Told og Skat”, besides many other services like payroll, customer services, sale & purchasing, etc. C5 is also a component of the existing system supported by its own database.

2.1.4. Web Shop

The “Web shop” is a web application, supporting the shopping on-line service, offered by the company – it presents available products and enables order creation by the customers. Web shop is also a component of the existing system – this application is the start point of data incoming from the customers. The customers make orders through the web shop and the orders are registered in the system.

2.1.5. The problem

Having the components of existing system described in short and according to the Company’s needs, we are stating the fact, that the company has to cope with obstacle mostly attributed to data flow duplication. Pc Pack and C5 are totally different systems, but almost the same information of the orders are supposed to be supplied to both of them; the demand of synchronizing data flow is obvious in this case.

The duplication of dataflow gives an ineffective work process with the consequent loss of time and possibility of undesirable changes in data. The orders’ information is manually typed into C5 and Pc Pack, when obtained from the Web shop.

The main goal our group is going to achieve through the period of this project is to solve the above-mentioned problem the company has. Our task is to analyze the dataflow to Pc Pack and C5 and find a possible solution for synchronizing these existing subsystems.

Having defined the problem that the company has, we are going to answer the following questions during the period of this project:

“According to the theoretical and practical knowledge, obtained during the Datamatician course, is it possible to develop an IT- system, which would fulfill the requirements of the real company? What problems are met and how the choice of methodology and developing techniques impact the solutions for them?“

1.2. Project Scope

One of the activities in the inception phase is to define project scope. Project scope defines, what the project is supposed to accomplish, that is the boundary of the project.

The boundary of the project depends on the focus our project group is taking – as the problem definition for the project is quite abstract, project scope defining is the activity which concretizes the problem definition and describes the area of interest in more strict bounds. In this case, these bounds depend mostly on the requirements of the company and the knowledge the members of group have obtained. While trying to combine these objectives and taking the most appropriate way of choosing a methodology, the scope of the project may be determined.

The system to be developed by our group depends on the existing system in the company. Our goal is to produce a module, which would be responsible for synchronizing the data flow between the two different systems – Pc Pack and C5. Also, a web shop as a subsystem, responsible for being the primary data input application, will be developed as a separate application and included in the system.

We are going to explain the scope of this project with the help of detailed sequence of the activities, performed to reach the goal, on which the business process of the Company is based. That is, delivering a particular product to a particular customer. As mentioned before, the transaction from its “birth” in a customer mind until the real product is delivered to him/her, has to go through the following steps:

1. The customer thinks of his/her need for some products, that are marketed by the Keycard.

2. The customer has two options to place his/her orders:

2.a The customer visits Keycard’s web-shop and makes an order for the products selected and types-in all necessary information.

2.b. The customer calls “the Customer Service” of Keycard, and talks to a person in charge, describing products he/she wants and all the information needed for product delivery. The person in charge then visits the web-shop on his/her own and makes an order on behalf of the customer.

3. Person in charge types-in all the information of the order into C5. He/she handles the order after one of his periodical checks of the web-shop for the already-made orders.

4. Person in charge types-in a part of the information about the order to Pc Pack application. This part of information is needed to generate and print out the package label, which is needed by Post Denmark to deliver the packet to the customer.

5. The invoice is produced by C5 and is printed out.

6. The package label produced by Pc Pack is printed out.

7. Person in charge packs the product.

8. Person in charge mounts the package label and puts the invoice inside the packet . steps.

9. Post Danmark delivers the packet to the customer.All these steps are seen in the rich picture (figure 1), which was drawn according to the sequence of earlier mentioned steps.

[image: image1.wmf]Packaging the

product

International Sales

Shipping by

Post Denmark

Customer Service

Customer

Ordering Product by phone

Stamping the

Package with

the package label

.

The invoice is put

 inside the packet

.

Web

-

shop

Ordering Products on line

printer

Printing task

:

invoice

C

5

Accounting

System

Registering

the order

Pc Pack

(

Post Danmark

Application

)

Registering

 the order

Printing task

:

Package label

invoice

Package

label

1

2

a

2

b

3

4

5

6

7

8

9

[image: image100.wmf]-

generateFileName

() :

void

+

writeToPcPack

() :

void

-

order

:

Object

-

fileName

:

string

(

idl

)

-

filePath

PcPackWriter

Figure 1. The scope

As it is seen from the sequence of the steps and the picture, there are two possibilities to make a sales order – one way is to visit the Web shop, select the required product and order it, the other way is to call the Customer Service and order the product by phone. In this case, the Custom Service operator visits the shop himself and makes the order.

The large frame in the rich picture visually bounds the scope of this project – we are going to develop or, in other words, add some advanced functionalities to the existing system

In addition, we marked some area in small frame in the picture – according to the company’s needs, we have observed a high imperfection in system functionality in this area, that means, too much of manual typing work is done to register the sales order into C5 and Pc Pack. So considering the small frame of the rich picture as the main target of this project, we are going to solve the synchronization problem of the system components.

1.3. Product Vision

As one of the most important artifacts in the Inception phase according to RUP is vision formulating, with having quite abstract understanding of the company’s needs for the system, at the very beginning of the development process we have formulated the vision of the system as follows:

“The vision of the company is a system, which decreases the manual work as much as possible. That is, the system automatically takes care of incoming order, made by a customer through the Web shop; it gives an ability to control further execution of a particular order, with keeping track of all necessary information for “Told og Skat” and also prints all necessary labels and invoices for deliverable products. “

As the vision is formulated mostly in the word of the Company and seems simple enough, this statement will be the main guide while achieving the goal of this project.

1.4. Methodology choice

1.4.1. Why to choose iterative process model?

At the initial planning stage of the project, our group members decided to use iterative process model as the main guideline for this project. Most of the reasoning for such a decision come from our experience in the last semesters’ projects and our interest in obtaining some new knowledge and skills.

As the members of the group have some experience in the projects, which were guided by traditional Waterfall process model, difficulties were encountered – while taking the Waterfall model as the guideline for the system developing process, it necessitated lots of refinements for the analysis, design and implementation, even if the iteration-driven process was not attempted. Quite a large amount of problems were encountered because of lack of experience in the project developing process and high uncertainty in development activities, as a result it was really difficult to track the process bounded to the sequential order of the process stages.

1.4.2. Iterative software engineering process

The Unified Process (UP) is a software engineering process, which is a combination of commonly accepted best practices and risk driven development – the result gives a well-documented model, based on the iterative lifecycle. As an instance of iterative process, Unified Process has lots of benefits against other development models and most of these benefits are based on enlargement and refinement of the system through multiple iterations.

As UP is quite abstract process model, the RUP (Rational Unified Process), which is a detailed refinement of UP and is a comprehensive UML and OO focused methodology, now is being widely adapted – these are the main reasons why we are going to follow RUP as the methodology for this project.

The best overview of RUP process is represented by the “two dimensional” picture (figure 2) - the process is defined by a set of workflows, and the level of focus of any particular workflow is framing a particular phase. That corresponds to the basis of RUP as being an iterative risk-driven process – all the workflows are performed through all of the phases and iterations depending on changes of requirements and mitigation of risks.

[image: image2.png]Workflows

Business Modeling
Requirements
Analysis & Design

Implementation
Test

Deployment
configration
&Change Mgmt
Project Management
Environmant

Iterations

Figure 2. RUP structure along 2 dimensions

1.4.3. Methodology

As RUP is a result of creating a software engineering process, based on repeatable methodology for achieving high quality results, one of the benefits while retrieving these goals is possibility of adaptation and tailoring the methods for a specific, particular situation. RUP allows a level of flexibility in selecting the artifacts needed and the level of iterating, according to the particular case. So, we are about to present the detailed description of our methodology, which is based on RUP – that means, we are going to defined the roles, activities and artifacts, considering the project scope and determined resources.

Roles. A role is responsible to produce a particular artifact – the responsible role will create an artifact and ensure that any changes made by other roles do not break the artifact. One role could be performed by one person or a group of people.

Activities. An activity is a unit of work that an individual in that role may be asked to perform. The activity has a clear purpose, usually expressed in terms of initiating, updating or finalizing some artifacts.

Artifacts. An artifact is a piece of information that is produced, modified, or used by a process. Artifacts are the tangible products of the project, the things the project produces or uses while working towards the final product. Artifacts are used as input by workers to perform an activity, and are the result or output of such activities.

Disciplines. A discipline in RUP is the collection of activities (and associated concepts) producing a particular set of artifacts, which represents some important aspect or concern in software development.

1.4.3.1. Roles

RUP defines a total of 30 roles. We will consider the fact that our project team consists only of three members and the duration of the project is quite short. In this case, a number of RUP roles were selected
 and the most significant responsibility of each role was defined.

We are going to define our roles while following the RUP small project roadmap
. The defined RUP roles are going to be allocated in the sets, which describe the exact roles of the work process of this project (table 1).

	Our Role name
	RUP role

	Project manager
	Project manager

Process engineer

Deployment manager

Requirements reviewer

Architecture reviewer

	Analyst
	System analyst

Business process analyst

Use-case specifier

Requirements specifier

	Chief programmer
	System analyst

Requirements specifier

User Interface designer

Software architect

Design reviewer

Process engineer

Configuration manager

Change control manager

Programmer

	Programmer
	Designer

Implementer

Code reviewer

Integrator

Test Designer

Tester

	Administrative assistant
	Responsible for:

maintaing the project web site

maintaining the project ftp server for back-ups

performing back-up operation

Table 1. Project roles

1.4.3.2. Disciplines and workflows

We are going to represent our methodology by explaining each phase, by defining activities we are going to perform, artifacts that are related to each phase and evaluation criteria and the satisfaction level to which it must be measured at the end of each phase or iteration.

Inception

	Phase characteristics
	Description

	Phase description
	Inception is a start phase of the project. During this phase, the scope of the project must be defined. The most important activities at this phase are focusing on understanding business case of the project, also addressing important risks and mitigation for them.

	Activities
	Formulate the scope of the project. During this activity, the members of the group try to capture the most important needs of the company, formulate acceptance criteria for the product and gather initial requirements. The vision is a key artifact – it tells what the system will be.

Plan and prepare the business case. With the vision as a guide, the group members define business context, perform some SWOT analysis, domain model, risk assessment and mitigation strategy, success criteria, estimate the resources needed.

Prepare the project environment. This activity includes defining methodology choice and working practices, naming and documentation conventions.

	Artifacts
	An approved business case

Vision

Risk List

Preliminary Project plan

Initial use-case model (10 %)

A plan for the initial elaboration iteration

	Evaluation criteria
	Stakeholder concurrence on scope definition and cost/schedule estimates.

Requirements understanding according to primary use-cases.

Credibility of the cost/schedule estimates, priorities, risks, and development process.

Table 2. Inception phase

As Inception phase (table 2) is an initial phase according to RUP software engineering process, the activities, artifacts and measurement statements for iteration evaluation criteria are mostly general for any particular project – Inception phase mostly concerns about the methods to initiate the project. Therefore, the methods we have chosen to this phase will help us to make the first move in the development process - by bounding the scope of the project, formulating the vision, observing possible risks, defining the methodology and developing a preliminary project plan, we will set ourselves in the direction of leading the further development process to the goals we are supposed to achieve. Also, we are going to make an investigation of the company business process to gather a deeper understanding of the company’s needs – by doing that, we will make some SWOT analysis and internal/external environment study of the company.

Elaboration

	Phase characteristics
	Description

	Phase description
	The goal of the Elaboration phase is to baseline the system architecture. The architecture evolves out of a consideration of the requirements and risks, which are the most significant for the architecture.

	Activities
	Capturing other requirements. Supplementary (non-functional) and any requirements that are not associated with a specific use case are captured – that includes system usability, security, reliability (recoverability), performance, supportability (adaptability, configurability). Also, these requirements include an amount of constraints; related to the system – implementation constraints, purchased components, free open source constraints, interfaces and legal issues.

Revisit risk list. Risk list is revisited, expanded with the purpose of eliminating the highest risk elements of the project.

Revisit business case. Business modeling activity also may be revisited.
Refine the vision. According to the revisiting of the formulated requirements, the vision also may be needed to refine.
Define, validate and baseline the architecture. Defining of the candidate architecture, with understanding of the whole system – its scope, major functionality and non-functional requirements. This activity also includes prototyping – building of evolutionary prototype and testing.
Create and baseline iteration plans for the Construction phase. The baseline iteration plans for the construction phase is created – use-cases are prioritized, also scenarios and technical efforts are assigned to the iterations.

	Artifacts
	Use-case model (80%)

Revisited Vision

Supplementary requirements specification

Software architecture document (SAD)

Revisited risk list

Revisited business case

Glossary

Possible architectural prototype

Iteration Plans for Construction

	Evaluation criteria
	Is the vision of the product stable?

Is the architecture stable?

Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible basis of estimates?

Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture?

Table 3. Elaboration phase

Considering the main goal of the Elaboration phase (table 3), which is validating the candidate system architecture according to the formulated vision, we are going to perform activities, which will help us with this task. We feel that the statement “synchronizing existing system components”, used in our project problem definition, is quite unclear for us, so our team members are going to give much more attention in defining the architecture. As RUP stresses, that the mitigation of high risks is the main conduct for making an architectural solution, we are considering the non-functional requirements as an especially important part as well, because this part will impact our architectural decisions by constrains and possibilities as much as available risks.

In addition, because of the same uncertainty about the synchronization problem, we are going to develop a technical prototype with the purpose of obtaining better understanding of the technical system synchronization approach.

The next iteration planning activity is going to be performed according to the outcome results of the defining architecture, prototyping and refining use-case model – we will prepare ourselves for the construction phase.

Construction

	Phase characteristics
	Description

	Phase description
	The Construction phase is a manufacturing process, where managing resources and controlling operations are emphasized to optimize costs, schedules and quality.

	Activities
	Manage resources and control process. Managing the resources and process controlling is significant at the construction phase – it is important, that work is progressing according to the schedule, also the workload does not exceed the capacity.

Develop and test components. Components, satisfying requirements are built, tested and integrated. Refactoring also could be performed.

Assess iteration. Every iteration is measured to the specific iteration criteria

	Artifacts
	Components (The software product integrated on the adequate platforms)

The user manuals

The description of current release iteration plan for the transition phase

	Evaluation criteria

(for whole phase)
	Is this product release stable and mature enough to be deployed in the user community?

Are all stakeholders ready for the transition into the user community?

Table 4. Construction phase

The RUP software engineering process is most “constructive” in the Construction phase (table 4) – even if the view of activities described in the methodology looks like being too much abstract with little binding to our particular case, this phase and even a particular iteration of it will be specific – according to the detailed construction phase iteration schedule, developed in the phase before, activities of every iteration, considering different factors of functionality, will be performed, the outcome components will be tested and integrated.

Having in mind that the most of building and testing work is performed during this phase, the “managing resources and controlling the process” activity could be defined as a core, which tightly delimits the component developing and testing activity to the determined resources and schedules. The “assess iteration” activity directly corresponds to the process controlling – the iteration measurement will be performed to be aware of how the defined goal in the iteration plan is reached.

In this case, every Construction phase iteration is going to be measured, while defining the specific evaluation criteria. These specific criteria are going to be defined at the beginning of every iteration.

Also, for preparing the company and our project team for the transition phase of software development process, we are going to build a deployment plan and maybe a user manual for the company, according to the complexity of system usage and deployment.

Transition

	Phase characteristics
	Description

	Phase description
	The focus of transition is to ensure that software is available for its end users. The transition phase includes testing the product in preparation for release and making minor adjustments based on user feedback.

	Activities
	Finalize end-user support material. Checking if all needed items are done.
Test the product deliverable in a customer environment. The product is installed and tested in the customer environment, preventing any problems related to the fact, that product is working only in the development environment.
Deliver the final product to the user. The product is delivered to the user.

	Artifacts
	Deployment plan

Release notes

Training materials and Documentation.

	Evaluation criteria
	Is the user satisfied?

Are the actual resources expenditures versus planned expenditures still acceptable?

Table 5. Transition phase

The Transition phase (table 5) will be responsible to determine if the product our project team is going to develop will satisfy the user – all the activities performed in this phase are mostly related to testing the product in customer environment and delivering the final product to the user.

At the end of this phase, we are going to determine Company’s satisfaction level of the product.

We have also included measurement of actual resources expenditures versus planned expenditures in this phase – as planning activities are very important in the iterative development process and our project team do not enough experience in this kind of activity, we are really concerned about planning effectiveness achieved through the duration of this project.

1.4.4. Conclusion to the methodology choice

Due to the fact that the project team has never worked together and none of us is experienced in iterative software engineering process, we are anticipating the difficulties we are going to meet while following this methodology and even making changes in it. Besides, we hope, that the methodology components are well defined and our knowledge and experience in Object Oriented Analysis and UML will keep us on track in the engineering process.

1.5. Planning and reporting the process activities

Having defined the methodology, our team is going to follow, we consider the fact that project management activity must be performed continuously through the full process. Now we are going to explain our planning and reporting the process activities.

1.5.1. Reporting activity and monitoring the process

As this activity is not described and included in our methodology definition, we are going to perform it at every milestone of our plan. This activity corresponds to evaluation criteria, described for every phase in our methodology.

As we consider the recipients of interest, our iteration assessment document will be correspond to:

· Project team. Even our project team is the “closest” group of people to this project, we want to ensure, that all members of our team are informed enough and “don’t feel in the dark about the overall progress of the project”

· The customer. As this project is being carried out under contractual relationship, the customer will also be interested in the progress of the project.
· The project Advisor. As our project Advisor is the third part of our contractual relationship between the project team and the company, we strongly feel the need to report to him our progress in anticipation of any comments and advices.
While reporting and assessing the process, we are going to use the RUP iteration assessment template, which considers the following aspects to assess:

Objectives. This section corresponds to what objectives are reached during the iteration activities - what artifacts are started or updated, what difficulties or problems were encountered while performing them. This section also includes risks – what risks are indicated during the iteration, what risks are going to be eliminated because of their exposure.

Adherence to plan. The section assesses the iteration from the viewpoint of the plan. Iteration may or may not be finished according the iteration time schedule.

Use-cases or scenarios implemented. If any of implementation during the iteration is performed, the section gives overview of the use-cases of scenarios, which are implemented. Also, some significant details about implementation might be provided.

Results, relative to the evaluation criteria. Each iteration is measured by indicating the level of satisfaction to iteration evaluation criteria.

Test results. If any of testing was performed during the iteration, the test results are provided in the iteration assessment. Also, some comments about the results might be possible.

External changes occurred. This section indicates if any external Changes occurred – the details about the impact of the changes are also provided.

Rework required. According to the quality of the iteration outcome results, rework on some artifacts might be required. This section indicates artifacts, which need rework, also some activities might be specified, which need to be performed once again.

1.5.2 Planning activity

According to our defined methodology, which basically follows RUP software engineering process, at the initial phase of the project initial plan should be developed – in our case, project establishment and initial time schedule developing corresponds to those activities.

We are going to develop the plan for every next phase of our developing process – this is going to be made according to our methodology. The plan development for the next iteration activity is going to be performed considering the evaluation results of the process; at the particular milestone we are going to report the activities performed, artifacts refined or started, and also we are going to estimate the level of satisfaction to the evaluation criteria of the particular phase, defined in the methodology.

1.6. Business modeling [process]

The business modeling activity will help us to understand the Company’s needs for the system we are going to develop and also how these improvements to their existing system will help them to cope with their daily problems.

Business modeling is a technique to model business processes. Business models provide ways of expressing the business processes in terms of business activities and collaborative behavior.

Models are helpful to document and comprehend complexity. They are powerful for two main reasons:

· Making communication easier,

· Allowing us to easily manipulate solutions without affecting the business being modeled.

Business modeling will help us in answering critical questions, such as:

· How do we know we have identified all system use cases?

· What do the users do before using our system?

· What business value does the new system bring?

· What is the business system this new computer system will be supporting?

Because more and more business processes within Keycard need to be automated by software systems, business modeling, in this case, becomes a necessary technique to ensure that automation solutions are adequate.

1.6.1. Why to perform business modeling?

System modeling will ensure that the new system will provide a new value for Keycard Business. It will also ensure that we are building information system that satisfies the Company’s needs.

The business modeling would cover:

· The environment in which this system will work,

· The roles and responsibilities of the employees using the system,

· The "things" that are handled by the business, as a basis for building the system.

It is from this internal view of the business that we can have a better understanding of the new system to build, so the success of our system will allow both, Keycard to operate more efficiently and its customer to receive better service.

One of the great benefits of business modeling is to obtain better system requirements; requirements that will drive the creation of the new information system that actually fits in Keycard Company and that will actually be used by end-users.

Once business model is specified, establishing relationships between system requirements and the business model enables business change to be integrated in the definition of the new system to be built.

1.7. Business modeling [product]
The product of the business modeling is a document that consists of detailed description and analysis of the business together with illustrations that visualize the problem using UML tools.

One of the important issues we considered while documenting the business model is that the document should be:

· Simple and natural enough to be understood also by non-IT people

· Comprehensive enough to cover all business aspects which are more or less related to business processes

· Detailed enough to serve the goals of system description, analysis and design, as far as business processes are concerned

1.7.1. Company profile and structural analysis

In order to gather better knowledge about business rules performed in the company, our group initialized business modeling with defining the profile of the company and performed some structural analysis of the organization.

The profile of the company simply explains when the company “Keycard” initialized, what kind of business the company does. In Addition, it includes the economical branch of the company with a detailed description of their business process.

The structural analysis of the company is performed to gather better knowledge about the structure of the organization and how the company handles their business; it represents a hierarchical structure of the company.

Our group has found out, that the structure of Keycard is quite simple because of the small number of employees, and the business performed by the company is quite complicated because of handling large amounts of sales and performing international sales as well. During this time, the following questions have been raised:

· How does the company handle large amounts of international sales employing only several employees?

· The business of the cards and burners sales is quite controlled by the law in case of misusing the products for illegal purposes; how does the company handles strict business constraints and stays stable in the market?

· What possibilities in expanding the market does the company have and which of them the company is taking or going to take? How does the additional functionality of the current system will fit the process of business development?

· How is the business process performed in the company?

1.7.2. External/internal and SWOT analysis

Keeping ourselves in the right direction of understanding the needs of the company, we consider the requirement to gather the answers or at least some better explanations to the questions we have raised – this is the reason why we have performed external/internal analysis of the company, we start to observe the elements of the environment that have direct and indirect influence on Keycard business process.
SWOT analysis could be understood as a scan of internal and external environment of the company – with having gathered more specific details about the inner and outer environment of the company, the strengths (S), weaknesses (W), opportunities (O) and (T) threats are extracted with a goal to provide information, which is helpful in matching the company’s resources and capabilities to the competitive environment in which it operates. Also, the goal of the SWOT analysis is to evaluate the company’s current mission and strategies via changes in leadership/culture, structure, human resources, information and control system if needed.
1.8. Conclusion to business modeling

The company profile defining the organization structure and performing internal/external and SWOT analysis performing give us a better understanding of the Company’s needs for IT solution In this stage of the system development process, we are more clear about what the Company really needs and why they have formulated such vision of their IT-system.

The fact, that the company consists of small number of employees and at the same time handles large amounts of domestic and international sales, is one of the core facts, stating the reasons, why the company’s IT-system requires improvements. Considering these main facts as reasons of the need for improving the current system, the goal of this project is also a real opportunity in improving the Company’s business in case of increasing the current system performance with reducing manual work and system components synchronization.

1.9. Requirements capturing [process]

At this stage of the software engineering process we are going to capture initial functional and non-functional requirements and start producing use-case model and supplementary specification artifacts.

According to the book Applying UML and Patterns
, The requirements of the system lie in several categories, and all these categories are subtracted into one acronym FURPS+, which stands for:

· Functionality (features, capabilities, security)

· Usability (human factors, help, documentation)

· Reliability (frequency of failure, recoverability)

· Performance (response times, throughput, accuracy, availability, resource usage)

· Supportability (adaptability, maintainability, configurability)

And the “+” indicates some of sub-factors, which also might be identified in a particular case. According to the scope of our project, our “+” stands for:

· Implementation (resource limitations, languages and tools)

· Operations (system management in its operational setting)

· Legal (licencing)

1.9.1. Use Case Modeling [process]

System functional requirements capturing is one of the core activities in RUP; we are going to make a use-case model according to the company’s needs for the system functionality. While defining project scope, we expressed the focus of this project in the sequence of steps to be performed to achieve one particular task of the Company’s business process, that is, handle a sales order - and our goal now is to extract and define all use-cases and describe in detail some significant ones.

According to RUP methodology at the inception phase 10% of use-case model should be finished. Our project group faced a problem of how to estimate 10% of use-case model? To find a solution for that problem, we decided just to:

· find actors

· name use-cases and give a short explanation in brief format

· draw a sketch of general use-case diagram

Use-case helps us to understand the interaction between the users and the system. In order to understand and find the suitable candidate as actors and use cases, we should ask ourselves: who will use the System? How will it be used?

1.9.2. Use Case Modeling [product]
Naming and Defining Actors

We have here four actors:

Actor 1: The Customer that has only the privileges of ordering a product.

Actor 2: The Administrator that has the privileges to create order (in case of, the customer might order the product by phone call), delete, update, and check the status of an order.

Since the system should handle the registration of orders automatically from the web shop to the other two systems, we consider the registration done by the administrator as weak candidate for a use case, but if the communication between the three systems doesn’t work properly or is under constriction, so in this case the Administrator should be able to register the order manually.

Actor 3: The C5 System, which handle all tasks related to accounting, financing, payroll, purchasing, and other tasks as well, but the most related task, which is integrated with our Web_Shop is handling orders. This system has a module for handling orders for any enterprise; it is part of the whole page of services that C5 is shipped with.

Actor 4: The PC_ Pack System, which handles the shipping tasks for the company. It is one of Post_Danmark Systems that is used by many enterprises for delivering their products and KeyCard.dk is one of them.

Naming and Defining Use Cases

A use-case describes the interaction between an actor and the system; a use-case is a way of using the system.

While defining use-cases, we observed that the goal of this activity depends on the company’s needs and our opportunity to understand the desired functionality clearly – after a couple of meetings with the company, we have modeled use-cases in brief format as follows:

Create Order Use-Case

A customer “or An Administrator” visits the company’s Web Shop and selects items to purchase. He or she confirms the purchasing “shopping cart” and is being asked to enter Customer info and payment information, which the system validates and registers. The customer receives a Message from the system that confirms the Order.

Manage Order Use-Case

An Administrator accesses the system after being authorized. The Administrator checks the order list and selects those, which should be executed. The Administrator confirms the order execution and the System registers it in C5 and PC Pack systems and sends Confirmation email message to the customer. The system Prints out the Labels and Invoices produced by C5 and PC Pack.

Drawing a sketch of General use-case diagram

Considering the task of drawing a sketch of General use-case diagram, we are including the information, obtained in the previous sections: we have four main candidates as actors, that is, Customer that make the order, Administrator, that manages the order, C5 as accounting system and PC Pack as post Danmark system for shipping the products.
 So, after finalizing the drawing (figure 3), we observed that it relies on the previous defined use-cases and shows all interactions of actors and the system.

[image: image3.wmf]KIS

Create Order

Manage Order

C

5

PC Pack

General KIS use

-

case diagram

Customer

Administrator

Figure 3
1.9.3. Non-functional requirements capturing [product]

As capturing the functional requirements of the system is one of the most important activities in RUP software engineering process, according to Craig Larman, the author of the book Applying UML and patterns “, it is not sufficient to write use-cases – there are other kinds of requirements that need to be identified”. Use-cases are expressing the functionality of the system, but this is not all; other requirements should be observed in case of developing a system, ensuring the functionality, defined by use-cases.

These other requirements are captured into Supplementary specification
 and here we are giving an initial overview of this artifact, performed trough inception phase of development process (table 6):

	Category
	Requirement description

	Logging and error handling
	Employee has to login to the system before he can handle any orders

Customer should be informed about errors when trying to access the web-shop

	Security
	Employees require authentification

	Reliability (recoverability)
	Back-up should be made for C5, web-shop

	Performance
	1. Short load time

2. Easy to use

3. Simple layout

	Supportability
	Configurability

1. Manageable orders

2. Manageable layout

	Implementation constraints
	Asp.net

C#

MS SQL

	Purchased components
	Pc Pack, C5

	Free Open Source components
	Microsoft web-shop

	Domain(Business rules)
	Confidential information about customers (no registration for the customers)

Table 6. Supplementary requirements

As all the components of supplement requirements list are not clear enough, we have gathered the overview of them – at this stage of developing process, we are not going in details about every component.

1.10. Conclusion to requirements capturing

Having performed the requirement capturing activity, we have initiated two of the main artifacts of the development process, use-case model and Supplementary specification. The use-case model is performed with initial use-cases defined and also Supplementary specification includes some of the supplementary requirements.

1.11. Planning the next iteration

Considering the fact, that our project group has performed only one iteration in the Inception phase, at this stage of the development process we are going to plan the next iteration of the Elaboration phase.

According to the methodology we are following, our main focus in the Elaboration phase is defining candidate architecture of the system. As RUP suggests that candidate architecture must be developed according the risk-list in case of mitigating some high risks, we are going to give enough attention in revisiting our risk list and capturing the most significant ones to be mitigated in the architectural solution. Also, the focus of elaboration phase includes refining the requirements; during this activity, the Supplementary specification and use-case model is going to be revisited and refined.

To have a better understanding about defining candidate architecture, some prototyping is going to be performed in case of lowering the technical uncertainties – we are going to plan our iteration including the building of technical evolutionary prototype.

So, our next iteration of the elaboration phase is going to be planed focusing on the main goal of the Elaboration; defining a candidate architecture. As a result of this objective, our plan for the next iteration is consisting of performing the activities, which are related to refinement the initiated artifacts, but the rest of them is going to be performed in case of gathering the architectural solution.

1.12. Conclusion to inception

The main goal of the inception phase is to initiate the development process; during this phase, according to the methodology we have defined, our team performed the inception phase activities and initiated some artifacts. Even if the level of satisfaction to evaluation criteria was not achieved in full because of the difficulties in getting the concurrence of the Company to some important aspects (details must be checked in inception iteration assessment
), after planning the next iteration of the Elaboration phase and having measured the evaluation criteria, our project team is ready to enter the elaboration phase.

2. ELABORATION

Elaboration phase, according to the RUP software engineering process, is mostly focused on defining the candidate architecture of the system. During the iteration of this phase, some activities are performed to refine the initiated artifacts in the Inception phase - Elaboration phase has some focus on requirements capturing and business modeling. However, differently from the Inception phase, which is mostly focused on initialization activities, this phase is based on the previous phase outcome; initialized artifacts are refined and some of them are started on base of already-existing ones.

2.1. Managing the process

According to the plan, which was developed at the end of the previous iteration, process-managing activity must be concentrated on keeping the process in the direction of gathering the architectural system solution. However, we are going to revisit our business case, risk list and requirements specifications; as RUP is concerned of being partly agile
iteration-centric software development process, we consider the fact, that maybe some of the requirements have changed or have been understood unclearly.

We also reflect on the important issue, that our Inception phase had a low satisfaction according to the evaluation criteria; the feedback of the initial requirements was not gathered from the Company. At the initialization of this project, we have identified the Company low level attention risk – the impact of this risk was considered as very high, and established risk mitigation strategy was used to avoid the influence.

As a result, this risk is mitigated in reducing the satisfaction level to the evaluation criteria by postponing feedback achievement to the Elaboration phase. In doing this, our group is keeping on the risk mitigation plan and attempting to achieve the company’s approval.

2.2. Requirements

2.2.1. The objective of revising requirements [process]

The requirements gathering activity in the Elaboration phase mostly concerns about refining and expanding initiated artifacts – as the initial idea of system functionality and supplement requirements was formulated, in the elaboration phase the requirements are going to be expanded and approved by the company.

“The only constant is change”

The main idea of refining the requirements lays in the core practices of the RUP model. Differently from Waterfall model, the requirements are revisited in case that major changes are required by stakeholders or some requirements are not clarified. The requirements refinements are performed during the rest of the developing process. Of course, most of the requirements are captured in the primary iterations of the process, because the interplay in earlier iterations and parallel implementation work, that obtains feedback, leads to better results.

2.2.2. Functional requirements [product]

The functional system requirements, expressed in the short description of use-cases and general use-case diagram, are going to be expanded in detailed form - at this stage of the development process, we observed, that our initiated use-cases were good enough, but quite imperfect. To gather more details about use-cases, we are going to use brief format
 of use-case description, because we found this form understandable and expressive in our particular case.

At the initializing phase of use-case model, we developed such uses-cases in short descriptions:

“

Create Order Use Case

A customer “or An Administrator” visits the company’s Web Shop and selects items to purchase. He or she confirms the purchasing “shopping cart” and is being asked to enter Customer info and payment information, which the system validates and registers. The customer receives a Message from the system that confirms the Order.

Manage Order Use Case

An Administrator Access the system after being authorized. The Administrator checks the order list and selects those, which should be executed. The Administrator confirms the order execution and the System registers it in C5 and PC Pack systems and sends Confirmation email message to the customer. The system Prints out the package labels and invoices produced by C5 and PC Pack.

“

The RUP methodology suggests that at the stage of the software engineering process where we are now, our assignment is to finalize 80% of use-case model. In this case some decisions about what is 80% was made, and our project team has observed, that these use-cases are expressing the functional needs of the system quite well and our task is just to give a detailed explanations as mentioned before.

Besides, considering the fact, that the main task of this project is to develop a solution of synchronizing the components of the system the Company is using now, we are going to pay more attention to the use of Manage Order Use Case (table 7).

Use Case UC2: Manage Order

	Primary Actor: Administrator

Secondary Actors: C5, Pc Pack

Main Success Scenario (or Basic Flow):

Actor Action (or Intention)

System Responsibility

1. Administrator access the Web Shop’s main page www.KeyCard.dk, after validating authorization.

2. Administrator selects the “order list” from the menu.

3. Administrator marks the orders which are supposed to be executed.

4. Administrator confirms the execution of the order.

5.Administrator is informed about successful execution of the order.

6. The System validates the Administrator Access.
7.The System presents the “order list”, generated from the orders created in the Web Shop.
8. The System registers the order into C5 and inserts necessary data to Pc_Pack.

9. The invoice and the label are printed out and the system sends a confirmation e-mail message to the customer.

Table 7. "Managing order" use-case main success scenario. Version (1.1)
Considering the main success flow of this use-case, our goal is to make some deeper investigation sin this use case: the most significant steps are those, which concern the system responsibility:

7.The System presents the “order list”, generated from the orders created in the Web Shop.
8. The System registers the order into C5 and inserts necessary data to Pc_Pack.

In order to give a better understanding of this use-case and the significant steps performed, we have produced a sequence diagram to view a dynamic performance of this use-case main success scenario (figure 4):

[image: image4.wmf]1

.

Administrator access

the Web Shop’s

main page

www

.

KeyCard

.

dk

,

after validating

authorization

.

2

.

Administrator is

authorized by

insering username

and password

2

.

Administrator selects

the “order list” from

the menu

.

3

.

Administrator marks

the order which

supposed to be

executed

.

4

.

Administrator confirms

the execution of the

order

.

5

.

The order is registered

to C

5

and Pc Pack

6

.

Administrator is

informed about

successfully registered

order

authorization

Accessing

web

_

Shop

Back to main page

Select

“order list”

Main

_

Page

Administrator

menu

Order

list

order

Administrator

confirm order to

execute

Back to main page

Register to C

5

Register order to Pc Pack

Inform about executed order

C

5

Pc Pack

Figure 4. Sequence diagram of "manage order" use-case main success scenario

2.2.3. Non-functional requirements [process]

At this stage of system development process, the supplement requirements must be refined in case of expanding the ones indicated in the Inception phase. The inception phase is mostly concerned with capturing initial supplement requirements in anticipation of achieving stakeholders’ approval and provide a guidance of requirements analyzing in the next process phases.

2.2.4. Refinements to Supplementary Specification [product]

Supplementary specification was initiated in the Inception phase. Now we are going to expand the Supplementary specification with some additional components and gather more details about the already captured ones. Also, we are going to achieve the Company’s approval about supplement requirements for the system. We are considering the fact, that defining these requirements without clear Company’s opinion is an activity, provoking a high risk of uncertainty, because it can have an irreversible impact on our architectural decisions of the system as we consider our group as not experienced enough.

At this stage of supplementary specification, the project team has made investigations on each particular non-functional requirement:

Logging and error handling. Logging and error handling is a requirement, which ensures the obvious performance of the on-line shopping service. A customer will login the system and order the products on line with using password and user name. Alternatively, the Administrator must be authorized before he/she login the system using username and password. In both cases, if any errors happened, the system displays a message indicating that error occurred and what adjustments should be done.

Security. Security is a very important issue when selling products on line. Therefore, all data, related to the customer, should be secured by authorization. And the handling of security for money transfer is covered by credit card payment security services and it is implemented by third party software house in Denmark.

Usability. Usability requirement mostly refers to the user definitions, that is, the requirement must describe who is going to use the system. In our case, the usability of the system is categorized in two dimensions:

- Customers

- Employees

Customers. In this case, customers are considered to be non-experienced users. Customers are indicated as very important users of the system: referring to the business case, customers are people, who are interested in making on-line orders for buying products. Also, business case indicates, that customers might be from all over the world and be experienced in different levels of using IT-technologies. Considering that, the project team is going to keep the low level of complexity for any visitor to use the system, that means we are going to simplify access of necessary web shop functionality and user interface as much as possible.

Employees. The Employee is treated as more advanced user of the system. The employee is more aware of the functionality the system supports than the simplicity of the user interface. Mostly in all cases the employee is going to act as Administrator and be able to perform tasks and activities, related to managing the web shop and orders, made by customers.

Reliability (recoverability). Reliability might be understood as the non-functional requirement, consisting of two parts:

· Recoverability

· Reliability

Reliability is concerned with the time how long the system might be able to work without crashing down. The server should be on 24 hours a day in order to support the on-line selling service for the customers and keeping track of the order list for later conformation by the Administrator.

Recoverability aspect must be considered in case of system failure. All unfinished order-handling transactions must be roll backed. A backup copy of created orders must be saved in the different hardware storage in case of Pc Pack and/or C5 fails and/or the server is down. Every half an hour a back-up copy must be updated.

Performance. The performance is a non-functional requirement, mostly related to physical software measurements. In this particular case, one of the measurements is load time. The decision was taken to limit the load time to no more than 5 seconds.

The system must be able to handle at least 100 customer sessions.

Extensions of the system. The system should be flexible and updatable in case of changing platform technology, web pages technology, programming language, changing DBMS, server technology, or one or more system components (example: changing from C5 accounting system to another one).

The system functionality could be updated, for example SMS message could be sent to the customer mobile phone, which indicates the product is shipped from Keycard and on the way to the customer. Other statistical functions could be added to the web application (like measuring the rates of the sales during a specific period or the most sold product of the month, etc.).

Configuration. The Administrator must be able to create, update, delete and read the orders from the web shop’s database. In addition, the administrator must also be able to update the web shop, in the sense of including and presenting a new product on the web shop. Besides, changing prices of the products must also be available.

Implementation constraints. Implementation constraints are considered in the following aspects:

· Developing technology

· Programming languages

· Programming environments

· DBMS

· Server technologies

· Free open Source components

Developing technology. Asp.Net is the choice of the web application technology the project team has made. The system architecture solution is developed based on the Asp.Net web application multi-tiered structure.

Programming languages. Asp.Net supports different programming languages and our choice was C# due to the similarity with Java. The members of the project team have gained experience in programming with Java and C# during the previous semesters in Roskilde Business Academy. This experience is treated as one of the project group strengths.

Programming environments. Visual Studio 2003 is a tool for developing web applications based on Asp.Net technology. With its rich features and ease of use, we consider this tool as the main developing tool for our web application module.

DBMS. Microsoft SQL 2000 will be used as the web shop database. This choice was made according to Keycard needs. The group members have no experience in working with MS SQL, but the experience with working with Oracle during previous semester, considered as being a useful skill, because of the similarity of DBMS. Considering the fact, that the company has an order database, we are not going to develop a database.

Server technologies. Any web application based on ASP.NET technology must be deployed on the web server, which runs Microsoft Internet Information Services. Keycard has expressed the need for using Microsoft Server 2003, because the company is intending to use this technology in the future.

Free Open Source components. The project developers went through research activities with the purpose of finding open resources regarding web shop. The reason for including open resources is saving time spent on developing the web shop. In addition, it’s not the main task of the project to create a full functioning web shop.

Domain/Business rules. During the appointments with the Company, the Domain/Business rules have become more comprehensible. The project team has indicated, that the defined Domain/Business rules were totally different from the actual Company needs. In the Inception phase, the Domain/Business rules were defined as follows (Table 8):

	Category
	Requirement description

	Domain(Business rules)
	· Confidential information about customers (no registration for the customers)

Table 8. Supplementary specification fragment (Inception phase).

However, reworking on Domain/Business rules during Elaboration phase has leaded to totally different description (Table 9):

	Category
	Requirement description

	Domain (Business rules)
	All orders must be registered into C5

Table 9. Supplementary Specification fragment (Elaboration phase)
The defined business rule has been changed after making several investigations in the Company’s business process. The rule is depended on the Danish law, stating, that any sales information must be documented and saved while the business process of the Company is performed. The company is saving the sales information to the C5 application database and the additional system functionality must ensure the obvious data saving performance.

2.2.5. Conclusion on non-functional requirements

To make a conclusion of non-functional requirements at this stage of the software engineering process, we are stating, that Supplementary Specification provides an almost full view of the system non-functional requirements.

The requirements were refined by including details in the initial Supplementary Specification, produced in the Inception phase. During the activity, the project team had made several appointments with the Company in order to indicate the most inexplicit requirements.

The approval of the non-functional requirements from the Company has been achieved during the Elaboration phase. This fact is really important at this stage, because the Company did not approve supplementary specification in the previous phase, causing low satisfaction level to the previous phase evaluation criteria.

2.2.6. Conclusion to requirements

At this stage of requirements analyzing, the artifacts (use-case model and supplementary specification) are refined through giving detailed descriptions of system functionality and supplement requirements.

2.3. Business case [process]

The activity of business modeling is also based on the previous phase outcome. The business case, which was initialized, was mostly based on general understanding of the company, which includes defining the profile and performing external/internal and SWOT analysis.

Having a better understanding of the company structure, we are going to expand our business case with developing a partial domain model in order to define the base domain entities and relationships among them. By doing this we will have a visual domain of interest representation, which could be called a “visual dictionary”
 of the important abstractions, domain vocabulary and information content of the domain.

2.4. Business case [product]

According to the previous phase, where business case was initialized, at this stage we are going to expand this artifact: from the earlier results, we will extract main business process entities and we will construct a visual model consisting of conceptual classes and relationships among them.

2.4.1 Finding conceptual classes

Business-case revision

The first step in constructing domain model is to find and indicate conceptual classes. To cope with this task, we have rescanned our business case to find conceptual classes candidates. As a result, we have found these candidates:

· Order

· Sale

· Customer

After performing the investigation of the conceptual class candidates in the business case, we have met a problem; the classes we have found represent higher level of business process performed in the Company. These classes only give an abstract and unclear sketch of the domain model; we only know, that Customers create Orders and the Sales are based on these Orders (figure 5):

[image: image5.wmf]Sale

Order

Initiates

Customer

Paid

-

by

creates

1

1

1

1

1

1

Figure 5. Initial use-case model

This sketch of the conceptual classes and concepts intensions gives an unclear understanding about the problem domain. To increase the level of understanding of the domain, we decided to use the technique of revisiting the use-case model
.

Use-case model revision

As use-case model is responsible for expressing the functionality of the system, the conviction lays, that the most of the concepts might be observed and indicated in this model. Considering the fact, that we have defined the use-cases in the brief format, at this stage we are going to gather some benefits of this feature; the density of use-case model will help us now.

While revisiting use-case model, at first we have looked for the concepts in the create order scenario. Because of the purpose of distinguishing, the candidates to the concept classes are marked in bold (table 10):

	Actor Action (or Intention)
	System Responsibility

	1. Customer Access Web Shop’s main page “www.KeyCard.dk”

2. Customer Access “shopping cart” in main menu.

3. Customer starts selecting items from the categories of the category catalog for his/her “shopping cart” and confirms his purchase.

5. Customer inserts demanded data for finalizing purchasing operation.

6. Customer is informed about successfully created order and is redirected to main page.
	7. The system presents the catalog of categories and the available items on the web shop.

8. System redirects Customer to Customer Card Info registration window.

9. System presents total cost of order with taxes calculated.

10. System will send confirmation email to Customer, proving that order has been received from Customer.

Table 10. "Create order" use-case. Candidates of the concepts are marked in bold.

After investigation in the main flow of the Create order scenario, we decided to look in the other one, Manage order use-case, which is more important for this project. Because the most important information, related to the main problem this project is solving (existing system components synchronization), our group performed a more detailed investigation in this scenario (table 11):

	Actor Action (or Intention)
	System Responsibility

	1. Administrator access the Web Shop’s main page www.KeyCard.dk, after validating authorization.

2. Administrator selects the “order list” from the menu.

3. Administrator marks the order which is supposed to be executed.

4. Administrator confirms the execution of the order.

5.Administrator is informed about successful execution of the order.
	6. The System validates the Administrator Access.
7.The System presents the “order list”, generated from the orders created in the Web Shop.
8. The System registers the order into C5 and inserts necessary data to Pc_Pack

9. The invoice and the label is printed out and the system sends a confirmation e-mail message to the customer.

Table 11. "Manage order" use-case. Candidates for the concepts are marked in bold

Building a set of candidate conceptual classes

With the goal of constructing a domain model, after marking in bold the candidates for the concepts, we have produced a list of candidate conceptual classes (table 12):

	Name of conceptual class
	Concept’s intension

	Customer
	Customer is able to make Order

	Administrator
	Administrator is able to make and manage Order and Order list

	Order
	Order is made by Customer – it contains items and personal information of the customer.

	Order list
	Order list containts Orders

	Web shop
	Web shop is responsible to present Category catalog. Orders are created in the web shop

	Catalog
	Catalog contains categories

	Category
	Category contains Items

	Item
	Item is a representation of amount and specification of available products to buy from the Company

	Pc Pack
	Pc Pack is a system, where a part of Order information is registered

	C5
	C5 is a system where orders are registered

Table 12. Conceptual classes
Partial domain model

The list of the conceptual classes and their intension description is used while building the domain model. Our group has also faced the problem to bind the domain model to the problem definition and the vision of the Company – even if we consider the benefit of the domain model, which is to give a visual expression of the problem domain, our difficulties were found in focusing on the system synchronization.

[image: image6.emf]Registered Registered

Manages

Visits

Visits

C

o

n

t

a

i

n

s

Contains

C

o

n

t

a

i

n

s

Creates

*

1

1

1 1

1

1

1

1

1

1

1 1

*

*

*

*

*

*

*

Administrator

C5 PC_Pack

Order

Customer

Web_Shop

Item

Category Catalog

Figure 6. Partial domain model

2.5. Conclusion to Business modeling

The initiated Business case (in the Inception phase) was mostly considered to provide the results of SWOT analysis in order to give a better understanding of the Company we are dealing with. During this iteration, we have focused on producing the domain model – the main goal of this model is to supply the problem domain concepts and define the project scope in the visual notation.

2.6. Refining the vision [process]

The vision statement, formulated in the initialization stage of the project, gives a quite obvious view of the system:

“The vision of the company is a system, which decreases the manual work as much as possible. That is, the system automatically takes care of incoming order, made by a customer through the Web shop; it gives an ability to control the further execution of a particular order, with keeping track of all necessary information for “Told og Skat” and also prints all necessary labels and invoices for deliverable products.“

However, in the Inception phase of the development process the vision is produced just to help in determining the project scope and provide an initial guideline for the entire process. Reflecting the Elaboration phase, the vision is going to be refined; even if the vision statement was approved by the Company, the artifact includes an amount of details, which were not specified but could have a significant impact to other artifacts, being elaborated during this iteration.

Also, referring to requirements gathering activity, performed during current iteration, the important fact was stated – some of the requirements, gathered in the Inception phase, were totally different from the actual Company needs. Even the risk, called “wrong understanding of the Company needs” was indicated, however, the project team was not able to avoid the risk exposure in the Inception phase. Subsequently, our decision to specify the vision in details was made in order to avoid similar Company misunderstanding problems. So, our project team is going to produce a detailed vision and achieve the approval from the Company.

2.7. Refining the vision [product]

While refining the vision, we decided to follow the RUP vision document template, because we found this template fit for our particular situation and simplify the task with gathering the most appropriate results. The vision
 was refined according to the supplementary specification and use-case model; also, some significant aspects in the vision document have direct relation to the business-case.

The vision template was reduced by discarding the sections, which were decided as being not significant to our particular case - we consider that this project is referred as a small project. The vision is defined considering the following significant elements:

· Positioning

· Stakeholders and users descriptions

· Product overview

· Product features

· Product constraints

· Other requirements

· Documentation requirements

Positioning. While refining the vision, the problem statement, formulated in the initial project phase, has been reformulated and restructured to provide an obvious problem definition. Product position to solve the defined problem, is also provided in the positioning statement. This section is one of the most important elements of the vision document, because it summarizes the project scope and problem definition, produced in the Inception phase, in order to give a apparent perceptive of the project objectives.

Stakeholders and users description. The profiles of Stakeholders and users are defined in order to give an overview of their involvement in the project. Also, the section summarizes the key needs of the users and stakeholders; these needs are captured to ensure, that the project team understand the problem clearly and leads the development process to the defined objectives.

Product overview. Vision also provides a simplified overview of the product, which we are going to develop during this project. The project overview is represented in a simple system block-diagram and summary of main system capabilities.

Product features. While defining the vision, we included this element because of earlier mentioned objective of the vision; vision is a document, understandable by all the stakeholders. Product features are summarizing and representing the system functionality, that is, use-cases.

Product constraints. In the vision, product constraints reflect the supplementary specification; the vision provides a simplified overview of the product constraints.

Other requirements. Differently from the Product features section, which summarizes the defined use-cases, other requirements directly correspond to the supplementary specification; the section provides a detailed overview of the supplement requirements the product defined in the vision is going to follow.

Documentation requirements. Documentation requirements include the objectives, which are going to be obtained to provide a full-functioning system. The product vision includes producing user manual, on-line help and special logo for the final product. However, our project team is not going to perform any of activities to fulfill the documentation requirements, because we consider the project duration quite short and our main goal is to provide a functioning prototype with the significant functionality, specified in the positioning section.

2.8. Revisiting the risk list [process]

We have initialized the risk list in the Inception phase; the risks, most related to the project and development process were captured in case of use the mitigation strategy earlier than the risks appear. At the beginning of the Elaboration phase, we have refined the risk list by adding the risks, related to the Company’s daily work and functionality of the system. We think, that the mitigation of these risks must be performed in the starting of actual system development. The RUP process indicates, that an active attempt must be performed to identify and mitigate the riskiest issues first (figure 7) – differently from waterfall model, where validation of the architectural suitability happens long after all requirements are captured and design is specified, during the later steps of implementation.

[image: image7.png]potental
impactof

ke beng
piel

e

372 erative lfeeyele and risks

[——
ighrsk ssues are

acked say, o e
Goun he ket et

Figure 7. Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002, p 596.

2.9. Revisiting the risk list [product]

After revisited risk list, we have calculated the exposure of the risks and indicated the most significant ones (table 13):

	Risk description and impact
	Category
	Likelihood
	Impact
 order
	Exposure
	Mitigation strategy

	The system handles orders slowly because of large number of customers
	System (technological/ requirements)
	8
	8
	64
	The module responsible of handling the orders and synchronizing the system must be redeveloped and optimized.

	The data transferred to the C5 is not proper. The risk would cause the problems in C5 performance. This would cause delays and improper invoices.
	System (requirements)
	7
	9
	63
	The manual data inserting must be performed.

	The data transferred to the Pc Pack is not proper. This would cause problems of delivery or Pc Pack delays and improper digital package labels.
	System (requirements)
	7
	9
	63
	The manual data inserting must be performed.

Table 13. Risk list fragment

The fragment of the risk list shows, which of the risk elements are going to be mitigated in case of defining the architecture, because they have high impact on architectural solution.

2.10. Defining a Candidate Architecture [Process]

The center of attention in the Elaboration phase is defining a Candidate architecture activity. As RUP is risk-driven process, it suggests using risk list to define the architecture. After several appointments with the Company, we have captured the risks, the appearances of which are possible in the company daily work while using the system.

We consider the fact that the goal of this project is to add some functionality to the existing system. We are not going to change the architecture – our task is to define the architecture in case of developing a module, which is going to be responsible for synchronizing existing components.

2.11. Defining Candidate Architecture [Product]

The SAD (Software Architecture Document)
 is being initialized during Elaboration phase. We have baselined a candidate architecture very abstractly, because the main task of this project is to synchronize the existing system. So the architectural solution will not change the existing system architecture – we consider only module integration. (figure 8):

[image: image8.wmf]Customer user

interface

component

Administrator

user interface

component

Control Component

of Customer User

view

Control

Component of

Administrator

user interface

Connection

Component for

External systems

View Layer

Control Layer

Model Layer

Model component

Model component

Model component

ODBC

Component

Data layer

database

DBMS layer

C

5

PC Pack

Customer

Administrator

The view layer is responsible for

maintaining interaction with system

users

.

The layer contains

components

,

representing

Customer and Administrator user

interface

Control layer consists of

components

,

responsible for

implementing

enevt handling

and

accessing external systems

(

DMBS

and other applications

)

Model layer contains components

,

which express system model

concepts

DBMS layer is a layer

,

which

separates the data layer from other

layers

.

Through this layer

,

Control

layer components are connecting to

database

.

Figure 8. System architecture

The picture represents the system architectural solution in a very abstract way – as mentioned before, this solution was developed according the risk list and system requirements.

As The Software Architecture document was initiated in this stage of system development process, the architectural solution diagram will be followed as one of the guidelines while developing the system architecture.

2.11.1 Software Architecture

As we consider Software Architecture Document as one of the most important artifacts, performed during the duration of the project, the decision was figured out to provide a description of the document structure.

The Software Architecture Document is going to be developed according to RUP SAD template and will be mostly related on UML notation while providing architectural aspects.

The Software Architecture overview will be represented in the concepts, which are concerned as architectural views:

· Use-case view

· Logical view

· Process view

· Implementation view

· Deployment view

During the Elaboration phase, only Use-case view is investigated and specified in a appropriate level of current iteration. Other views are not considered during this phase.

Use-Case View. Use case view lists the scenarios, which represent some significant, central functionality of the final system. In this section the “Manage Order” use-case was indicated, because the role, which this use-case plays, seems to have significant impact and a large architectural coverage

Use-case Realizations (“Manage order”)
The “manage Order” use-case was mentioned as having high impact on system architecture – in this section the illustration of how the software works was given in case of describing how the design model elements interact with each other. Considering the fact, that the final design of the system is not developed yet, the project team focused on the most significant components of the architectural overview and developed a use-case realization.

The following diagram (figure 9) provides a partial class diagram, which was developed to indicate the significant classes and important relationships among them. The diagram consists of following classes:

· Admin

· Order

· OrderController

· OrderList

Admin. While producing the partial use-case class diagram, the Admin class was generated to present the code-behind of Admin user-interface.

PcPackWriter. The class is responsible to support data import to PcPack application

C5Writer. The class is responsible to support data import to C5 application

Order. Order class is a representation of domain Order concept – the class is containing the order data.

OrderController. OrderController class is a helper class, which is responsible to provide control to the order. The class is associated with PcPackWriter and C5Writer classes – by doing this, the data, held in the Order class, is enabled for transition to C5 and Pc Pack applications.

OrderList. OrderList is a collection class, the elements of which are Orders. Also, the class contains OdbcWriter and OdbcReader for reading and writing to the web-shop database purposes.

OdbcWriter. The class is responsible to support writing an order to the web-shop database.

OdbcReader. The class is responsible to support reading an order from the web-shop database.

[image: image9.wmf]+

laodList

() :

String

+

updateOrder

() :

Integer

-

order

:

Object

-

odbcReader

:

Object

-

odbcWriter

:

Object

OderList

+

Proceed

()

-

order

:

Object

-

PC

_

PackWriter

-

C

5

_

Writer

:

Object

OrderController

+

getReceiveCustomerNo

()

+

getIsoCountryCode

()

+

getName

()

+

getAttPerson

()

+

getStreet

()

+

getHousNumber

()

+

getPostNumber

()

+

getCity

()

+

getPhoneNumber

()

+

getEmail

()

+

getCustomerComment

()

-

receiveCustomerNo

:

int

-

isoCountryCode

:

String

-

name

:

String

-

surName

:

String

-

attPerson

:

String

-

street

:

String

-

houseNumber

:

String

-

postNumber

:

String

-

city

:

String

-

phoneNumber

:

String

-

email

:

String

-

customerComment

:

String

Order

+

writeToPcPack

()

-

Order

:

Object

PcPackWriter

+

writeToC

5

()

-

Order

:

Object

C

5

_

Writer

odbcReader

+

Admin

()

+

proceesOrder

() :

String

+

delete

()

+

update

()

-

orderList

-

oderController

Admin

.

Asex

.

cs

odbcWriter

Figure 9. "Manage order" use-case partial class diagram

The present class diagram (figure 9) is considered as being simple enough to provide the “manage order” use-case implementation. The reason for keeping such simplicity is stated by the fact, that at this stage of software engineering process the result of designing activity must be in a high level of abstraction, because the most of significant architectural aspects are not investigated yet. So, we can state, that the produced “manage order” use-case class diagram is flexible to adapt to the further architectural investigations.
2.11.1.1 Architectural goals and constrains

The section describes the software requirements and objectives that have some significant impact on the architecture. Most of these goals and constraints are related to the non-functional requirements of the system; however, we consider, that this section has high importance to our architectural solution investigations.

Programming tools and languages. As it was mentioned in the Supplementary Specification, during this project our project team is going to use Visual Studio 2003 and C# programming language. Because ASP.net technology is going to be used as implementation technology, the architecture is delineated by ASP.net web application structure.

DBMS. The Company expressed the goal of deploying MS SQL server as the database for order registering and storing purposes. As the project team is not going to design and develop the database, the MS SQL existing database constrains must be followed.

Server technologies. The Company is using Microsoft server 2003, so for this reason the system must be developed to concern the server security and other constraints.

Accessing external Components. While the investigations were made on the existing system components, such as Pc Pack and C5, an amount of constraints were captured to produce an executable solution of synchronizing these components.

2.12. Conclusion to Defining Software Architecture

During the Defining Software Architecture activity, the essential system architecture has been indicated. While performing this activity, the SAD (Software Architecture Document) has been initiated – the document is going to be developed while following RUP SAD template and our project team has indicated the most important aspects of the system architecture, which are going to be included in this document. In addition, during this activity, a partial design model was produced to provide an abstract design view of the most significant use-case.

2.13. Prototyping

The prototyping activity was included in the software engineering process as one of the core activities, which supposedly would directly provide a possible solution for existing system components synchronization. This activity is performed to produce an executable prototype, which provides a possible technical solution of the data transition.
Synchronization possibilities

During the system development process, several possibilities were examined to solve the synchronization problem. As mentioned before, the prototyping activity is considered as significant one in order to provide the solution of the problem being solved during this project. So, the project team has made some investigations on existing system components to capture and formulate the possible technical solutions for data transferring. These possibilities are:

1. Synchronization with Pc Pack:

a) Data transition Using comma separated file

2. Synchronization with C5

a) Data transition using ODBC

b) Data transition using comma separated file

c) C5 database exporting to other DBMSs.

Data transition to Pc Pack

Pc pack documentation states, that Pc Pack application is able to communicate with other applications – the data could be transited to Pc Pack from other applications and vice versa. The data transition is being performed while using Pc Pack data import/export facility.

Generating comma-separated file and import to Pc Pack application. The possibility was investigated while performing some studies on Pc Pack documentation
. Pc Pack documentation provides a full description of performing the data import/export with using comma-separated data files.

In our case, we are going to perform Customer data import to Pc Pack application1 (Forsendelser import). That means, our task is to generate a comma-separated file, and name it by following notation:

FIMP<xxx>.INH

<xxx>::= <autogenerated-number>

The data Input directory for the Pc Pack application lays in the following path:

C:\keysoft\PFS\EKSIMP\IN\

So, according to the documentation, the comma-separated file must be placed in the defined directory. When the Pc Pack application is launched, according to the configuration, it is observing data files in the Input directory and importing data automatically.

Data transition to C5

C5 help file states also that C5 is able to communicate with other applications or external systems with a purpose of data exchange.

1. Data transition using ODBC. The C5 application provides an ODBC driver for data exchange purposes.

2. Data import/export using comma-separated file. It is possible to import/export data in C5 using comma-separated file.
3. C5 database exporting to other DBMS. C5 is compatible with some DBMS (for example, MS SQL Server), and C5 database can be transported to them. We are not going to investigate this possibility, because it is not compatible with Company’s needs: this solution would be too expensive and would require essential changes in the Company’s work process.
During the prototyping activity, the data transition possibilities were examined and attempted to examine them and indicate the most appropriate one.

2.13.1. Developing the prototype

The decision of developing a vertical evolutionary prototype is stated by the fact, that the problem, the prototyping is concerned with, is clearly understood; the result of prototyping activity will give an executable solution of the system component synchronization.

The prototype is considered as being a technical prototype, because while the design and implementation was performed, the significant concepts of the synchronization problem were faced.

2.13.1.1. Architecture of the prototype

The architecture of the prototype is considered as multi-tiered and based on the defined system architecture - the prototype architecture directly maps the layers of the offered architectural solution (figure 8).

Moreover, the prototype is implemented as web application using Asp.net technology, so the prototype architecture is following the Asp.net web application structure.

The prototype consists of the following:

1. A graphic user interface for testing purpose only;

2. A group of controller classes, which are responsible for processing input data to Pc Pack and C5.

3. A group of classes, which represent the logic of the domain.

2.13.1.2. Prototype architectural layers

The prototype could be considered as an application consisting of the following layers:

· model layer

· control layer

· view layer

[image: image10.wmf]Prototype Managing Order

File

Edit

Help

View

Favorites

Tool

Http

://

www

.

keycard

.

dk

/

AdminController

.

aspx

Address

:

Go

Favorites

+

Page

_

Load

()

+

Present

_

Order

()

+

btn

_

proceedOrder

_

click

()

AdminController

-

Order

:

object

(

idl

)

-

OrderController

:

object

(

idl

)

+

OrderController

() :

Object

+

PresentOrder

()

+

ProceedOrder

()

OrderController

-

Order

:

object

(

idl

)

-

PcPackWriter

:

object

(

idl

)

-

OrderText

:

string

(

idl

)

+

pcPackWrite

() :

object

(

idl

)

+

writeToPcPack

()

PcPackWriter

-

Order

:

Object

+

getReceiveCustomerNo

()

+

getIsoCountryCode

()

+

getName

()

+

getAttPerson

()

+

getStreet

()

+

getHousNumber

()

+

getPostNumber

()

+

getCity

()

+

getPhoneNumber

()

+

getEmail

()

+

getCustomerComment

()

+

getProductList

() :

Object

Order

-

receiveCustomerNo

:

int

-

isoCountryCode

:

String

-

name

:

String

-

surName

:

String

-

attPerson

:

String

-

street

:

String

-

houseNumber

:

String

-

postNumber

:

String

-

city

:

String

-

phoneNumber

:

String

-

email

:

String

-

customerComment

:

String

-

productList

:

Object

C

o

n

t

r

o

l

L

a

y

e

r

View Layer

Event Handler

Function Layer

Model Layer

Proceed Order

Anders Radewader

Address

:

Uplaudsgade

12

,

1

.

th

2300

Kobenhavn S

Phone Number

:

+

45 50544320

Email Address

:

ratata

@

louisemus

.

dk

+

setProductID

() :

void

+

setProductName

()

+

setProductAmount

()

+

setProductPeice

()

+

getProductID

()

+

getProductName

()

+

getProductAmount

()

+

getProductPrice

()

Product

-

productID

:

String

-

productName

:

String

-

productAmount

:

String

-

productPrice

+

writeToC

5

()

C

5

Writer

-

order

:

Object

Figure 10.Prototype

For giving a better understanding of the prototype structure (figure 10), the description of the prototype is going to be presented by explaining the application layers using bottom-up approach.

Model layer

This layer represents the business logic. As the prototype provides only vertical functionality, only those classes from domain logic were implemented, which support the purpose of the prototype. In the implemented prototype the model layer contains the classes Order and Product.

Order.cs

The Order class is a class, responsible for containing order data. According to the business logic, the Order concept contains data, related to the order details and personal information of the customer.

Atributes:
	attribute
	description

	receiverCustomerNo
	Customer identificator

	ISOCountryCode
	Country code (ISO notation)

	Name
	Customer name

	AttPerson
	Person, which might be responsible for receiving the package

	street
	street

	HouseNo
	House number

	PostNo
	post number

	City
	city

	Email
	Customer e-mail

	CustomerComment
	Comment of the customer

	Product list
	Array of Product objects

Table 14. Order attributes
The listed attributes (table 14) of Order class represent the most significant information about the customer and ordered products.

Class contains setting and getting methods for all the defined attributes.

Product.cs

Product class represents the business logic concept Item: the class contains attributes, which represent ordered Items details. These details include (table 15):

	attribute
	description

	productId
	item identificator

	ProductName
	name of item

	ProductAmount
	amount of ordered items

	ProductPrice
	price of item unit

Table 15. Product.cs attributes
The class also contains setting and getting methods for the attributes.

Control Layer

The control layer consists of two sub layers:

· function layer

· event handling layer

Function layer

Function layer is responsible for handling the functionality of the application. The functional layer is the emphasis of the developed prototype; the layer contains the classes, which are responsible to provide the Order data, held in Order object.

PcPackWriter.cs

As mentioned before in the Data transition possibilities section, the only way of transfer data from other applications to Pc Pack is using comma-separated files. Pc Pack documentation states, that one file must be generated to one particular order.

Thus, in the developed prototype, the PcPackWriter class contains attributes and methods, responsible for achieving customer data from Order instance, generating the comma separated file and placing it in the INPUT directory of Pc Pack (table 16).

Attributes:

	attribute
	description

	fileName
	Name of import file

	order
	Instance of class order

Table 16. PcPackWriter attributes
For the prototyping purposes, the comma-separated file is given by fictive name in the variable initialization:

string fileName = "FIMP1234.inh";

According to the PcPack documentation, a file with such a name must be recognizable by Pc Pack application.

Methods:

	method
	description

	writeToPcPack()
	method is responsible to retrieve the necessary data from Order instance, generate comma-separated file and place it in Pc Pack INPUT directory

Table 17. PcPackWriter methods
C5Writer.cs

The class is responsible for transferring the necessary data to C5 application. In the prototyping activity, our project team has also decided to use data transfer through comma-separated file.

Attributes:

	attribute
	description

	fileName
	Name of import file

	order
	Instance of class Order

Table 18. C5Writer attributes
Unfortunately, our knowledge about data transfer to the C5 application is obviously not sufficient, so in the prototyping activity we are going to keep C5Writer class abstract in order to prepare it for the further data transfer investigations.

The import filename is initiated by the following value:

string filename = “C5data.txt”;

Methods:

	method
	description

	writeToC5()
	the method is responsible to extract the necessary data from Order instance and generate comma-separated file

Table 19. C5Writer methods
OrderController.cs

The class is responsible for controlling the order. In our prototype, the only controlling activity, performed to the Order object, is order proceeding – the PcPackWriter and C5Writer objects are created and the Order object is passed to them to perform further data transferring.
Attributes:

	attribute
	Description

	order
	Order object

	pcPackWriter
	PcPackWriter object

	c5Writer
	C5Writer object

Table 20
Methods:

	Method
	Description

	ProceedOrder
	Order is proceeded – Order object is passed to pcPackWriter and C5Writer objects

Table 21
ProceedOrder method might be considered as a core method in the entire prototype. This method is performing the actions, required for data transfer to the other two applications.
public void proceedOrder(){

PcPackWriter pcPackWriter = new PcPackWriter(order);

C5Writer c5Writer = new C5Writer(order);

pcPackWriter.writeToPcPack();

C5Writer.writeToC5();

}

When the method is called, pcPackWriter and C5Writer objects are created with passing order object to them. After this, the methods, responsible for transferring data, are called.

Event handling layer

 Event handler layer contains all classes handling the events, triggered by the user interface component. We are not providing the detailed class descriptions because the importance of the classes are not significant.

AdminController.cs

In the prototype, the only class in the Event handler layer is AdminController. The class is a code-behind class of the Administrator user-interface. Thus, the class is inheriting the Asp.net Page class, so it is responsible for loading the Administrator’s user interface as a web page and reacting to the events, rose by the Administrator. Because the responsibilities of the class is not considered as important, we are not presenting the detailed description of the class.

View layer

This layer is handling the user interface component. The GUI consists of input fields for inserting data in case of testing purposes. Also, the interface component has a button for simulating the order proceeding. We are also not providing the detailed class descriptions of the view layer.

2.13.2. Prototype Testing

The prototype testing activity is going to be performed while following the testing procedure
, defined in the project initialization phase. To follow the procedure, the purpose of the prototype was formulated:

“The purpose of the prototype is to give a view of the technical solution for system components synchronization.”

According to the testing procedure, after having the purpose of the prototype defined, the list of functions the prototype must perform was developed:

Proceeding the order. The order is simulated and the prototype must proceed it by generating files and writing the data to Pc Pack and C5.
Generating a data file for Pc Pack. The data file must be generated according to the format, described by Pc Pack documentation.

Generating a data file for C5. The prototype must also generate a data file, which is going to be recognized as a data source by C5 application. This function is considered as primary function.
Registering the data file in Pc Pack. After the file generated, it must be possible to register the file to the Pc Pack application manually. This function is considered as being primary function.
Registering the data file in C5. Also, after the file for C5 generated, it must be possible to register the file to the C5 application manually. This function is considered as being a primary function.
2.13.3.1. Testing results

After the prototype testing was executed, the project team has recorded and documented the testing results. Because the prototype is considered as being evolutionary prototype, the main purpose of the testing activity was to measure the quality

	Product failures
	Product notes

	1. Proceeding Order
	Failure because of dependency on other functions:

1. Registering the data file in Pc Pack

2. Registering the data file in C5

	1. registering the data file in Pc Pack

	Failure because of denial access to the input folder

	2. registering the data file in C5

	The File has not been recognized by C5

Table 22
	Product passes
	Product notes

	Generating a data file for Pc Pack
	The file was generated

	Generating a data file for C5

	The file was generated

Table 23
The testing results show that the prototype is partially functioning. The failure of the main prototype function is indicated at the beginning of the testing. Because the main function is a primary function, related on other primary functions, its failure is considered after the failures of other primary functions.

Considering the prototype failures (table 22), the project team must perform some investigations in the existing system components C5 and Pc Pack to determine the ways of deploying the import files as a data sources.

2.13.3. Conclusion to the Prototyping

The prototype has been developed as vertical-evolutionary prototype, providing the technical solution for synchronization of existing system components. The prototyping activity was performed according to the defined architectural solution and architectural constrains in the System Architecture Document.

While performing functionality testing, the prototype was found providing only part of the required functionality. Considering the fact, that the prototype is evolutionary, the members of the group are going to find alternative solution for transferring data to the existing system components or improve the solution, which is already implemented.

However, even the prototype is not functioning as it was expected, the performed prototyping activity made us to investigate the actual possibilities of data transferring to Pc Pack and C5 from ASP.net application. The activity results indicate that the applied methods, which were noted in the C5 and Pc Pack product documentation, require deeper investigations. The developed prototype is going to help us to determine the further guidelines of the system development process.

2.14. Process monitoring and planning activities

Process monitoring and planning activities are mostly considered as the evaluation of the iteration. The iteration is measured by the evaluation criteria and the level of satisfaction is indicated. Also, planning activity is performed after measuring the iteration with a purpose of producing plan for the next iteration.

2.14.1. Monitoring the process

The Elaboration phase is assessed by the RUP iteration assessment template. The satisfaction level to the evaluation criteria is presented in the following section
:

· Is the vision of the product stable? The vision was refined according to the requirements and the business case. The business case and requirements are approved by the Company, so the vision is stable.
· Is the architecture stable? Our group has defined a multi-tiered architectural solution which partly stable.
· Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible basis of estimates? The plan of Construction phase has been generally developed and it provides general activities, performed during every iteration o Construction phase.
· Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture? Because the complete system is going to be developed based on the evolutionary prototype the approval from the company has been achieved.

2.14.2. Planning next iteration

The next iteration planning is going to be performed to plan the first Construction iteration. During the duration of this project, four Construction phase iterations are going to be performed. In this case, the general iteration plan has been developed.

Besides, the methodology, which is followed during this project, declares, that the use-cases are going to be assigned to the particular iterations in case of constructing the final product. In this case we are going to perform the use-case assigning decision by stating the status of the outcome results of the Elaboration phase.

As one of the most important activities, defining the system architecture, during the whole development process has been initialized; the next iteration is going to focus on developing the defined architecture and constructing the components, which must be capable of being integrated and tested.

The prototyping activity has been performed with giving at least partial functionality, so the next iteration is going to be planned to develop the functionality of the prototype. Because the prototype was developed as “manage Order” use-case main flow scenario realization, the “manage order” use-case is going to be assigned to the next Construction phase iteration.

2.15. Conclusion to Elaboration

During the Elaboration phase, the project team has developed the artifacts, which were initiated in the Inception phase. Moreover, Software Architecture Document has been initiated during this phase; the document is considered as having high significance to the whole software product and will be developed during the next phase.

As well, we have gained important experience in performing the prototyping activity. The prototype has not provided the required functionality and some rework must be performed in the next phase. While developing the prototype we have handled some important architectural concepts and formulated possible solutions to the system data transfer synchronization problem.

3. Construction

Rup methodology characterizes, that the Construction phase is the most “constructive” in the system development process – the phase is treated as the manufacturing phase, which focus on managing recourses and controlling the process. Comparing with the Elaboration and Inception phases, where the initiated artifacts and project management strategy was mostly concerned about intellectual property, the Construction phase deliverable artifacts and the process management is more concerned about developing deployable products.

3.1. Managing the process

Our project team is going to run four Construction phase iterations; the focus of each will be producing deployable components according to the use-cases assigned. The deployable components are going to be characterized as following (table 24):

	Component Category
	description

	System Management components
	supporting KIS management. These components are mostly related to “manage order” use-case implementation.

	System Synchronization components
	supporting communication with external systems (C5 and Pc Pack).

	System User components
	Supporting KIS on-line shopping services. Mostly related to “create order” use-case implementation.

	System Database components
	Supporting database services.

Table 24
During each iteration, the following activities are going to be performed:

· Component development

· Component testing

· Component integration

Component Development. During each iteration, one or more components are going to be developed. In the beginning of iteration, our project team is going to specify, what components are going to be developed; what functions they are going to implement.

Component testing. The developed components are going to be tested in the module level with a goal to indicate, how they maintain assigned functionality.
Component integration activity. Some of the developed components are going to be internally integrated with others. That means, such components are not directly deployable in the entire system and require to be integrated with other developed components.

In addition, during Construction phase, some of the iterations will focus on the requirements revision and system architecture development.

The whole Construction phase is will be measured by the following evaluation criteria:

· Is this product release stable and mature enough to be deployed in the user community? At the end of the Construction phase, we are going to measure the phase to this criterion to find out, how much the product release is ready for deployment in the user community. The level of satisfaction to this criterion depends on the output results of all the Construction phase iterations.
· Are all stakeholders ready for the transition into the user community? Even the Construction phase is mostly concerned about producing deployable components, the criterion, considering evaluation of human factors is also included. The phase is going to be measured to estimate, how the project stakeholders are ready for the product deployment. The criterion has a high inhesion with the Transition phase - the level of satisfaction to this criterion will give the main guidelines to the Transition phase.

Besides, our project group is going to assess all Construction phase iterations separately. We are going to perform this activity, because none of us has any experience in following RUP. The measurement, performed in each iteration, will help us in planning and monitoring activities. We are going to measure each iteration by the following evaluation criteria:

· How do the constructed components correspond to the use-case, assigned to the iteration? At the end of iteration, the level assigned use-case implementation is going to be measured. We have agreed to represent this measure in the approximate percentage.
· Does each component maintain assigned functionality? During the iteration, several components may be constructed in order to maintain assigned use-case. Each component also is going to be measured, how it maintains assigned functionality with a reason to indicate, which of the components requires rework.

· Are the components prepared for integration in the entire system? At the end of each iteration, we will also measure, if the components are prepared to be integrated in the entire system.

The defined evaluation criteria are general for all Construction phase iterations. However will focus on constructing the specific component or components. In the “planning the iteration” activity, performed during each Construction phase iteration, we are going to concretize these general criteria with specific details.

4. Construction Iteration I

4.1. Planning the iteration

During the first iteration of Construction phase, we will focus on developing the “manage order” use-case. The use-case is going to be developed in order to construct the executable system components and preparing the components for final integration.

To perform this activity, we are reflecting the previous iteration; a vertical prototype was developed during that iteration. The main goal of the prototype was to provide a possible data transferring solution to the other systems – C5 and Pc Pack. During this iteration, we will construct to the next version of the prototype. By doing this, we will reexamine the implementation possibilities of the most significant components and implement them in to maintain assigned “manage order” use-case functionality.

During this iteration we are going to give some focus on the system architectural considerations – we will extend the general system architecture, which was defined in the Elaboration phase.

4.1.1. Evaluation criteria

The current iteration is going to be measured by the following evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? During the iteration, we are going to develop a set of components; the responsibility of them is to implement “manage order” use-case. At the end of this iteration, we will approximately evaluate how much of the use-case is implemented.
· Does each component maintain assigned functionality? The components, which we are going to construct during this iteration, will be assigned with specific functionality. We are going to measure each component in order to find out, how it is maintaing assigned functions.

· Are the components prepared for integration in the entire system? At the end of iteration, we will evaluate the components by defining, if they are prepared for the entire system integration.

4.2. Requirements [process]

Construction phase iteration I is concerned with producing the deployable components for the “Managing order” use-case. The project team is going to reconsider this use-case in detail in order to prepare a design model for components construction.

Furthermore, we are going to reexamine the supplementary specification with a goal of deploying and optimizing the available recourses.

4.3. Supplementary requirements [product]

The Supplementary requirements are refined for including additional information about open source components which we are going to use during the duration of this project.

It was mentioned in the project scope, the contribution goal of this project is to develop a web shop as the data input facility. The project team is not going to develop the new web shop for the company – instead, we are going to use the services, provided by the open-source application, called “Commerce starter kit”.

“Commerce starter kit”

“Commerce Starter Kit demonstrates an e-commerce storefront application complete with shopping cart, product catalog, and a web service to submit orders”; after performing an amount of investigations, the project team found the application being appropriate to the main goals and the scope of the project.

The “Commerce starter kit” source consists of 3 major components, which are responsible to support a real e-commerce web-shop. These components are:

· Commerce

· CommerceAdmin

· CommerceDatabase

Commerce. This component is responsible to support electronic shopping service to the customers. We are not going to investigate or to develop this component during this iteration.

CommerceAdmin. The CommerceAdmin component is responsible for supporting the managing web-shop service. As we have found, this “Commerce Starter kit” component is exactly the one, which is going to be developed in order to produce the KIS Admin component of the system.

CommerceDatabase. The CommerceDatabase component is a database in MS SQL, which contains the web-shop data. As the previous one, this component is going to be developed in order to extend the database for supporting the requirements of the KIS system.

The current constructing activities will be concerned with the following components (table 25):

	Original component title (“Microsoft Commerce starter kit”)
	Component title (KIS)

	CommerceAdmin
	KIS Admin

	Commerce
	KIS Shop

	Commerce (database)
	KIS database

Table 25. Components being developed during the iteration

4.4. Functional requirements [product]

The “Manage order” use-case is revisited and refined according to the functionality, maintained by “Commerce starter kit”. More details about “ASP.net commerce starter kit” might be found in the supplementary specification
.

4.4.1. Use-case changes for Main Success Scenario
The order of actions of the use-case is refined with the goal to follow the functionality the “Commerce starter kit” supports. Comparing to the “manage order” use-case, which was developed in the previous phases, the newest use-case version does not contain essential changes.

However, there are several changes, which were found to be important. They were applied to keep the use-case specific to our case and at the same time following the “Commerce starter kit”. The applied changes and additions are presented in following table (26):

	Step number
	Step explanation (use-case model version 1.1)
	Changes and corrections (use-case model version 1.2)

	2
	“Administrator selects the “Order list” from the menu.”
	“Administrator selects the “Customers” from the menu.”

	2.1
	
	The Administrator selects particular Customer and opens his/her “Order list”

	6.1
	
	“The System presents the “Customers”, generated from the data of the customers in the Web Shop database”.

Table 26. "manage order" use-case changes

So, after performing the changes, the “manage order” use-case looks as follows (table 27):

Main Success Scenario (or Basic Flow):

	Actor Action (or Intention)
	System Responsibility

	1. Administrator access the Web Shop’s main page www.KeyCard.dk, after validating authorization.

2. Administrator selects the “Customers” from the menu.

2.1. The Administrator selects particular Customer and opens his/her “Order list”

3. Administrator marks the order which supposed to be executed.

4. Administrator confirms the execution of the order.

5.Administrator is informed about successful execution of the order.

	6. The System validates the Administrator Access.
6.1. The System presents the “Customers”, generated from the data of the customers in the Web Shop database.
7. The System presents the “Order list”, generated from the data of the orders of the Customer in the KIS Shop database.
8. The System registers the order into C5 and inserts necessary data to Pc_Pack.

9. The invoice and the label is printed out and the system sends a confirmation e-mail message to the customer.

Table 27. "Manage order" use-case (vesrion 1.2)
4.4.2. Conclusion to requirements

During the requirements revision activity, the functional requirements were revisited in order to apply some changes, which could help us to optimize the KIS Admin component construction process. By doing that, we have included some additional steps in our use-case; we believe, that these steps are not disorganizing the essentials of the “use-case” and at the same time, they will simplify use-case construction activity.

4.5. Architecture developing

During this iteration, the initiated Software Architecture document is going to be developed.
4.5.1. General system architecture

While developing the architecture, we have made some investigations in ASP.net web-application structure and attempted to adapt our defined architectural solution. As a result, the system architecture is presented in the following picture (Figure 11). For giving a better understanding of the ASP.net application structure, we have presented the correspondent layers in the ASP.net technology environment.

[image: image11.jpg]Cllent Browser (Keyeard Web Shop page)

rernton Comperet "
= b

Uorpssa

Euart Handler Componert

Funstcn Comparat

ssien ssaung

s00NET
5 applaton Po Pack sppication
—_—
WEEEL =
D | p— =

Figure 11. System architecture

While trying to follow the defined system architecture essentials, we attempted to assign our defined architectural tiers to the ASP.NEt web-application structure.

4.5.1.1. ASP.NET application structure

Asp.net web application structure consists of the following layers:

Presentation layer. The presentation layer is the layer, which can directly be observed by the web application user; this layer contains all web form and control objects.

Business layer. The business layer is the layer, where the logic of the application is held. This layer is transparent to the user; the objects, included in this layer are supporting application functionality.

DBMS layer. The DBMS layer is responsible for supporting ASP.net connection to DBMS.

4.5.1.2. System architecture adaptation

In this section we are going to indicate, how the defined system architecture has been adapted to general ASP.NET architecture.

The initial architecture solution has been indicated to consist of the following layers:

· View layer

· Control layer

· Model layer

View layer. Our project team has decided, that the View layer in our defined architecture directly maps to the Presentation layer of the general asp.net architecture.

Control layer. In our defined system architecture, the Control layer consists of two sub-layers:

· Event handler sub-layer

· Function sub-layer

Event handler sub-layer. Event handler sub-layer contains code-behind classes of the View layer. So, we can state, that the sub-layer is mapped to the Business layer of the general ASP.net web application architecture.

Function sub-layer. The function sub-layer is responsible for handling the database connections (using OLE and ADO.net technology) and providing connections to external applications (C5 and Pc Pack). The layer is also transparent to the user and is maintaining application functionality. This sub-layer is also mapped to the Business layer of ASP.net general architecture.

After assigning the sub-layers of the Control layer to the Business layer of the general ASP.net application, we can strongly state, that the entire Control layer is mapped to the Business layer.

Model layer. The mapping of the model layer is clear for our project team; the model layer represents the business logic of the application. So, the model layer is also mapped to the Business layer of the general ASP.net application.

4.5.1.3 Conclusion to general system architecture

While defining general system architecture, our project team has adapted the system architecture, developed in the previous iteration, to the ASP.net application structure.

4.5.2. Conclusion to architecture development

Including system architecture development activity in the Construction phase iteration seems to be quite uncommon decision. However, our project group has decided to perform this activity, because we observed, that the initiated architectural solution (in the Elaboration phase) did not cover the rest of the architectural aspects. So our choice to perform architectural rework has resulted a clearly defined architecture, which is adapted to the ASP.net application architecture.

4.6. Extending the prototype: Use-case implementation [process]

According to the Construction phase Iteration I plan, at this iteration our project team is concerned with developing the “manage order” use-case. Considering the iteration measurement results (evaluation criteria) for the Elaboration phase, the most significant functions, tested on the prototype, had failed
:

1. registering the data to Pc Pack

2. registering the data to C5

At this stage of the system engineering process, the project team is going to construct 3 components - the System management component and synchronization components - which are the most significant components for the entire project.

4.7. Extending the prototype: Use-case implementation [product]

While developing the prototype, we have decided to develop the following components, maintaining such assigned functionality (table 28):

	component
	Component category
	Assigned functionality

	PcPackWriter
	Synchronization component
	Supporting data transition to Pc Pack

	C5 Writer
	Synchronization component
	Supporting data transition to C5

	KIS Admin
	System management component
	· Administrator authorization
· accessing customer list

· accessing order list

· order proceeding

Table 28. Components, being developed during the iteration

4.7.1. Constructing synchronization components

To develop the synchronization component of the prototype, the project team analyzed the test results, produced during the previous iteration (table 29):

	Product failures
	Product notes

	1. Proceeding Order
	Failure because of dependency on other functions:

· Registering the data file in Pc Pack

· Registering the data file in C5

	2. Registering the data file in Pc Pack
	Failure because of access denial to the input folder

	3. Registering the data file in C5
	Failure because of file recognition problems (the file has not been recognized by C5)

Table 29, prototype 1.0 testing results (Elaboration phase)

The reasons functional test failures were related to the programming logics and operating system security problems.

4.7.1.1. Constructing the synchronization component [PcPackWriter]

Pc Pack synchronization component is concerned with possibility to import the data of registered Orders to the Pc pack application. As it was observed from the previous investigations, Pc Pack is able to retrieve the data, written in the file of a special format. The file must be placed in the Pc Pack input directory. If the file is recognizable, the application is able to import the data and generate the Post Danmark package labels.

So, Pc Pack synchronization component constructing consists of such steps as:

1. Determining the import data file format

2. Determining the path of Pc Pack Input Directory
3. Developing the corresponding prototype classes

Pc Pack Order data import file format

During the construction activity, the strict Pc Pack data import constraints were followed. The System Architecture Document provides the format for the data import file for Pc Pack (table 30):

	Order Import data file format (Pc Pack)

	”<Order Number>”, ”<OrderState>”, <SenderID>, ”<ProductCode>”, ”<CustomerComment>”, ”<OrderCreationDate>”, ”<SentFrom>”, ”<SentTo>”, ”<CustomerNumber>”, ”<ISOCountryCode>”, ”<Name>”, ”<Surname>”, ”<AttPerson>”, ”<Street>”, ”<HouseNo>”, ”<PostBox>”, ”<PostNo>”, ”<City>”, ”<Province>”, ”<MomsNr>”, ”<phone>”, ”<ContactPerson>”, ”<E-mail>”, <PackageNumber>, ”<barCode>”, ”<ItemAmount>”, ”<CountryId>”, ”<ItemDescription>”, ”<TaxInside>”, <TaxValue>, ”<Currency>”, <Length>, <Width>, <Height>, <NettoWeight>, <Volume>, ”<TaxTarif>”, <TaxDescription>”, <PackageWeight>, ”<Service>”, <ChangeTradeForm>, <Ensurance>, <Reference><CR/LF>

Table 30. Pc Pack data import file format

The file is a simple comma-separated file. The necessary values for generating the package label are marked in bold and that means other values might not be used – they could be considered as nulls.

Determining the path of Pc Pack import Directory

According to the Pc Pack documentation, the Pc Pack import directory path is:

C:\…\EXIMP\IN

However, as mentioned in the beginning of the section, the previous iteration test results indicated, that operating system security constrains were not allowing the Asp.net application to access any directory with purpose to read or write. To cope with this problem, the developers’ team has configured the operating system to grant the access to the directory for ASP.net client for writing/reading purposes.
Developing corresponding classes

At this stage of prototype development, there are two classes, which must be updated to perform data import to Pc Pack:

· Order class

· PcPackWriter class

Constructing Order class
The attributes, restricted by the file format, were added to the existing prototype class Order (figure 12):

[image: image101.wmf]KIS Admin component

UserControls

FunctionControls

+

writeToPcPack

() :

void

pcPackWriter

-

pcPackOrder

:

PcPackOrder

Orders

.

ascx

[image: image102.wmf]+

writeToDebKart

()

+

writeToOrdKart

()

+

writeToOrdLinie

()

-

importDebKartFile

:

String

-

importOrdKartFile

:

String

-

importOrdLinieFile

:

String

C

5

Writer

 EMBED Visio.Drawing.11
[image: image12.wmf]+

Page

_

Load

()

+

Present

_

Order

()

+

btn

_

proceedOrder

_

click

()

-

Order

:

object

(

idl

)

-

OrderController

:

object

(

idl

)

AdminController

+

OrderController

() :

Object

+

PresentOrder

()

+

ProceedOrder

()

-

Order

:

object

(

idl

)

-

PcPackWriter

:

object

(

idl

)

-

OrderText

:

string

(

idl

)

OrderController

+

pcPackWrite

() :

object

(

idl

)

+

writeToPcPack

()

-

Order

:

Object

PcPackWriter

+

getReceiveCustomerNo

()

+

getIsoCountryCode

()

+

getName

()

+

getAttPerson

()

+

getStreet

()

+

getHousNumber

()

+

getPostNumber

()

+

getCity

()

+

getPhoneNumber

()

+

getEmail

()

+

getCustomerComment

()

+

getProductList

() :

Object

-

receiveCustomerNo

:

int

-

isoCountryCode

:

String

-

name

:

String

-

surName

:

String

-

attPerson

:

String

-

street

:

String

-

houseNumber

:

String

-

postNumber

:

String

-

city

:

String

-

phoneNumber

:

String

-

email

:

String

-

customerComment

:

String

-

productList

:

Object

Order

+

setProductID

() :

void

+

setProductName

()

+

setProductAmount

()

+

setProductPeice

()

+

getProductID

()

+

getProductName

()

+

getProductAmount

()

+

getProductPrice

()

-

productID

:

String

-

productName

:

String

-

productAmount

:

String

-

productPrice

Product

+

writeToC

5

()

-

order

:

Object

C

5

Writer

[image: image13.wmf]-

orderNumber

:

int

-

orderState

:

string

-

receiverCustomerNo

:

string

-

productCode

:

string

-

iSOCountryCode

:

string

-

name

:

string

-

surname

:

string

-

attPerson

:

string

-

street

:

string

-

houseNo

:

string

-

postBox

:

string

-

postNo

:

string

-

city

:

string

-

province

:

string

-

momsNo

:

string

-

phoneNo

:

string

-

contactPerson

:

string

-

eMail

:

string

-

customerComment

:

string

-

sentFrom

:

string

-

sentTo

:

string

-

packageNumber

:

int

-

barCode

:

string

-

itemAmount

:

string

-

countryId

:

string

-

itemDescription

:

string

-

taxInside

:

string

-

taxValue

:

string

-

currency

:

string

-

packageLength

:

string

-

packageHeight

:

string

-

packageWidth

:

string

-

packageWeight

:

string

-

nettoWeight

:

string

-

packageVolume

:

string

-

taxTarif

:

string

-

taxDescription

:

string

-

service

:

int

-

changeTradeForm

:

string

-

ensurance

:

string

-

reference

:

string

Order

Figure 12. Prototype. Development of Order class
Constructing PcPackWriter.cs class

PcPackWriter class is responsible to generate the import file and place it in the Pc Pack import directory.

In the previous prototype version, the class contained methods, responsible for generating a “dummy” file with fake data. During this iteration, the project group has constructed the methods for generating the file and placing it to the required directory (figure 13):

[image: image103.wmf]Admin component

functionControls

+

writeToDebKart

() :

string

+

writeToOrdKart

() :

string

+

writeToOrdLinie

() :

string

-

ImportDebKartFile

:

String

-

ImportOrdKartFile

:

string

-

ImportOrdLinieFile

:

string

C

5

Writer

Model

UserControls

+

proceedClick

()

Orders

.

asxc

-

A

-

D

-

C

GeneralDataHolder

-

generalDataHolder

:

GeneralDataHolder

DebKart

-

generalDataHolder

:

GeneralDataHolder

OrdKart

-

generalDataHolder

:

GeneralDataHolder

OrdLinie

-

OrderLinie

[] :

OrdLinie

OrderLinieCollection

-

generalDataHolder

:

GeneralDataHolder

-

ordKart

:

OrdKart

-

debKart

:

DebKart

-

orderLinieCollection

:

OrderLinieCollection

ModelController

-

modelController

:

ModelController

-

c

5

Writer

:

C

5

Writer

OrderController

[image: image104.jpg]it s o b s v
oy

Presn—

& Gt e
[U P —
ity

FR—
T s . st

PRS- -
[——————

! ==)

Figure 13
[image: image14.wmf]+

Page

_

Load

()

+

Present

_

Order

()

+

btn

_

proceedOrder

_

click

()

-

Order

:

object

(

idl

)

-

OrderController

:

object

(

idl

)

AdminController

+

OrderController

() :

Object

+

PresentOrder

()

+

ProceedOrder

()

-

Order

:

object

(

idl

)

-

PcPackWriter

:

object

(

idl

)

-

OrderText

:

string

(

idl

)

OrderController

+

pcPackWrite

() :

object

(

idl

)

+

writeToPcPack

()

-

Order

:

Object

PcPackWriter

+

getReceiveCustomerNo

()

+

getIsoCountryCode

()

+

getName

()

+

getAttPerson

()

+

getStreet

()

+

getHousNumber

()

+

getPostNumber

()

+

getCity

()

+

getPhoneNumber

()

+

getEmail

()

+

getCustomerComment

()

+

getProductList

() :

Object

-

receiveCustomerNo

:

int

-

isoCountryCode

:

String

-

name

:

String

-

surName

:

String

-

attPerson

:

String

-

street

:

String

-

houseNumber

:

String

-

postNumber

:

String

-

city

:

String

-

phoneNumber

:

String

-

email

:

String

-

customerComment

:

String

-

productList

:

Object

Order

+

setProductID

() :

void

+

setProductName

()

+

setProductAmount

()

+

setProductPeice

()

+

getProductID

()

+

getProductName

()

+

getProductAmount

()

+

getProductPrice

()

-

productID

:

String

-

productName

:

String

-

productAmount

:

String

-

productPrice

Product

+

writeToC

5

()

-

order

:

Object

C

5

Writer

order (attribute). The instance of order is passed as a parameter to the PcPack writer constructor in case of writing the order data to the file.

Filename (attribute). The file name is generated according to the file name template, presented in the Pc Pack documentation:

FIMP<xxxx>.INH

<xxxx> ::= <auto-generated number>

filePath (attribute). The filePath is an attribute, which contains the string of file path. In this stage of implementation process, the file path is determined in the variable initialization:

string filePath = @"C:\keysoft\PFS\EKSIMP\IN\";

generateFileName (method). The generateFileName method is responsible for generating the recognizable file name by Pc Pack. According to the Pc Pack documentation, a separate file is generated for every order, being imported to Pc Pack. Considering the file name format, defined in Filename attribute description, the unique file indicator lies in <xxx>, which is auto-generated number.

To ensure the unique file indicators, our team decided to use the full date expresion, translated to the queue of digits:

private void generateFilename()

{

System.DateTime dtm = System.DateTime.Now;

string dateTimeString = dtm.Year.ToString() +

dtm.Month.ToString() +

dtm.Day.ToString() +

dtm.Hour.ToString() +

dtm.Minute.ToString() +

dtm.Second.ToString() +

dtm.Millisecond.ToString();

fileName = "FIMP" + dateTimeString + ".INH";

fileName = filePath + fileName;

}

 For example, file name, recognizable by Pc Pack might, look like:

FIMP20040926123034678.INH

writeToPcPack (method). The method is carrying responsibility of data transition to Pc Pack. When the method is called, the file name is generated and located to the PC pack import directory. Then the data is obtained from the Order class instance and is written to the file.

4.7.1.2. Constructing the Synchronization component [C5Writer]

In this iteration, the C5 synchronization component is not implemented, because the C5 ODBC driver is not completely investigated. That means the “Managing Order” use-case is going to be further developed during next Construction iteration.

4.7.1.3. Constructing the Management component [KIS Admin]

The project team is going to use “Commerce starter kit” for developing KIS Admin component. We are going to expand the kit functionality by adding the necessary functions to implement the “Manage order” use-case main scenario.

CommerceAdmin structure

The presented diagram provides an overview of CommerceAdmin navigation map (Figure 14):

[image: image105.wmf]KIS Admin component

UserControls

FunctionControls

+

writeToPcPack

() :

void

pcPackWriter

-

pcPackOrder

:

PcPackOrder

Orders

.

ascx

Figure 14
[image: image15.wmf]Administrator

Menu

Header

Footer

Right Pane

Default

Admin

Products

Customers

Category

Home

Default

Orders

Brows Products

Add

Delete

Edit

Delete

Edit

Proceed

Add New

product

Edit

/

Updat

Product

Add New Admin

Brows Admin

The dark frame indicates the area, where the CommerceAdmin component has been developed in case to maintain required functionality. The CommerceAdmin component of “Commerce starter Kit” is supporting Order management functions (Delete and Edit), so while performing Admin component developing, we have included Proceed method in the Order.ascx object:

public class Orders : System.Web.UI.UserControl{

 ...

protected void Proceed_Click(object sender, DataGridCommandEventArgs e){

string orderid = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

ProceedOrder(orderid);

 }

}

4.7.1.4. Constructing KIS database

We have decided to make some changes in the database in order to adapt it to the entire system. We have extended the database with following tables:

· CMRC_Country (ISOCountryCode, Land)

· CMRC_Payment (PaymentType, PcPackValue, C5Value)

CMRC_Country. The table represents the country, where the Customer lives. The table consists of two columns: ISOCountryCode and Land. After we performed investigations, what data is imported to C5 and Pc Pack, we found, that country of customer residence is transferred to both systems. Thus, when transferring customer information, the ISO country code is imported to PcPack and C5 needs to achieve information about country name. So including this table to the web shop database allows us to strengthen the cohesion between the web-shop database and C5 and Pc Pack components.

CMRC_Payment. Also we decided to include the CMRC_Payment table in the web shop database. The CMRC_Payment table includes values, which represent the payment methods used for order payment. However, we do not know what type of data, representing payment method, is transferred to PcPack and C5. We decided to have general type (PaymentType) and also the correspondent values – the payment type, supported by C5 (C5Value) and payment value, supported by PcPack (PcPackValue).

After including additional tables to the web-shop database, we also altered the existing ones with including such columns:

CMRC_Customers (table of customers):

· ISOCountryCode (Country code [ISO notation]);

· Street (street);

· HouseNo (house number);

· PostNo (Post number);

· City (City);

· PhoneNo (Phone number);

CMRC_Orders (table of orders):

· SenderId (Keycard company identificator)

· productCode (product code);

· packageNumber (package identificator);

· Payment (payment type)

· OrderStatus (order status (proceeded, unproceeded));

So, after performing database adaptation activity, we have produced the following ER-diagram (figure 16):

[image: image16.jpg]

Figure 15. Web Shop database

4.8. Component testing

During the Construction phase Iteration I such components were developed:

· Component, supporting the system managing (Admin)

· Component, supporting data import to Pc Pack (PcPackWriter)
4.8.1. KIS Admin component testing

These are the results of Admin component tests (table 31):

	Product passes
	Product notes

	1. administrator authorization
	The administrator management environment of the system is accessed.

	2. accessing customer list
	The customer list with sample data is visible.

	3. selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible.

Table 31
The KIS Admin component passed all the functions (table 31), related to data access and data population. Such testing results indicate, that the component is developed with a goal of being integrated with the KIS database. So, the project group is leading the development process in a proper way.

	Product failures
	Product notes

	4. The order proceeding function is not working
	The failure is observed because the component is not integrated with Pc Pack Writer component

Table 32
4.8.2. PcPackWriter component testing

These are the results of PcPackWriter component tests (table 33):

	Product passes
	Product notes

	1. generate recognizable file for Pc Pack
	The file is generated.

	2. locate the file in Pc Pack Import directory
	Pc pack application recognized the file and data was imported. The label code was generated. The testing environment does not support printing, so the label was not printed – instead, the “can’t access printer” message was showed by Pc Pack

Table 33
The PcPackWriter component testing results (table 33) determine, that the PcPackWriter component is working properly.

4.8.3. Conclusion to component testing

The constructed components were tested with a goal to determine, how they are maintaining assigned functionality. So in this stage of the process, we have performed the testing at the module level. The obtained testing results indicate, that the components are fully functioning separately. However, they also determine, that the components have to be integrated for supporting required purposes.

4.9. Component integration

The constructed components are not going to be integrated during this iteration – considering the fact, that two iterations are assigned to implement particular use-case, existing component integration is under the scope of this iteration.

4.10. Process monitoring and planning
4.10.1. Process monitoring

The current iteration was measured to the evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? During the iteration, approximately 60% of “manage order” use-case has been implemented; the Admin and PcPackWriter components were constructed. Also, the KIS Shop database has been developed.

· Does each component maintain assigned functionality? The testing results indicated, that the constructed components – PcPackWriter and KIS Admin – are fully maintaining assigned functionality. However, because the components are not integrated together, the KIS Admin component is not maintaining “proceeding order” function.

· Are the components prepared for integration in entire system? The PcPackWriter and KIS Admin components are maintaining supported functionality; however, they are not prepared for the entire system integration. Before the integration in the entire system, the developed PcPackWriter component has to be integrated with KIS admin component internally.

4.10.2. Planning the next iteration

During the next Construction phase iteration, the same “manage order” use-case is going to be developed. The following activities will be to be performed:

· integrating constructed components (PcPackWriter and KIS Admin)

· constructing C5Writer component

4.11. Conclusion to Construction Iteration I

During this iteration, the components have been constructed and tested. Also, some development has been performed to the Software Architecture Document. The constructed components were tested and prepared for internal integration, so, our project team is ready to enter the Construction Iteration II.

5. Construction Iteration II

5.1. Planning the iteration

The emphasis of the second construction phase iteration is the “manage order” use-case:

[image: image106.wmf]Admin component

functionControls

+

writeToDebKart

() :

string

+

writeToOrdKart

() :

string

+

writeToOrdLinie

() :

string

-

ImportDebKartFile

:

String

-

ImportOrdKartFile

:

string

-

ImportOrdLinieFile

:

string

C

5

Writer

Model

UserControls

+

proceedClick

()

Orders

.

asxc

-

A

-

D

-

C

GeneralDataHolder

-

generalDataHolder

:

GeneralDataHolder

DebKart

-

generalDataHolder

:

GeneralDataHolder

OrdKart

-

generalDataHolder

:

GeneralDataHolder

OrdLinie

-

OrderLinie

[] :

OrdLinie

OrderLinieCollection

-

generalDataHolder

:

GeneralDataHolder

-

ordKart

:

OrdKart

-

debKart

:

DebKart

-

orderLinieCollection

:

OrderLinieCollection

ModelController

-

modelController

:

ModelController

-

c

5

Writer

:

C

5

Writer

OrderController

Iteration I

Iteration II

Iteration III

Iteration IV

 As mentioned in the beginning of the Construction phase, the “manage order” use-case is going to be developed during 2 Construction phase iterations. So during this iteration, we are going to perform such activities:

1. Internal integration of the already-developed components (PcPackWriter and KIS Admin);

2. Developing C5Writer component;
3. Internal integration of the already-developed components (C5Writer and KIS Admin)

We are not going to revisit the Requirements specifications, because the focus of this iteration does not raise any of requirements changes or updates. Such iteration plan is developed considering the fact, that previous iteration had not had the satisfaction level of evaluation criteria as high, as it was expected – the developed components were not prepared for the entire system integration; the C5Writer component also wasn’t developed.

5.1.1. Evaluation criteria

The current iteration is going to be measured by the following iteration evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? During this iteration, the development of “manage order” use-case is still being continued. At the end of iteration, the constructed components are going to be evaluated by indicating, how much of the “manage order” use-case is constructed.
· Does each component maintain assigned functionality? The constructed KIS Admin and C5Writer components are going to be measured, how they maintain assigned functionality.

· Are the components prepared for integration in the entire system? At the end of iteration, the KIS Admin component is going to be measured if it is prepared for the final system integration.

5.2. Internal component integration [KIS Admin and PcPackWriter]

During the previous iteration, the following components were developed:

1) System synchronization component:

a) PcPackWriter:

2) System Management component:

a) KIS Admin

After the components were constructed, the testing activity was performed in case to determine components’ functionality. The testing results showed that components are functioning , but separately. The following activity is performed in order to indicate, how the components must be integrated together.

5.2.1. Indicating internal components integrity

To performing this activity, we are going to examine our testing results
:

1. The KIS Admin component is maintaining the following functions (table 34):

	Product passes
	Product notes

	1. administrator authorization
	The administrator management environment of the system is accessed

	2. accessing customer list

	The customer list with sample data is visible

	3. selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible

Table 34
The KIS Admin component testing results show (table 34), that the component is maintaining the functionality, required for Administrator authorization, accessing customer list and accessing the orders. At this stage, the mentioned functionality is maintained separately from the entire system.

2. The KIS Admin component is failing on the following functions (table 35):

	Product failures
	Product notes

	4. The order proceeding function is not working

	The failure is observed because the component is not integrated with Pc Pack Writer component

Table 35
3. The PcPackWriter component is maintaining the following functionality:

	Product passes
	Product notes

	1. generate recognizable file for Pc Pack

	The file is generated.

	2. locate the file in Pc Pack Import directory
	Pc pack application recognized the file and data were imported. The label code was generated. The testing environment does not support printing, so the label was not printed – instead, the “can’t access printer” message was showed by Pc Pack.

Table 36
The testing results are stating (), that PcPackWriter component is working properly and is prepared for integration with other components.

Considering the “manage order” use-case, the order proceeding function is the core function in the whole use case – this function is responsible to maintain the data transition to the other system components – C5 and Pc Pack. The testing failure determines, that the component integrity must be performed to internally integrate the Admin component with the PcPackWriter.

5.2.2. Component integration

Having analyzed the testing results, we can make a deduction, that the maintained components have to be integrated internally as follows (Figure 16):

[image: image17.wmf]view

Presentation component

control

Model

P

r

e

s

e

n

t

a

t

i

o

n

L

a

y

e

r

(

A

S

P

.

N

E

T

)

B

u

s

i

n

e

s

s

l

a

y

e

r

(

A

S

P

.

N

E

T

)

Even Handler

Function

UserControls

Function Controls

Figure 16
The components were internally integrated - as the result, the Admin component was extended by including PackClass to the FunctionControls package of the Admin Component.

Component testing

The KIS Admin component was tested and the following testing results were obtained (table 37):

	Product passes
	Product notes

	1. Order proceeding (PcPack)
	The order proceeded with writing the order data to Pc Pack. The label is generated and Pc Pack called the printer.

Table 37
The testing results indicate, that components were integrated successfully and prepared for the final integration test.

5.3. Extending the prototype: Use-case implementation [process]

The assessment of the previous iteration indicates, that iteration evaluation criteria were partly satisfied; some of the components, which were planned for development, were not constructed and were postponed to the current iteration. Thus, as a result, it gave approximately 60% of “manage order” use-case functionality implemented.

So, as mentioned before in iteration planning activity, the emphasis of this iteration is to continue development of the “manage order” use-case. Speaking more precisely, the core iteration activity is to construct the C5writer component, which was not constructed in the previous iteration and was postponed to the current iteration. Thus, the following sections give a determination of how the C5Writer component is being developed.

5.4. Extending the prototype: Use-case implementation [product]

While extending the prototype with the purpose of continuing to develop the required functionality, during this iteration the following components are going to be developed (table 38):

	component
	Component category
	Assigned functionality

	C5Writer
	Synchronization component
	Supporting data transition to C5

Table 38
We want to indicate, during this iteration, we are not going to construct separately functioning C5Writer component. This will be to be developed and directly integrated in the KIS Admin component.

5.4.1. Constructing the synchronization components

During the component testing activity, which has been performed after the Admin and PcPackWriter components were integrated, the following results appeared (table 39):

	Product failures
	Product notes

	Proceeding Order
	Failure because of dependency on other functions

	registering the data file in Pc Pack

	The customer data has been imported to PcPack application. The package bar-code has been generated and prepared to be printed out

	registering the data file in C5

	Failure because the C5Writer component is not developed

Table 39
The testing results indicate, that the main function, which is maintain by the system – proceed order – is functioning partly. So, to develop the Proceeding order function, the C5Writer component has to be constructed.

5.4.1.1 Constructing synchronization component [C5Writer]

The component construction is going to be divided in the following steps:

1. Examining the determined possibilities of accessing C5 from external applications;
2. Examining practical data import to C5;
3. Constructing the component;
Examining the determined possibilities of accessing C5 from external applications

During the Elaboration phase, in the initial prototyping activity some of the possibilities of accessing the C5 application from the external applications were examined:

1.Data transition using Microsoft Navision C5 ODBC driver. The C5 application provides an ODBC driver for data exchange purposes. In this case, our group has produced a number of tests to examine the driver capability.

2.ODBC driver for Microsoft Navision C5 development solution. The possibility of implementing ODBC driver for Microsoft Navision C5 also has been investigated in the high level of abstraction.

2.Data import/export using comma-separated file. It is possible to import/export data in C5 using comma-separated file.

Data transition using Microsoft Navision C5 ODBC driver

As mentioned before in the investigation, made in the Elaboration phase, the C5 application can be accessed while using ODBC. In this section, we are going to present our testing results, performed for accessing C5 database from other applications.

The C5 application is being supported by ODBC driver, which can enable other applications to use ODBC for data transferring purposes. Our project team has examined the data transition using ODBC while examining the driver capabilities in following dimensions:

1. Retrieving data from C5 to ASP.net application

2. Retrieving data from C5 to other Microsoft applications

Retrieving data from C5 to ASP.net application

To perform this investigation, our project team has used the prototype, which was developed during the previous iterations. To obtain better results, the existing data from the Company was used. The prototype was extended with by following steps:

1. Registering file DNS to the C5 ODBC driver;

2. Building the ODBC data adapter from the toolbox data menu;

3. Generating the DataSet for retrieving the data.

Registering file DNS to the C5 ODBC driver

When the C5 application is installed, the C5 ODBC driver is registered to the operating system and the data source can be registered to the driver.

All the data of C5 is kept in the file, called c5data.dat, which is stored in the root C5 directory:

C:\C5Keyc300\c5data.dat

The data file is registered as the data source to the c5 ODBC driver, by using Windows ODBC Data Source Administrator.

When the data source is assigned to the driver, it can be used for data transfer purposes.

Building the Odbc data adapter from the toolbox data menu

For the C5 ODBC investigation purpose, the additional web form, named ODBC_test.aspx, was created in our prototype. Having the testing web form created, the ODBC data adapter has been generated to the C5 ODBC datasource (figure 17). For the testing purposes, we have chosen to generate a data adapter for DebGruppe table of C5 database.

[image: image18.wmf]

Figure 17. generating data adapter

However, while generating the ODBC data adapter, a message appeared, indicating, that the adapter is not generated properly. The details of the message are represented (table 40):

	Data adapter configuration
	Data adapter configuration details

	SELECT statement
	Generated SELECT statement.

	Table mappings
	Generated table mappings.

	INSERT statement
	Generated INSERT statement. The original query uses only expressions and functions in the selected list. The statement will not be generated.

	UPDATE statement
	Generated UPDATE statement. The original query uses only expressions and functions in the selected list. The statement will not be generated.

	Generated DELETE statement.
	Generated DELETE statement (with warning)

Table 40. C5 ODBC driver data adapter configuration (Visual studio .NET 2003)

Avoiding the warning messages, the adapter was generated. However, the determined problems a reason to indicate, that the ODBC driver is impossible to use properly.

Generating the DataSet for retrieving the data and populating the data in the DataGrid

We have succeeded to generate a dataset for obtaining the data from the data source by using generated adapter:

public class ODBC_test : System.Web.UI.Page

{

protected CommerceAdmin.DataSet1 dataSet11;

protected System.Data.Odbc.OdbcDataAdapter odbcDataAdapter1;

protected System.Data.Odbc.OdbcCommand odbcSelectCommand2;

protected System.Data.Odbc.OdbcCommand odbcInsertCommand1;

protected System.Data.Odbc.OdbcCommand odbcUpdateCommand1;

protected System.Data.Odbc.OdbcCommand odbcDeleteCommand1;

protected System.Web.UI.WebControls.DataGrid DataGrid1;

private void Page_Load(object sender, System.EventArgs e)

{

DataGrid1.DataSource = dataSet11;

DataGrid1.DataBind();

}

}
However, after the compilation was performed and the solution has been run, the DataGrid was populated only with the metadata of the DebGruppe table. The actual data has not been selected and populated.

Retrieving data from C5 to other Microsoft applications

After performing the investigation in using the ODBC driver in ASP.net application, we have raised the following questions:

1. Is the Navision C5 ODBC driver produced improperly?

2. Is the Navision C5 ODBC driver not compatible with Microsoft visual studio.net?

The partial answer has been found while performing ODBC driver investigation to retrieve the data to other Microsoft applications. For this investigation activity, our project team has chosen Microsoft Excel.

Managing C5 data from Microsoft Excel

To retrieve the C5 data to Microsoft Excel, the investigation activity was successful. During the experiment, the same DebGruppe table was imported to the Microsoft Excel. However, differently from the previous investigation results, the Microsoft Excel application has populated all the data from the table and also provided a possibility to insert, update and delete.

Conclusion to Data transition using Microsoft Navision C5 ODBC driver

After performing the previous experiments with C5 data manipulation from other applications, our project team has found, that the driver is produced properly, however, it cannot be used while developing the asp.net application using visual studio .Net development environment. This fact was proved by the successful investigation, which was performed to retrieve and manipulate with C5 data from other Microsoft applications.

ODBC driver for Microsoft Navision C5 development solution

In this section, we are going to give an overview of the ODBC driver for Microsoft Navision C5 development solution, which was produced during this iteration.

For developing the driver, we have considered the following aspects, and raised the following questions:

1. The ODBC architecture: what are the ODBC fundamentals?

2. ODBC driver architecture: what kind of architectures the ODBC drivers may implement? What are their considerations? What kind of architecture would the ODBC driver for Microsoft Navision C5 implement?

3. ODBC driver types: what types are the ODBC drivers? In which category does the ODBC driver for Microsoft Navision C5 lie?

4. What are the C5 database considerations? How would these considerations affect the driver implementation?

After performing the following investigations, we have summarize summarized driver development solution as follows:

1. The ODBC driver for Microsoft Navision C5 is a file-based ODBC driver (the C5 database source is a .dat file).

2. The driver belongs to ODBC 3.5 (or higher) Unicode driver (32-bit driver) category

The ODBC driver for Microsoft Navision C5 is a file-based ODBC driver. As mentioned before, the C5 data source is a .dat file, that means, the database is a set of tables, and the database features are implemented in the application level of C5. So, for this reason the driver is considered as file-based ODBC driver.

The driver belongs to ODBC 3.5 (or higher) Unicode driver (32-bit driver) category. The statement is based on the fact, that the driver has to deal with the database, which consists of data, presented in more than ANSI characters (special symbols and Danish letters). So, for providing a data transition, the driver must support Unicode. Also, the driver has to be able to work with 32-bit applications.

We have made the following objectives in order to develop the driver:

1. Developing the database engine for Microsoft Navision C5. Because the driver was considered to implement file-based ODBC driver architecture, the database engine for Microsoft Navision C5 has to be developed also. The database engine is a DLL, responsible for maintaining relational database features for the database.

2. Developing the ODBC driver. ODBC driver may be developed while using the C programming language and implement the ODBC functions.
Conclusion to ODBC driver for Microsoft Navision C5 development solution

We are stating, that ODBC driver for Microsoft Navision C5 development is the most appropriate solution, which could be applied for solving the data transition to C5 database problem. However, considering the time resource, our project group has only summarized the main objectives, which have to be obtained during driver development. At the current stage of the process, we have presented only theoretical solution, but if we have more time for problem investigation, we would perform driver implementation.

Data import using comma-separated file

We have stated the fact, that C5 documentation indicates possibility to import the data through the comma-separated files.

The investigation of this possibility our project team has performed while executing the following steps:

1. Generating a C5 import file with fictive data (manually);

2. Importing the data to C5 application;

Generating a C5 import file with fictive data

During this investigation, we have found the following:

1. C5 import file is a simple-comma separated file
2. The import file extension is .kom
3. The C5 import facility is able to import the file, while importing the data to the following data structures (kartotek):

· DebKart (debitors)

· OrdKart (orders)

· OrdLinie (order lines)
In our case, we are going to examine importing debitors (customers).

4. The import settings must be configured before the import is started. As mentioned before, the file format is not defining a strict number of data values. The import settings must define, which values are going to be imported.

5. The file may contain not only one customer. The data of every customer is separated by new-line in the file.

After investigating the following facts about data import, we have generated the fictive customers in the fictive file (figure 19):

	…

0,25921,"Jens Pedersen","DKK","9999373853"

0,25922,"John Davidson","DKK","9999973853"

…

	

Figure 18. Fragment of fictive import file (Customer)

After the test was run, the fictive customers were imported into the C5 database.

Conclusion to Data import using Comma-separated file

After performing the C5 application capability to import data in comma-separated files, we have achieved the successful results. The data could be imported to C5 database.

Conclusion to examining the determined possibilities of accessing C5 from external applications

After examining and presenting the possibilities of accessing C5 from external applications, we summarized the achieved results:

1. Data manipulation using Microsoft Navision C5 ODBC driver. The testing results showed, that the driver which is supported by C5 application, is not compatible with ASP.net technology, while deploying the driver in visual .NET studio environment. This fact gives us a reason to reject the following C5Writer component developing by using this driver.

2. C5 ODBC driver implementation. While examining the possibilities to access the C5 database, we also presented a development solution for C5 ODBC driver. However, considering the duration of this project, we are not going to implement the driver.

3. Data import using comma-separated file. We have performed some tests on the C5 data import using files capability. The tests have passed successfully. So in order to develop a system prototype, we are going to present the data synchronization solution while using data import to C5 application with comma-separated file.

Component constructing
While constructing the component, responsible for transferring data to the C5 application, we are going to extend the prototype, developed in the Elaboration phase. Perform the following steps:

1. Construct model layer classes. For performing this task, we are going to extend the prototype model layer with adding some more classes. These classes will represent the objects, used as importable data holders for C5 database:

1. DebKart (the instance of this class has to store data, importable to Debitor Kartotek)

2. OrdKart (the instance of this class has to store data, importable to Order Kartotek)

3. OrdLinie (the instance of this class has to store data, importable to Order Linies)

4. OrdLinieCollection (class is responsible for holding the collection of ordLinie instances for one particular order)

2. Extend the prototype class C5Writer. The task is going to be performed while adding some methods to the C5Writer, with responsibilities of writing the data to the comma-separated files. So, we are going extend the C5 Writer class with the following methods and attributes:

· importDebKartFile (attribute)

· importOrdKartFile (attribute)

· importOrdLinieFile (attribute)

· writeToDebKart (method)

· writeToOrdKart (method)

· writeToOrdLinie (method)

Constructing model layer classes

In the beginning of this task, we have performed some investigations on the C5 database. As a result of the investigation, we wanted to find out, what values of data, registered in the web shop as customers and orders, have to be stored in the mentioned classes for further data transferring to C5 database. While performing the investigations, we have found that the data, stored in the objects of indicated classes, is specific to every object. However, we have also gained the following information:

3. The DebKart and OrdKart classes share a set of attributes. This set of attributes we named as set D.

4. The OrdKart and OrdLinie classes share a set of attributes. This set of attributes we have named as set C.

5. The DebKart, OrdKart and OrdLinie share a set of attributes. This set of attributes we named set A

During the investigation of finding the shared attributes, the following scheme was produced (figure 19):

[image: image19.wmf]D

ebKart

O

rdKart

OrderLinie

A

D

A

D

C

A

C

AD

AC

A

Figure 19. Attribute-sharing scheme

The scheme indicates, how the attributes are shared among the objects. In the scheme, only mentioned sets of the attributes are included – actually, each object has also attributes, which have to be specific for a particular object.

When the attributes were analyzed, we have produced the following class diagram (figure 20), showing, how the classes are associated. For producing the relationship of the classes, we have used aggregation:

[image: image20.wmf]-

A

-

D

-

C

GeneralDataHolder

-

generalDataHolder

:

GeneralDataHolder

DebKart

-

generalDataHolder

:

GeneralDataHolder

OrdKart

-

generalDataHolder

:

GeneralDataHolder

OrdLinie

-

OrderLinie

[] :

OrdLinie

OrderLinieCollection

Figure 20 class diagram of classes, responsible for holding data, importable to C5 database

GeneralDataHolder. The class contains all attributes, which are shared by:

· DebKart and OrdKart (set D)

· OrdKart and OrdLinie (set C)

· DebKart, OrdKart and OrdLinie (set A).

This class is considered as general class. The class is aggregated by other three classes – DebKart, OrdKart and OrdLinie. The class has getting and setting methods for the mentioned sets of attributes.

DebKart. The class contains all the attributes, which are responsible for holding values, importable to Debitor Kartotek of C5 application. The class is aggregating the general class; with such behavior, the class has getting methods for the attributes, which belong to attribute sets A and D. Value getting methods for A and D attribute sets are encapsulating the aggregated GeneralDataHolder class getting methods. Also, the class has setting and getting methods for the specific attributes.

OrdLinie. The class is also aggregating the general class. As the previous one, the class is aggregating the general class in order to access the shared attribute sets; in this class, A and C attribute sets are concerned. So, the class has getting methods for A and C attribute sets. Also, as the previous one, it has setting and getting methods for the specific attributes.
OrdKart. This class is a holder for data values, importable to OrdKart. As the previous two classes, the class is also aggregating the general class. However, as the previous shared-attribute table indicated, the class has to contain all three shared attribute sets: A, D and C. For this reason, the class has getting methods, which are encapsulating all general class getters. Also, similarly as previous ones, the class has all setting and getting methods for the specific attributes.

OrdLinieCollection. The class is responsible for holding a collection of the OrdLinie objects. The collection of OrderLinie objects in this case is representing Order lines of one order.

Conclusion to constructing model layer classes

During the construction of model layer class activity, our project group has focused on designing activity – after performing some analysis on importable data structures to C5, our main task was to produce a class diagram, which could represent the data structures with shared data. We are indicating this activity as one of the most important activities in the whole construction phase, because the significant aspects of the final system design have been investigated.

Constructing C5Writer class

For performing this task, we are going to extend the C5Writer class, which was partly implemented in the prototype during the Elaboration phase. For obtaining the result, the C5 Writer class is going to be extended by adding the methods and attributes (figure 21):

Figure 21
[image: image21.wmf]+

Page

_

Load

()

+

Present

_

Order

()

+

btn

_

proceedOrder

_

click

()

-

Order

:

object

(

idl

)

-

OrderController

:

object

(

idl

)

AdminController

+

OrderController

() :

Object

+

PresentOrder

()

+

ProceedOrder

()

-

Order

:

object

(

idl

)

-

PcPackWriter

:

object

(

idl

)

-

OrderText

:

string

(

idl

)

OrderController

+

pcPackWrite

() :

object

(

idl

)

+

writeToPcPack

()

-

Order

:

Object

PcPackWriter

+

getReceiveCustomerNo

()

+

getIsoCountryCode

()

+

getName

()

+

getAttPerson

()

+

getStreet

()

+

getHousNumber

()

+

getPostNumber

()

+

getCity

()

+

getPhoneNumber

()

+

getEmail

()

+

getCustomerComment

()

+

getProductList

() :

Object

-

receiveCustomerNo

:

int

-

isoCountryCode

:

String

-

name

:

String

-

surName

:

String

-

attPerson

:

String

-

street

:

String

-

houseNumber

:

String

-

postNumber

:

String

-

city

:

String

-

phoneNumber

:

String

-

email

:

String

-

customerComment

:

String

-

productList

:

Object

Order

+

setProductID

() :

void

+

setProductName

()

+

setProductAmount

()

+

setProductPeice

()

+

getProductID

()

+

getProductName

()

+

getProductAmount

()

+

getProductPrice

()

-

productID

:

String

-

productName

:

String

-

productAmount

:

String

-

productPrice

Product

+

writeToC

5

()

-

order

:

Object

C

5

Writer

attributes

The attributes, which were added to the C5Writer class, are responsible for keeping names and paths of import files. For these reasons, we have made a decision to create three files with following naming format:

DebKartImport<xxx>.kom

OrdKartImport<xxx>.kom

OrdLinieImport<xxx>.kom

<xxx> ::= <auto-generated number>

The files are going to be kept in the following directory:

C:\C5Keyc300\data

The number <xxx> is generated when the particular application session is started. Thus, during one application session, three files are generated and filled with data.

Methods

The methods, included in the C5Writer class, are responsible to support the comma-separated files filling with data. We mentioned before, that three classes were generated as the holders of the data – so, the instances of these classes are sent as parameters to the methods calls as follows:

writeToDebKart(DebKart debKart). The method is called in order to write the Customer data, retrieved from the web-shop, to the DebKartImport file.

writeToOrdKart(OrdKart ordKart). The method is called in order to write the Order data, retrieved from the web-shop, to the OrderKartImport file.

writeToOrLinie(OrdLinie OrdLinieCollection). The method is called in order to write Order lines from one order, retrieved from the web-shop, to the OrderLiniesImport file.

Conclusion to Constructing C5Writer component

During the construction of C5Writer component activity, we have made further investigations in the possibilities to access C5 database from external applications. Our investigations were performed into two directions: investigating the existing possibilities and presenting our own theoretical solution. The performed investigations have given us a possible way to develop C5Writer component; we have managed this activity with using data import by comma-separated files possibility.

5.5. Internal component integration [KIS Admin and C5Writer]

The produced classes were directly integrated into Admin component as follows (figure 22):

[image: image22.wmf]view

Presentation

component

control

Model

P

r

e

s

e

n

t

a

t

i

o

n

L

a

y

e

r

(

A

S

P

.

N

E

T

)

B

u

s

i

n

e

s

s

l

a

y

e

r

(

A

S

P

.

N

E

T

)

Even Handler

Function

UserControls

Function Controls

Model

Figure 22
package UserControls. The package UserControls lies in the event-handler sub-layer of the system architecture. This package contains all classes, which are code-behind of view layer components. In this stage, we are only considering the Orders.asxc class, which has the method for order proceeding: proceed_click. When the user invokes proceed_click method, C5Writer object is generated, and methods writeToDebKart, writeToOrdKart and writeToOrdLinie are called.

package functionControls. Considering the system architecture, the package functionControls lies in the function sub-layer, because the classes of package are responsible for managing access to external systems. In this stage, we have extended the package with including C5Writer class. Also, in this package we have included a class, called ModelController. This class is responsible for maintaining aggregations between GeneralDataHolder, OrdKart, DebKart and Ordlines.

package model. Package model contains all the classes, which represent the model concepts of the system. Because this iteration is concerns with C5 data import, we have included the amount of classes, which are representing C5 import data structures and represented them in the component design.

5.6. Component testing

The KIS Admin component has been tested in order to examine, how it is functioning. The following test results indicate, that the “Admin” component is functioning properly in case of C5 data import (table 41):

	Product passes
	Product notes

	1. Proceeding the order (C5)
	The order is preceded with retrieving data from web shop database and writing the data to correspondent files. After the data was imported to C5, the printer was called in order to print out the invoice.

	2. generate file DebKart.kom
	The file was generated and filled with Customer data

	2. generate file OrdKart.kom
	The file was generated and filled with Order data

	3. generate file OrdLinie.kom
	The file was generated and filled with Order lines of the Order data

Table 41. Admin component test 1.2

During the testing activity, the component has passed all the defined functions. That determines, that KIS Admin is working properly concerning data insertion to C5 database.

5.7. Process monitoring and planning

5.7.1. Monitoring the process

Monitoring the process activity is based on measuring the iteration to the evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? During this iteration, the “manage order” use-case was developed 95%. We are measuring the use-case implementation by such percentage, because we have faced only the most important aspects of the use case (main success scenario).

· Does each component maintain assigned functionality? We have constructed the C5Writer component in this iteration. The component is functioning properly and it was directly integrated in the “Admin” component without transitional testing, because the component was based on model layer classes.

· Are the components prepared for the integration in the entire system? The developed management component KIS admin is prepared for being integrated in the entire system. We are stating this fact, because the Component is maintaining the required functionality and is implementing the main aspects of “manage order” use-case.

5.7.2. Planning next iteration

During this activity, we are going to plan our Construction Iteration III. It was mentioned in the beginning, that for the last two iterations of the Construction phase the “create order” use-case is going to be assigned. Thus, we are going to consider the “create order” use-case in the next iteration and adapting the “Microsoft Commerce starter Kit” to the use-case.

5.8. Conclusion to Construction Iteration II

Comparing with the previous iteration, this iteration is considered as having higher level of satisfaction. We are stating this aspect by the facts, that during this iteration we have finalized the “manage order” implementation and prepared the “Admin” component to the final system integration. Also, this iteration has a high importance to the whole project, because we have made investigations in accessing Microsoft Navision C5 database from external applications. Even the testing results were not satisfying us and we were not able to develop the “manage order” use-case in the proper way (using ODBC API), we have produced a theoretical solution of ODBC driver implementation. Even if we have considered the lack of time resource for developing the driver, we have indicated, what kind of architecture the driver is able to implement and what are other serious considerations for driver developing activity.
6. Construction Iteration III

At the end of the Elaboration phase, the Construction phase was planned to cover use-case development in a way of assigning each use-case to 2 iterations:

Iteration I

Iteration II

Iteration III

Iteration IV

So, the Iteration III is going to have emphasis on implementing “create order” use-case. During this iteration, we are going to initialize the “create order” use-case implementation by adapting “Commerce Starter Kit” to this use-case.

6.1. Planning the iteration

The iteration III is going to be performed in order to initialize “create order” use-case. For performing this task, our project will adapt the “commerce starter kit” to this use-case by the following aspects:

1. Revisiting system functional requirements;

2. Adapting the “Microsoft Commerce Starter Kit” to the developed web-shop database;

3. Developing the Customer data insertion to the web-shop database.

We are not going to consider architectural aspects in this stage of the project, because during create order use-case implementation; the components are going to follow the already defined system architecture.

Revisiting system functional requirements. We are going to perform the functional system requirements revision, because our decision to develop the Commerce component of the “Microsoft Commerce starter Kit” and the goal to apply as much restructuring as possible will give some changes in the defined system functional requirements. During this iteration, we are not going to revisit system supplement requirements, because they remain stable.

Adapting the “Microsoft Commerce Starter Kit” to the developed KIS database in the Construction iteration I
. During the Construction phase iteration I, our project team has developed the web-shop database for maintaining required functionality of the system. During this iteration, our project team is going to start the development of the Customer component by adapting the “Microsoft Commerce starter kit” Commerce component to the developed database.

Developing the Customer data registration to the web-shop database. In order to develop “create order” use-case, we decided to implement Customer data registration to the database during this iteration. We have decided to plan the iteration activities by such direction, because the developed web-shop database structure supports order registration only after the Customer data is inserted.

6.1.1. Evaluation criteria

The current iteration is going to be measured by the following iteration evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? For measuring this criterion, our project group will evaluate, how much of the use-case is implemented. Because maintaining of the “create order” use-case is not considered as significant use-case as “manage order”, developed in the previous 2 iterations, in this case we can approximately expect 50% of use-case implementation at the end of the iteration.
· Does each component maintain assigned functionality? During this iteration, we are going to develop the “Commerce Starter Kit” in order to make the KIS Shop component, maintaining the part of “create order” use-case.

· Are the components prepared for integration in the entire system? At the end of the iteration, the developed KIS Shop component is going to be measured, how it is prepared for integration for the entire system.

6.2. Functional requirements [process]

In order to adapt the “Microsoft Commerce starter kit” to the use-case we are developing during this iteration, we are going to revisit our use-case model. As it was mentioned in the planning the iteration activity, we will perform this revision, because we consider, that the “Commerce starter kit” is maintaining web-shop functionality quite well and this use-case is considered as having not the highest priority for the entire project. So, by this reason we will try to indicate, how the use-case can be updated in order to keep the essential defined functionality and causing restructuring Commerce component as less as possible.

6.2.1. Functional requirements [product]

6.2.1.1. Use-case changes for Main Success Scenario

The following section is listing the changes, which were found while revisiting the use-case. We are considering only the “Main Success” scenario, because this scenario provides the essential functionality of the Customer component. So, while performing functional requirements revisiting activity, we have decided to make such changes and additional steps to the scenario (table 42):

	Step number
	Step explanation

 (use-case model version 1.2)
	Changes and corrections

(use-case model version 1.3)

	4.
	“Customer inserts demanded data for finalize purchasing operation”
	“Customer inserts personal information”

	4.1
	
	“Customer submits Entered Customer information”

	9.1
	
	“The system inserts customer data to the web-shop database”

Table 42. "Create order" use-case changes

Rest of the applied changes is just refined previous ones. However, we have included 2 additional steps, which concretizes the use-case. So, the updated “create order” use-case main success scenario looks as follows (table 43):

Main Success Scenario (or Basic Flow):

	Actor Action (or Intention)
	System Responsibility

	1. Customer Access Web Shop’s main page “www.KeyCard.dk”

2. Customer Access “Shopping card” in main menu.

3. Customer starts select items from the categories of the category catalog for his/her shopping cart and confirms his purchase.

4. Customer inserts personal information

4.1 Customer submits entered Customer information
5. Customer is informed about successfully created order and is redirected to main page.
	6. The system presents the catalog of categories and the available items on the web shop.

7. System redirects Customer to Customer Cart Info registration window.

8. System presents total cost of order with taxes calculated.

9. System redirects the customer to the “enter customer information” page.

9.1 The system inserts customer data to the web-shop database

10. System will send confirmation email to Customer, proving that order has been received from Customer.

Table 43. "Create order" use-case main success scenario (version 1.2). Changes and additional steps are marked in black

6.2.2. Conclusion to functional requirements

During revisiting functional requirements activity, we have developed the “create order” use-case by applying some changes, due to this iteration. Most of the changes, as mentioned before, were made to optimize the use-case development – these changes allow our project team not to restructure the “Commerce starter” component logics and keep the essentials of the required system functionality.

6.3. Extending the prototype: Use-case implementation [process]

During this iteration the project team developed the “create order” use case, taking into account the iteration measurement results (evaluation criteria) for the Elaboration phase. Some of the arrangements, that the team made during the implementation, are the range of the functionality covered in the use case, like creating order and creating Customer and registering both of them in the web shop database.

The first shot of the “making order” use case which we created in the beginning is the foundation of the second version of the use case or in, other words, the further developed “making order” use case.

6.4. Extending the prototype: Use-case implementation [product]

While developing the “create order” use case required functionality, the team group will implement the following component (table 44):

	component
	Component category
	Assigned functionality

	KIS Shop
	System user component
	Supporting Customer data inserting to the database

Table 44
6.4.1. Constructing the system KIS shop component

During this activity, our project team is going to use “Commerce starter kit” for developing the Web Shop component. By doing this, we are going to develop the following “ASP.net starter KIT” components in order to produce specific component to the KIS (45):

	Original component title (“Microsoft Commerce starter kit”)
	Component title (KIS)

	Commerce
	KIS Shop

Table 45. Components being developed during the iteration

We will develop the provided web shop functionality by adding the necessary functions with the purpose to implement the “Make order” use case main scenario.

As it was mentioned in the beginning of the Construction phase, our main task is not to produce a web-shop from scratch during this project. For this reason, we are going to develop the open-source web shop, supported by “Commerce starter KIT”. we are going to perform the following changes:

· Extend user information insertion

· Developing user-interface

· Discard user registration

Extend user information insertion. The standard commerce web-shop is produced to show good practice in development and is not properly prepared for commercial use. we only needed to alter the following information of the user:

· FullName (“Commerce starter kit”)

· Email (“Commerce starter kit”)

· ISOCountryCode (KIS)
· Street (KIS)

· HouseNo (KIS)
· PostNo (KIS)

· City (KIS)
· PhoneNo (KIS)

· Payment (KIS)
The presented personal user information is going to be inserted in the KIS database, developed in the Construction iteration I. For achieving this functionality, we have also altered stored procedures, used for user information insertion to the database, by including our defined values.
For presenting the user possible payment methods and country list, we produced stored procedures for selecting data from Payment and Country tables.

Developing user-interface. Considering the presented Customer personal data obtaining, we have also altered the existing user-interface with some more input fields, in order to provide a possibility for a user to insert the demanded information.

Discard User registration. The discarding of user-registration is based on non-functional requirements, were it is indicated, that one of the business rules the company expressed, is the need of maintaining user confidentiality. However, the Commerce component of the “Commerce starter Kit” requires each customer to be registered as the user of the web shop. So, for supporting the Company’s needs, we discarded actual user registration and user ability to login as registered customer. In further sections the term “user registration” has to be understood just as user personal information insertion in the database to support required information registering to C5 and PcPack.

6.4.1.1. KIS shop structure

We have produced a navigation diagram (figure 23) for expressing the KIS shop navigation structure. By doing this, we have followed our developed component and indicated the area, where most of the changes appeared.

[image: image23.wmf]Customer

Default

Categories

Home

Category…

..

N

Category

1

Category

2

Item list

Item

1

Item

2

Item…

..

N

Menu

Shopping Card

Item Details

Add To Cart

Enter Data

Figure 23 KIS shop navigation diagram

As the dark frame indicates, most of the changes were applied in the “enter data” element of navigation diagram. This element is responsible for supporting Customer personal information obtaining and inserting to the database. Even the navigation diagram indicates, that for accessing the customer personal data insertion, the shopping cart must be created, we have ignored these aspects, because they are related under the scope of this iteration.

6.5. KIS shop component testing

After the KIS shop component was developed in order to support customer registration to the database, we have performed the testing activity.

These are the results of KIS shop test (table 46
):

	Product passes
	Product notes

	1. Accessing web shop

	The web shop environment of the system is accessed

	2. Accessing Item list

	The Item list with sample data is visible

	3. Selecting the Item

	Items are selected and the system is ready for customer registration

	4. Accessing the Customer registration page

	Input fields are visible for the customer, with validation check for customer entry data.

	5. Registering Customer in the system

	System registered customer in database

Table 46
The KIS Shop component passed all the tests, defined in case of accessing the web-shop and registering the data in the KIS database.

6.6. Components integration

During this iteration, no internal component integration is performed. We have developed KIS Shop by extending “Microsoft Commerce starter kit” Commerce component and partly adapted it to the system.

6.7. Process monitoring and planning

6.7.1. Monitoring the process

During the process monitoring activity, we have measured the iteration in order to find out, how it is satisfying the iteration evaluation criteria. So, in the following section we are providing the iteration measuring to evaluation criteria results
:

· How does the constructed components correspond to the use-case, assigned to the iteration? At the beginning of the iteration, it was mentioned, that the emphasis of this iteration is Customer data registration to the database. So, we can evaluate the developed component maintaining 50% of the use-case. The percentage determines, that the use-case is implemented and it directly corresponds to the iteration plan.

· Does each component maintain assigned functionality? During this iteration, the KIS Shop component was developed. It was stated in the beginning of iteration, that this component is going to maintain the whole ”create order” use-case. At this stage of the Construction phase, the component is maintaining half of the “create order” use-case.

· Are the components integrated in the entire system? The developed KIS Shop component is not integrated in the entire system. We have not considered component integration, because the iteration was planned to provide the half of the “create order” use case. So, the component was tested separately and is not prepared for the final integration.

6.7.2. Planning the next iteration

The planning next iteration activity is basically related to the current iteration; we indicated, that the current and the next iterations are focused on “create order” use-case implementation. So, we are going to implement the missing functionality, expressed in the “create order” use-case; these not yet implemented functions could be determined as order creation and order registration in the KIS database.

6.8. Conclusion to Construction Iteration III

During the Construction phase iteration III, our project group has developed the KIS Shop component; by doing that, we have implemented Customer personal data registration to the KIS database. Besides, the iteration has had some focus on revising system requirements; as in the previous iterations this was performed to optimize the result of this product. The optimization was performed in order to achieve the best benefits from the constructed components, which are based on “Microsoft asp.net Commerce starter kit”. So during this iteration we have implemented a half of the “create order” use-case and now we are ready to enter the last construction phase iteration.

7. Construction Iteration IV

The last iteration of the Construction phase is following the guidelines, which were set during the planning activity of Construction iteration I:

Iteration I

Iteration II

Iteration III

Iteration IV
7.1. Planning the iteration

During this iteration, we are going to develop the KIS Shop component in order to implement the whole “create order” use-case. The component finalization will include the following aspects:

· Revisiting requirements

· Developing KIS Shop component (“create order” use-case finalization)

· Preparing the KIS Shop component to the entire system integration

7.2. Requirements [process]

During this iteration, we are going to revisit the system requirements in order to apply the changes, raised while determining the KIS Shop component development. By doing that, we are going to revisit only the Functional requirements (use-case model) and do not reexamine Supplementary specification. We are stating our decision by the fact, that this iteration is focused on the same use-case implementation; the initiated KIS Shop component is going to be developed. The non-functional requirements are remaining stable; just some corrections are going to be applied to the “create order” use-case.

7.2.1. Functional requirements [product]

7.2.1.1. Use-case changes for Main Success Scenario

During this iteration, we have planned to finalize “create order” use-case implementation; for this purpose, some changes will be applied to the “create order” use-case main success scenario. To determine the changes, we are presenting the most significant ones (table 47):

	Step number in use-case
	Step explanation (use-case model version 1.3)
	Changes and corrections (use-case model version 1.4)

	2
	“Customer Access “shopping cart” in main menu.”
	“ Customer Access one of the “Item Category” in main menu.”

	2.1
	
	“Customer starts selecting items for his/her purchase.”

	2.2
	
	“After selecting an item, customer chooses to add the item to the shopping cart.”

	3
	“Customer starts selecting items from the categories of the category catalog for his/her shopping cart and confirms his purchase.”
	“ Customer chooses to finalize the purchase.”

	4.2
	
	“Customer selects a payment method.”

	4.3
	
	“Customer finally confirms the Order.”

	5.1
	
	“The system presents the Home page of the KIS Shop.”

	9.2
	
	“System redirects customer to “Shopping cart” page”

	9.3
	
	“System inserts order data to the database”

Table 47. "create order" use-case changes
Besides all the changes, during this use-case revision activity, we have discarded the step 7 (“System redirects Customer to Customer Cart Info registration window”). We have performed this according to the fact, that the system does not support actual Customer registration.

We have also discarded the step 9.1 (“The system inserts customer data to the web-shop database”). We have made this discarding, because the whole Order data (with personal Customer information) has to be inserted to the database after the Customer finally checks out.

With all changes applied, the main success scenario of the “create order” use-case looks as follows (table 48):

Main Success Scenario (or Basic Flow):
	Actor Action (or Intention)
	System Responsibility

	1. Customer Access Web Shop’s main page www.KeyCard.dk.

2. Customer Access one of the “Item Category” in main menu.

2.1 Customer starts selecting items for his/her purchase.

2.2 After selecting an item, customer chooses to add the item to the “Shopping cart”.

3. Customer chooses to finalize the purchase.

4. Customer inserts personal information.

4.1 Customer submits entered Customer information

4.2 Customer selects a payment method

4.3. Customer finally confirms the Order
5. Customer is informed about successfully created order and is redirected to main page.
	5.1 The system presents the Home page of the KIS Shop

6. The system presents the categories and the available items in each Category of the KIS Shop.

8. System presents total cost of items with taxes calculated.

9. System redirects customer to “enter Customer information” page
9.2. System redirects customer to “Shopping cart” page

9.3. System inserts Order data to the database
10. System sends confirmation email to Customer, proving that order has been received from Customer.

Table 48. "Create order" use-case main success secnario (version 1.3). Changes are marked in bold
7.2.2. Conclusion to requirements

The requirements revision activity is mostly concerned with revisiting use-case model to apply the changes, relative to order registration. By doing that, we have updated the use case from the previous one, but we are stating that the use-case essentials are still remained stable.

7.3. Extending the prototype: Use-case implementation [process]

During this iteration, we are still keeping on the direction of the prototype development in order to finalize KIS Shop component. The prototype extension activity has emphasis on adapting the KIS Shop component to the “create order” use-case. Aiming at these goals, the applied use-case changes lead us to the optimized component building activity, which focuses on actual order registering functionality implementation.

7.4. Extending the prototype: Use-case implementation [product]

While developing the required order’s functionality of “create order” use case, the team group has assigned some functions to the KIS Shop component for being implemented during this iteration (table 49):

	component
	Component category
	Assigned functionality

	KIS Shop
	System user component
	· maintaining Order creation by Customer

· Order registering to KIS database

Table 49 Components developed during iteration IV
7.4.1. Developing the KIS Shop component

The KIS Shop component is based on “Commerce Starter Kit”. We have applied some changes in the “create order” use-case with a goal to optimize the implementation, so now we need to consider the following implementation aspects:

· Discard shopping cart registration

· Construct order insertion to the KIS database

· Develop user interface

7.4.1.1. Discard “shopping cart “registration

The applied use-case changes indicate that shopping cart registration is not supported. This feature also reflects to the supplement requirements, where one of the business rules, expressed by the Company, was Customer confidentiality and ordinary user-registration is not supported. For achieving this goal, we have discarded permanent “shopping cart”, supported by “Commerce ASP.net starter Kit”. By doing that, we have adapted the KIS Shop source for our particular case. So, as a result, every time the Customer visits the KIS Shop, the new shopping cart is created and the shopping cart exists only for current customer session. If the customer terminates the session, the shopping cart is also emptied.

However, because the KIS Shop component development is not the main goal of this project, our task is just to maintain minimal functionality of the shop. So we have adapted the KIS Shop component for our particular case without considering specific e-commerce aspects.

7.4.1.2. Developing Order data insertion to the KIS database

After user has performed his purchase, the order information has to be inserted in the KIS database. In order to implement that, we have considered the following KIS database tables:

· CMRC_Order

· CMRC_OrderDetails

The shopping cart contents are inserted in the presented KIS database tables by inserting the following values to the CMRC_OrderDetails table:

OrderID,

ProductID,

Quantity,

UnitCost

Also, correspondent values are inserted in the table CMRC_Orders:

CustomerID,

OrderDate,

ShipDate,

Payment

The insertion to the database is performed by calling the CMRC_OrdersAdd stored procedure, which takes responsibility of inserting data for both tables.

7.4.1.3. Developing user interface

Developing user interface has just had considerations, due to use-case changes. We have attempted to keep the presentation layer structure unchanged from the “Commerce Starter Kit” as much as possible, because Web Shop development was not our main task in this project. However, with a goal not to regress from the “create order” use-case essentials, we have made some changes to the elements of this layer. The developed presentation layer is represented in the following navigation diagram, where the area of most applied changes is indicated in the dark frame (figure 24):

 EMBED Visio.Drawing.11
[image: image24.wmf]Customer

Default

Categories

Category N

Category

1

Category

2

Item list

Item

1

Item

2

Item N

Shopping Card

Item Details

Add To Cart

Enter Customer

information

Select Payment

method

Final Check Out

Figure 24 KIS shop navigation diagram
Payment method and final check out

One of the most important applied component improvements was the possibility for the Customer to select the payment method for his/her purchase. We have included this feature because both systems – Pc Pack and C5 – require payment method in the Order registration.

We have implemented this feature by selecting possible payment method values from the KIS database and representing then to the Customer as a drop-down list; for this reason, we have also constructed a set of stored procedures. So, in this case, the Customer is enabled to choose the possible payment method.

After the Customer selects the Payment method and presses the “check out” button, the selected payment value is then inserted to the database with the whole order information; so, the order is prepared for further proceeding.

7.5. KIS Shop Component testing

During the testing activity, the developed component was tested in order to verify implemented component functionality.

The product passes indicate, that all the defined functions were passed (table 50):

	Product passes
	Product notes

	1. Accessing KIS Shop
	The KIS Shop is successfully accessed.

	2. Accessing Category Menu
	The Item Category with sample item list is visible.

	3. Selecting an Item and adding to the shopping cart
	Items are selected and added to the shopping cart, with possibility of updating the order.

	4. Submitting the order
	The order is successfully submitted.

	5. Registering Order in the system
	System registered the order in the KIS database.

Table 50 KIS shop component testing results (passes)
Testing activity has been executed successfully; the developed KIS Shop component maintains the required functionality.

7.6. Component integration activity

During this iteration, we are not going to perform any of component integration with the entire system. Moreover, no components are integrated internally, because we have developed the KIS Shop component to maintain the whole “create order” use-case. So, the component integration activity is not executed – during this iteration, we have finalized the KIS Shop component and as a result we have prepared the component for the final system integration.

7.7. Process monitoring and planning

7.7.1. Monitoring the process

During the Process monitoring activity, we have measured the iteration to the iteration evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration? We have finalized the KIS Shop component implementation during this iteration. Because the iteration was planned to cover the remaining part of the use-case (order registering), and the previous iteration covered the initial part of the use-case (customer registering), we can strongly state, that the whole “create order” use-case is 100% implemented.
· Does each component maintain assigned functionality? During this iteration we have developed only one component. We have succeeded in implementing the whole assigned functionality; the possibility of the entire order data registration is successfully implemented.

· Are the components prepared for integration in the entire system? The developed component (KIS Shop) is prepared for the entire system integration, because it maintains the whole “create order” use-case and is coordinated with the KIS database.
7.7.2. Planning next iteration

The next Transition phase iteration is going to be planned while strongly concerning the deliverables, produced during the whole Construction phase. Because the product release is not stable enough and does not mature to be deployed in the user community, the emphasis of the Transition phase is going to be final component integration in the entire system, integration testing activities and product deploying considerations. Because of the time resource, which we have found significant during this project and the low level of product release stability, we are not going to perform acceptance tests in the user community.

7.8. Conclusion to Construction Iteration IV

The Construction iteration IV has had emphasis on finalizing “create order” use-case implementation. During this iteration, we have developed the KIS Shop component and prepared the component for final system integration. The iteration has had a high level of satisfaction to the iteration evaluation criteria: the developed component testing results indicated that the component is functioning properly. Summarizing all that, we can state, that even the KIS Shop component construction has not had as high priority as KIS Admin component construction, despite the low priority of it, we are satisfied by the iteration results and the fact, that we have not met as much problems as in the first two iterations of the construction phase.
7.9. Conclusion to Construction

The Construction phase has been considered as one of the most important phases during the whole process. The deliverables of the phase are the actual executable components, which were tested in order to indicate the functionality they maintain. We have measured the whole Construction phase by the phase evaluation criteria:

· Is this product release stable and mature enough to be deployed in the user community? For measuring this criterion, we are concerning the components, we have constructed during the whole Construction phase. The components were tested and indicated as maintaining assigned functionality; both “create order” and “manage order” use-cases were implemented. The components are prepared for the final system integration. However, during the duration of this project we were not able to produce a deployable product release. We are reasoning this statement by the fact, that construction process was complicated and our implemented solution of data transition to Pc Pack and C5 does not fully correspond to the vision, which was expressed by the Company.

· Are all stakeholders ready for the transition into the user community? Reflecting the measurement results for the previous criterion, the stakeholders are not ready for transition into the user community, because the product release is not mature enough to be deployed.

The results of measurement to evaluation criteria determine, that the Construction phase deliverables are prepared for final system integration, but the current system release is not stable enough for entering user community. This statement is based on the fact that during the researching activity, performed with the goal to find out an appropriate solution for data transition to external systems (C5 and Pc Pack), the time resource was indicated as the most significant in our case. While constructing the synchronization components, we have presented the possible solutions for transferring data to C5, however because of the time we were not able to implement the most appropriate one. So the current product release is maintaining the required functionality, but is not prepared for delivery to user community.

8. Transition

According to the Rational Unified Process Methodology, which we adapted to our project, the Transition phase starts when a baseline is mature enough to be deployed in the end-user domain. However, as it was stated in the planning the iteration activity, Construction phase iteration IV, the developed product release is not stable enough to be deployed in the user environment. The time is the main aspect, the impact of which was considered as the highest cause to such results.

Because the Construction phase had the level of satisfaction for evaluation criteria not as high as it was expected during the Methodology defining activity in the Inception phase, we are going to revisit our methodology in order to apply the changes, influenced by the outcome deliverables of the Construction phase.

8.1. Planning the iteration

Differently from the other iteration planning activities, the Transition iteration planning activity will not follow directly the defined project methodology. During this planning activity, the Transition phase description, defined in the project methodology, is going to be refined in order to determine the iteration that is applicable to the current state of the system development process.

8.1.1. Methodology changes for Transition phase

We have applied the following changes in the Transition phase in the methodology (table 51):

	Activities
	Test the product in the developer environment. For preventing any problems, related to the integration of the entire system, the current product is going to be tested in the developer environment.

Prepare deployment strategy. Even the current release is not going to be delivered to the user, the product deployment strategy is going to be concerned.

	Artifacts
	Deployment plan

Release notes

	Evaluation criteria
	Are the aspects for further product development clearly defined?

Are the actual resources expenditures versus planned expenditures still acceptable?

Table 51. Updated Transition phase

The applied changes in the Transition phase in the methodology are mostly related to the outcome results, produced during previous iterations. We have decided not to deliver the current product release to the user, because the product release is not stable for the deliverability – so the updated Transition phase description has specific activities and artifacts.

During the Transition phase we are going to perform the following activities:

1. Determining final system integration aspects in order to prepare the system for integration testing;

2. Executing integration testing for the current product;

3. Developing the deployment strategy.

Determining final system integration aspects in order to prepare the system for integration testing. During this activity, we are going to reexamine the system components integrity with a goal of preparing the system for the final integration test.

Performing integration testing for the current product. The current product release is not prepared for being delivered to the user community. By this reason, we are not going to perform any acceptance test in the Company. However, during this phase we are going to perform product integration test in order to characterize the product release.

Developing the deployment strategy. We have decided to include the development of the product deployment strategy in the Transition phase iteration. This decision is based on the reasons, that the developed system architecture is stable and the developed system prototype follows the defined system architecture strictly. So by performing this activity, we are going to prepare the deployment strategy, which could be used for deployment of the later releases.

8.1.2. Iteration evaluation criteria

The current iteration is going to be measure by the following evaluation criteria:

· Are the aspects for development of the next product release clearly defined? The aspects for further product development are going to be determined during integration testing activity and while investigating product deployment strategy. At the end of the iteration, we are going to measure the iteration in order to clarify, if the significant areas of instability are determined and if the product release is prepared for further development.

· Are the actual resources expenditures versus planned expenditures still acceptable? This criterion is going to correspond to the whole software engineering process, performed in the duration of this project.

· The defined evaluation criteria correspond to the Methodology changes we have applied. The evaluation criteria differs from ordinary RUP Transition phase evaluation criteria, but we have agreed on this, because it corresponds to the process current stage and applies the later KIS development.

 8.2. Final system integration

The final component integration reflects on investigating the stability and compatibility of the developed system components. In other words, each component is functioning as expected and corresponds to the last version of the model that the developers agreed on. This stage will also include documenting any failures, and investigate the cause of the problems.

The entire system consists of the following components, which were developed during the Construction phase:

KIS Admin [ASP.net web application]

KIS Shop [ASP.net web application]

KIS Database [MS SQL database]

Moreover, if we consider the system as a functioning unit, which is going to be used by the Company, KIS also includes the separate external components:

Pc Pack [Windows application]

C5 [Windows application]

The final system integrity is understood as the feature, which allows the developed system components to be compatible with the external components (PC Pack and C5). Pointing to the actual system integrity, we are providing integrity characteristics for each developed component (table 52):

	component
	Integrity aspects

	KIS Admin
	Has to maintain integrity with:

· KIS Database

· PcPack

· C5

	KIS Shop
	Has to maintain integrity with:

· KIS database

	KIS database
	Has to maintain integritiy with:

· KIS Admin

· KIS Shop

Table 52
During the whole project duration, we have concerned the KIS Admin component as the significant component to the entire KIS system. We have implemented the component for supporting listed integrity, and these aspects could be considered in the significant design packages (figure 25):

[image: image25.wmf]Admin component

functionControls

+

writeToDebKart

() :

string

+

writeToOrdKart

() :

string

+

writeToOrdLinie

() :

string

-

ImportDebKartFile

:

String

-

ImportOrdKartFile

:

string

-

ImportOrdLinieFile

:

string

C

5

Writer

Model

UserControls

+

proceedClick

()

Orders

.

asxc

GeneralDataHolder

-

generalDataHolder

:

GeneralDataHolder

DebKart

-

generalDataHolder

:

GeneralDataHolder

OrdKart

-

generalDataHolder

:

GeneralDataHolder

OrdLinie

-

OrderLinie

[] :

OrdLinie

OrderLinieCollection

-

generalDataHolder

:

GeneralDataHolder

-

ordKart

:

OrdKart

-

debKart

:

DebKart

-

orderLinieCollection

:

OrderLinieCollection

ModelController

-

modelController

:

ModelController

-

c

5

Writer

:

C

5

Writer

-

pcPackWriter

:

PcPackWriter

OrderController

+

writeToPcPack

() :

void

-

fileName

:

string

PcPackWriter

-

generalDataHolder

:

GeneralDataHolder

PcPackOrder

Figure 25. diagram of significant design packages

8.3. Final integration testing

The final integration testing activity is going to be performed while following the general test procedure
.

The final integration test focuses on testing the developed system as a whole unit. It is integration testing of all KIS system components. Specifically, of software components that might be distributed across a local network (client, web server, application server, and database server, etc.). However, in our case the testing will be done on a local machine to check whether incorporation between the system elements are producing the expected results or producing failures caused by system integration areas of instability.

The testing results indicate, that at the integration level the system is functioning as expected. Also, we have indicated current product areas of instability, which are defined in the current product description.

8.4. Deployment strategy

During this activity, we are going to prepare the product Deployment strategy. Even the current product is not going to be delivered to the Company, the deployment strategy is going to cover the main product deploying aspects, which are essential to the KIS considering further product development. We have presented the deployment view of the system in the deployment diagram (figure 26):

[image: image26.wmf]Web Shop Server

KIS Shop

Admin Server

KIS Admin

Client

:

Browser

<<

HTTP

>>

<<

HTTP

>>

MS SQL Server

<<

OLEDB

>>

Client

:

C

5

C

5

Datbase

PcPack

Datbase

Client

:

PcPack

<<

OLEDB

>>

KIS database

Figure 26, KIS deployment

The deployment diagram indicates the most optimized deployment strategy of the KIS. For supporting this strategy, the following deployment aspects have to be concerned:

Web server. The Web Shop server is a web server, which supports ASP.net framework and maintains deployment of ASP.net application. In the web server, the KIS Shop component has to be deployed.

Admin Server. Admin server is the server, which can be configured similarly as the Web Shop server. It has to maintain ASP.net framework and the KIS Admin application has to be deployed in this server.

We have indicated the separate deployment of both web applications – because in this case we are providing the most optimal solution; the separation would prevent the system from general crashes; if one of the server is crashed, the other application can still function.

MS SQL Server. The MS SQL server is a machine, which has MS SQL Server installed. The KIS database is installed on this server. One of the most important considerations for MS SQL Server is handling large amount of data, that is having installed sufficient hardware elements for data storage. The KIS Shop and KIS Admin applications are communicating with MS SQL Server by using OLE DB technology.

C5 database and C5 client. For supporting C5 database, C5 application has to be installed to some machine. The application is used as the database, and C5 client, installed on the separate machine, is just accessing c5data.dat file through windows files sharing technology. In this case, we have investigated how C5 application is deployed in the Company’s environment

Pc Pack database and Pc Pack client. Pc Pack database and Pc Pack client is deployed in the same way as C5; for these components, we have also considered the deployment manner, used in the Company.

8.5. Monitoring the process

The monitoring activity is corresponding to measuring the phase evaluation criteria:

· Are the aspects for development of the next product release clearly defined? During the testing activity, we have determined a set of areas of instability in the KIS. These testing notes are collected in the release description and could be used for the later KIS development.

· Are the actual resources expenditures versus planned expenditures still acceptable? The actual resources expenditures versus planned expenditures are still acceptable. Because the most important resource was considered time, the resource has been fully exploited and the project has been finalized on time. However, if our project group has more time for the KIS development, we would have considered the next product release development.

8.6. Conclusion to Transition phase

During the Transition phase, our project group has evaluated the current product release by performing integration testing and investigating some of the deployment aspects. The main goal of the Transition phase was to determine, how the product is prepared for later development. We have indicated that the product release is not stable for delivering to the user community and even maintaining the required functionality; the product requires further development.

9. Project Conclusion

This project had a high impact to our project team, because during the duration of this project we have gained more experience, improved our skills, attempted to apply the theoretical knowledge in practice. Also the project is important for us by the fact, that we had a good opportunity to experience how the process should be managed, when the project group is facing the system synchronization problem. Such type of process is specific, because the project team has to focus more on analyzing the existing system functionality and performing researching in possible problem solutions.

Considering the importance of this project, in the project conclusion we are going to take up the following aspects:

· experience

· product future considerations

9.1. Experience

The experience our group has obtained during this project covers different areas – this is stated by the fact, that our task to reach the main project goal was based on the decision to meet lots of challenges, especially such as applying system development techniques, which were unfamiliar with us. We have categorized the obtained experience in the following categories:

· teamwork and communication

· system development

· project management

· researching

· problem solving

In the following sections we will present a short description of each category of experience we have gained.

9.1.1. Teamwork

Group discussions. During the project working process, we have been running many discussions in order clarify what, why and how to handle obstacles. The discussions helped our group to determine the most appropriate solutions.

Sharing personal experience and knowledge. Each member of the group has different background, experience and knowledge, which have direct impact on the project. However, they also have indirect influence on the other group members: the personal experience and knowledge of one group member is shared with the rest of the group.

Improving personal skills. During the duration of the project, personal skills have been improved, such as:

Programming skills [programming with C#]

UML modeling skills [use-case and system design modeling]

Analyzing skills [Enterprise, system and data analyzing]

Reaching general goals. In the Inception phase, the group addressed the general goals of the project and guidelines for reaching them. It was important for our group as a unit to be oriented by the determined guidelines and not to lose track of the project goals.

Communication. Well-established Communications between the project stakeholders ensure that all parties have understood and agreed on the subject under development.

We experienced some troubles during the project regarding this issue. These troubles could be addressed as misunderstanding, disagreements and bad communication between group members and the Company. But on the other hand, we did not let this issue stop us from the discussions and ending up with the most appropriate solution that pleases all parties.

9.1.2. System development

Experience in using RUP. During the duration of the project, our group gained better understanding of this methodology. When we started this project, we had quite low level of knowledge about this development process and we needed time to understand, how to use RUP. However, even having quite low knowledge in this methodology, we have attempted to use such best RUP practices:

Develop software iteratively. We have considered iterative software development as fitting to our case and we have successfully attempted this practice in the duration of this project.

Manage requirements. During this project, we have considered requirements managing as one of the significant activities that helped us not to lose the track of the process.

Use component-based architectures. The current product consists of the set of components, which were constructed. Component construction during particular iteration helped us not to lose the focus on the task and develop component functionality.

Visually model software. Applying visual modeling and using UML gave a clear understating of the important software developing issues.

The duration and scope of this project did not give us a possibility to apply the rest of the best RUP practices. However we consider, the experience we obtained during this project as valuable; we have attempted to apply the RUP to our specific case. Also, RUP has helped us as a group of developers in mapping out and documenting all parts of a software development project.

Developing software architecture. During the project, we have developed the system, the main purpose of which is synchronization of the other two systems. Such problem solving initiated the consideration of the system architecture as a significant aspect. We have performed architectural investigations with the goal to clarify the system architecture and provide appropriate architectural solutions.

9.1.3. Project management

Project planning. Our main goal of performing project planning activity was to set the guidelines for the whole project. The lack of experience in such activity had caused problems in workflow. In the beginning of the project we have initiated the methods of the planning activities, however we have not paid enough attention to the resource managing. However now we can state, that planning is a significant activity in the whole process and careful planning is one of the clue activities that ensures good process quality.

Process monitoring. Process monitoring activity was indicating, how the process is adherent to plans and what is the level of process quality. Aiming good monitoring, we have followed RUP recommendations and assessed each iteration; it helped our group to focus on the most appropriate process direction.

Applying feedback from the stakeholders. Feedback from stakeholders was a major issue in our project, because it helped us to determine the right direction during the development process.

Some problems occurred considering the feedback from the stakeholders, such as delays in receiving reviews from the Company. However, we have experienced that in some cases, we could wait for feedback if it has a low influence on the development process. Other cases the feedback from the Company could have a major impact on the project, because the whole development depends on the stakeholders agreements.

9.1.4. Researching

Methodology research. Methodology research was mostly considering and investigating the different processes and finding out, which fits the best in our case. We have gained experience in comparing different process models and determining, which model is most appropriate to the specific problem of this project.

Development tools research. During this project, we have performed researching activities in different development tools and techniques. One of the most important researches was performed in order to find the open source components, which could optimize our development process with keeping focus on the most important aspects.

9.1.5. Experience in problem solving

Determine alternative solutions for problems. Dealing with problems was a very good experience we gained during the development of the project. Finding solutions for problems were a challenge for us; particularly determining the most suitable solution out of many alternatives.

This challenge appeared strongly when we met the problem of C5 application integration with external systems. We had few alternatives to choose and we had to make a proper decision; by doing that, we had to perform investigations to determine, how the decision is possible for applying. These problems also caused a high impact to our project reporting issue – the process became difficult to manage and it was really difficult to keep the process reporting clear.

Involving external consultations. Since we are immature software developers, we accepted consultancies form external advisors. These external consultations included teachers, graduated students and outer well skilled people. This helped us collecting comments from different parties and improving the quality of the product during the project progress.

9.2. Product Future Considerations

Our project team has produced only pre-release of the product during the duration of this project. The main goal of the product is to support the functionality, which was expressed in the Company’s product vision: in a very high level of abstraction, the main purpose of the system is to reduce manual work in the Company while registering shipment data.

During the duration of this project, our team has developed the system, maintaining the required functionality. However, we have considered that the time was not enough for us to develop the mature release for delivery to the user community. So we are reasoning that the main problem, defined in the beginning of the project, is partly solved.

The product future considerations could be characterized in following directions:

1. Developing the current version of the product

2. Developing the product by applying alternative system synchronization solutions.

9.2.1. Developing the current version of the product
The current version of the product has limited features and is not stable enough for being delivered to user community. In order to produce next product release, the development considers the following aspects:

· eliminating system instabilities
· including not-implemented features
Eliminating system instabilities. The stability of the system could be improved by minimizing such areas of instability:
a) Data incompatibility. KIS Shop data is not compatible with C5 and Pc Pack data formats, such as character coding and number formats
.
b) KIS database integrity with C5. The data in KIS database is not being validated according to the data in C5 database.
Including not-implemented features. The non-implemented features are mostly concerned with Keycard’s needs
:
a) The Keycard has an existing web shop which is known by Keycard’s customers. To behold the customers, KIS shop development should follow the existing web shop functionality and layout.
b) Many customers feel in-secure by ordering on-line. To reduce this feeling of insecurity, the system has to notify the customer about the order status.

In the next release, such areas of product instability must be eliminated:
9.2.2. Developing the product by applying alternative system synchronization solutions
During the work on the project, we faced different alternatives, related to synchronization with C5. Due to lack of time, we have decided to implement the most possible solution:

- Data transition to C5 using comma-separated file.
The other existing solutions:

- Data transition using existing C5 ODBC driver

- developing C5 ODBC driver
were investigated, but not applied. However, considering these solutions for future product release, could give important benefit of system stability and reliable synchronization. In case of applying these solutions, aspects like development technologies, tools, knowledge and further research should be put in consideration.
APPENDIX A: Project plan

Project time schedule

[image: image27.wmf]ID

Task Name

Start

Finish

Duration

Sep

2004

Oct

2004

24

18

6

5

8

27

31

5

31

14

25

22

14

2

15

7

26

23

3

23

30

26

29

1

28

25

4

10

12

18

11

8

15

2

30

16

29

28

25

22

16

7

9

12

13

28

20

6

3

17

24

1

30

1

7

d

9

/

2

/

2004

8

/

25

/

2004

inception

2

10

d

9

/

16

/

2004

9

/

3

/

2004

elaboration

3

29

d

10

/

27

/

2004

9

/

17

/

2004

construction

4

4

d

11

/

2

/

2004

10

/

28

/

2004

transition

Aug

2004

4

21

27

19

27

9

21

26

17

10

29

19

11

1

13

20

Inception phase time schedule

[image: image28.wmf]ID

Task Name

Start

Finish

Duration

Sep

2004

25

30

29

1

27

1

3

d

8

/

27

/

2004

8

/

25

/

2004

Project establishment

1

d

8

/

27

/

2004

8

/

27

/

2004

Initial project plan

1

d

8

/

27

/

2004

8

/

27

/

2004

Preliminary project plan

8

1

d

9

/

1

/

2004

9

/

1

/

2004

Initial use

-

case model

28

9

1

d

9

/

2

/

2004

9

/

2

/

2004

Plan for

1

st elaboration iteration

2

d

8

/

30

/

2004

8

/

27

/

2004

Project scope

4

7

1

d

8

/

31

/

2004

8

/

31

/

2004

Bussines case

1

d

8

/

30

/

2004

8

/

30

/

2004

vision

6

2

d

8

/

30

/

2004

8

/

27

/

2004

methodology

Aug

2004

26

2

31

5

2

3

Iteration plan for Inception phase

Iteration start: 25th August

Iteration end: 3rd September

Key milestones:

	Milestone
	date

	Life-Cycle objective
	3rd September

	Objectives
	Activities
	Artifacts

	Establish project scope
	Formulating the scope, understanding stakeholders needs
	Vision

	Determine the critical uses of the system.
	Understanding and formulating system functionality
	Initial use-case model,

Vision

	Estimating the overall cost and schedule for the entire project.
	Plan and prepare the business case, including alternatives for risk management, success criteria
	Initial business case document

	Define project plan
	building project plan, showing phases and iterations
	Initial project plan

Project plan

	Estimating potential risks.
	Formulate potential risks
	Initial risk assessment

Evaluation criteria (Milestone: Lifecycle objective):

· Stakeholder concurrence on scope definition and cost/schedule estimates.

· Requirements understanding according to primary use-cases.

· Credibility of the cost/schedule estimates, priorities, risks, and development process.

Elaboration phase time schedule

[image: image29.wmf]ID

Task Name

Start

Finish

Duration

Sep

2004

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

d

9

/

6

/

2004

9

/

3

/

2004

Capturing other requirenments

2

2

d

9

/

7

/

2004

9

/

6

/

2004

Refine functional requirenments

4

1

d

9

/

8

/

2004

9

/

7

/

2004

Revisit risk list

5

1

d

9

/

8

/

2004

9

/

8

/

2004

Refine the vision

6

6

d

9

/

15

/

2004

9

/

8

/

2004

Development of candidate architecture

2

d

9

/

7

/

2004

9

/

6

/

2004

Revisit business case

7

1

d

9

/

16

/

2004

9

/

16

/

2004

Creating the plans for construction

phase

3

Iteration plan for Elaboration phase

Iteration start: 3rd September

Iteration end: 16rd September

Key milestones:

	Milestone
	date

	Life-Cycle architecture
	16rd September

	Objectives
	Activities
	Artifacts

	Follow non-functional requirements while developing the candidate architecture
	Capturing other (non-functional) requirements
	Supplementary requirements specification

	Expand system functional requirements specification. Follow them while defining the candidate architecture
	Refining functional requirements
	Use-case model

	Refine business case
	Revisiting business case
	Business model

	Expand the risk list. Follow the highest risk elements of the risk list while defining the candidate system architecture in case of elimination
	Revisiting risk list
	Risk list

	Assure, that the candidate architecture fulfills the requirements and the vision of the system.

	Defining, validating a candidate architecture, build an executable prototype
	Software architecture document (SAD)

 Executable prototype

	Create plans for next phase in case of assigning use-cases, scenarios and technical efforts for the particular Construction phase iterations.
	Creating iteration plans for the Construction phase
	Iteration plan for Construction phase

Evaluation criteria (Milestone: Lifecycle Architecture):

· Is the vision of the product stable?

· Is the architecture stable?

· Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible basis of estimates?

· Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture?
Plan for Construction phase

Key milestones:

	Milestone
	date

	Initial operation capability
	27th October

Phase evaluation criteria:

· Is this product release stable and mature enough to be deployed in the user community?

· Are all stakeholders ready for the transition into the user community?

Construction iteration I time schedule

[image: image30.wmf]ID

Task Name

Start

Finish

Duration

Sep

2004

17

18

19

20

21

22

23

24

1

2

d

9

/

17

/

2004

9

/

16

/

2004

Preparing for iteration

2

3

d

9

/

22

/

2004

9

/

20

/

2004

Develop components

3

2

d

9

/

23

/

2004

9

/

22

/

2004

testing

4

2

d

9

/

27

/

2004

9

/

24

/

2004

Plan iteration

25

26

27

Plan for Construction iteration I

Iteration Start: 17th September

Iteration Stop: 27th September

	Objectives
	Activity
	Artifact

	Considering the Output of the Elaboration phase, the iteration environment is going to be prepared.
	Prepare Environment for Iteration
	SAD (Software Architecture Document)

	Components are going to be developed for implementing assigned functionality. Also, they can be internally integrated with others.
	Develop Components
	Build and integrate the components

	The module level test is run in order to define component executable functionality and areas of instability
	Test
	Test and provide results

	The plan for the next iteration is going to be prepared in order to define, what components are going to be developed.
	Plan Iteration
	Develop next iteration plan

Evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration?

· Does each component maintain assigned functionality?
· Are the components prepared for integration in the entire system?
Construction iteration II time schedule

[image: image31.wmf]ID

Task Name

Start

Finish

Duration

Sep

2004

4

30

2

5

3

28

1

29

1

2

d

9

/

29

/

2004

9

/

28

/

2004

Preparing for the iteration

2

3

d

10

/

1

/

2004

9

/

29

/

2004

Developing components

3

2

d

10

/

4

/

2004

10

/

1

/

2004

Testing components

4

2

d

10

/

6

/

2004

10

/

5

/

2004

Planning next iteration

6

Oct

2004

Plan for Construction iteration II

Iteration Start: 27th September

Iteration Stop: 7th October

Iteration Objectives

	Objectives
	Activity
	Artifact

	Considering the Output of the Elaboration phase, the iteration environment is going to be prepared.
	Prepare Environment for Iteration
	SAD (Software Architecture Document)

	Components are going to be developed for implementing assigned functionality. Also, they can be internally integrated with others.
	Develop Components
	Build and integrate the components

	The module level test is run in order to define component executable functionality and areas of instability
	Test
	Test and provide results

	The plan for the next iteration is going to be prepared in order to define, what components are going to be developed.
	Plan Iteration
	Develop next iteration plan

Evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration?

· Does each component maintain assigned functionality?
· Are the components prepared for integration in the entire system?
Construction iteration III time schedule

[image: image32.wmf]ID

Task Name

Start

Finish

Duration

Oct

2004

7

8

9

10

11

12

13

14

15

1

2

d

10

/

8

/

2004

10

/

7

/

2004

Preparing for the iteration

2

3

d

10

/

12

/

2004

10

/

8

/

2004

Developing components

3

2

d

10

/

13

/

2004

10

/

12

/

2004

Testing components

4

2

d

10

/

15

/

2004

10

/

14

/

2004

Planning next iteration

16

Plan for Construction iteration III

Iteration Start: 7th October

Iteration Stop: 15th October

Iteration Objectives

	Objectives
	Activity
	Artifact

	Considering the Output of the Elaboration phase, the iteration environment is going to be prepared.
	Prepare Environment for Iteration
	SAD (Software Architecture Document)

	Components are going to be developed for implementing assigned functionality. Also, they can be internally integrated with others.
	Develop Components
	Build and integrate the components

	The module level test is run in order to define component executable functionality and areas of instability
	Test
	Test and provide results

	The plan for the next iteration is going to be prepared in order to define, what components are going to be developed.
	Plan Iteration
	Develop next iteration plan

Evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration?

· Does each component maintain assigned functionality?

· Are the components prepared for integration in the entire system?

Construction iteration IV time schedule

[image: image33.wmf]ID

Task Name

Start

Finish

Duration

Oct

2004

17

18

19

20

21

22

23

24

25

1

2

d

10

/

19

/

2004

10

/

18

/

2004

Preparing for the iteration

2

3

d

10

/

21

/

2004

10

/

19

/

2004

Developing components

3

2

d

10

/

22

/

2004

10

/

21

/

2004

Testing components

4

2

d

10

/

26

/

2004

10

/

25

/

2004

Planning next iteration

26

Plan for Construction iteration IV

Iteration Start: 15th October

Iteration Stop: 26th October

Iteration Objectives

	Objectives
	Activity
	Artifact

	Considering the Output of the Elaboration phase, the iteration environment is going to be prepared.
	Prepare Environment for Iteration
	SAD (Software Architecture Document)

	Components are going to be developed for implementing assigned functionality. Also, they can be internally integrated with others.
	Develop Components
	Build and integrate the components

	The module level test is run in order to define component executable functionality and areas of instability
	Test
	Test and provide results

	The plan for the next iteration is going to be prepared in order to define, what components are going to be developed.
	Plan Iteration
	Develop next iteration plan

Evaluation criteria:

· How does the constructed components correspond to the use-case, assigned to the iteration?

· Does each component maintain assigned functionality?

· Are the components prepared for integration in the entire system?

Transition phase time schedule

[image: image34.wmf]ID

Task Name

Start

Finish

Duration

Oct

2004

29

31

1

27

30

28

1

2

d

10

/

28

/

2004

10

/

27

/

2004

Final Component integration

2

2

d

11

/

1

/

2004

10

/

29

/

2004

Final integration testing

3

3

d

11

/

3

/

2004

11

/

1

/

2004

Closing the project

Nov

2004

2

3

Plan for Transition phase

Iteration Start: 27th October

Iteration Stop: 3th November

	Milestone
	date

	Product release
	3th November

Iteration objectives:

	Objective
	Activity
	Artifact

	The final integration testing is run in order to define product release description
	Test the product in the developer environment.
	Product release description

	Deployment strategy is produced in order to present deployment aspects
	Prepare deployment strategy
	Deployment plan

Evaluation criteria (Milestone: product release):

· Are the aspects for further product development clearly defined?

· Are the actual resources expenditures versus planned expenditures still acceptable?

Key
	symbol
	description

	s
	start

	r
	refine

Artifacts and Timing

	Discipline
	Artifact

	Inception

	Elaboration

	Construction 1
	Construction 2
	Construction 3
	Construction 4
	Transition

	Business modeling
	Business case
	s
	r
	
	
	
	
	

	Risk analysis
	Risk list
	s
	r
	r
	r
	r
	r
	r

	Requirements
	Use-case model
	s
	r
	r
	r
	r
	r
	

	
	Vision
	
	r
	
	
	
	
	

	
	Supplementary Specification
	
	s
	r
	r
	r
	r
	

	
	Glossary
	
	s
	r
	r
	r
	r
	

	Design
	SAD (system architecture document)
	
	s
	r
	r
	r
	r
	

	Implementation
	Architectural prototype
	
	s
	
	
	
	
	

	
	Implementation model (Components)
	
	
	s
	s/r
	s/r
	s/r
	

	Testing
	Test model
	
	s
	
	
	
	
	

	Deploying
	Deployment plan
	
	
	
	
	
	
	s

	
	Release notes
	
	
	s
	s
	s
	s
	

	Planning activities
	Preliminary project plan
	s
	
	
	
	
	
	

	
	Inception iteration plan
	s
	
	
	
	
	
	

	
	Elaboration iteration plan
	s
	
	
	
	
	
	

	
	Construction iteration plan
	
	s
	s
	s
	s
	
	

	
	Transition iteration plan
	
	
	
	
	
	s
	

	Monitoring activities
	Inception iteration assessment
	
	s
	
	
	
	
	

	
	Elaboration iteration assessment
	
	
	
	
	
	
	

	
	Construction iteration assessment
	
	
	
	
	
	
	s

APPENDIX B: Project Establishment

“Keycard.dk”

Project establishment

Version 1.1

Revision History

	Date
	Version
	Description
	Author

	26/aug/04
	1.0
	Initial project establishment
	

	2/sep/04
	1.1
	Project establishment refininments
	

The Assignment

This project will be carried out in the period Wednesday 25.08.04 to Wednesday 03.11.04 and is a part of the requirements of the fifth semester curriculum in the datamatician education at Erhvervsakadamiet Roskilde.

The main objective of the project is to gain experience working with a real world company and gives us an opportunity to apply the theoretical and practical knowledge in system development and programming techniques we have experienced in earlier semesters. Also, besides the subjects related to our course curriculum, we are looking forward to investigating and applying some different techniques and methods, which are not studied and analyzed at large or were not included in our datamatician education course at all.

According to the main goal of this project and the needs of Keycard, the sales company our group works for, we are going to develop an information system, which will be integrated into two existing systems, used by the company for the purpose of managing the sales and administrating accounting data.

Also, because the company is on the way of expanding its work on the market including customers, which prefer using internet technologies for ordering goods to making orders by phone, some part of the system our group is going to develop is a web shop, which will replace the one, existing now, but not fulfill the requirements of the company.

Therefore, from the viewpoint of the company, the final product which our group is going to maintain, will be an information system, the main task of which is to synchronize the work of two other existing information systems invoking a web shop as a subsystem.

Also, from the viewpoint of our group, the final product of this project will be a documented information system fulfilling the requirements of the company and this report, which is a result of the work, taken to apply an iterative information system development process as a main guideline for maintaining the software product.

Our goal is to use UP in this project as main guideline. According to the reason that UP is quite general developing process and because no one of our team members have worked using UP before, we consider the difficulty we are going to meet – besides, all of our group members are motivated highly about using iterative development process in this project.

Keycard

Keycard is a sales company, which started its work at 1986. As mentioned before, the business branch of the company is sales – Keycard is selling smart cards and burners, and their customers are from all over the world, Europe mostly.

From the beginning of its work, KeyCard has been based on e-commerce and phone orders, but as the Internet has grown in the last years, more and more of the customers prefer to order on-line today.

Post Danmark

The work of Keycard is mostly related on Post Danmark, which takes the responsibility of delivering the ordered goods for the customers.

Other Objectives

1. Gain further system development and project management skills
2. Apply the theoretical knowledge we obtained in earlier semesters
3. Improve the practical skills in programming techniques
4. Obtain knowledge and skills in researching and developing an information system, related on other existing information systems
Resources available

Below is a list of human and technical resources upon which we will rely during the development of the project.

Human resources available

The Project Team

	Name
	E-Mail

	Eleonora Kulberkyte
	lynxis@mail.ru

	Anders Rademacher
	ratata@luisemus.dk

	Amir Ghabrial
	amirghabrial@hotmail.com

Project Advisor:

Per Jensen – pj@rhs.dk

Per is an experienced teacher in System development. We have meetings with him once a week and he checks our progress and helps if we have any difficulties during these meetings. Also, for the same reasons, we are contacting to him by e-mail.

Contact at the company:

Head of the company : Jesper Carl – jesper@keycard.dk

technician : Thomas Skyt Kristensen - tsk@KeyCard.dk

Keycard I/S

Rømersgade 25, kld

1362 København K
Technical resources available

The list below is the tools that we are going to use during the project. The choice is based on the school’s common tools so that the entire group members will provide a compatible product that can be used in the school infrastructure.

Software

1 Microsoft Word 2000 (Word Processor)

2 Visio Professional 2003 (Chart Application)
3 ASP.NET (Microsoft’s Acitve Server Page technology)
4 Microsoft Visual studio 2003 (Development Tool)
5 C# (programming language)
Hardware

1 PC at school and at home

2 Laser printer at school

3 Floppy Disk for back-ups

4 Internet and network driver for back-ups

5 Personal laptops
Initial Risk list

To ensure the success of the project we decided to make risk analysis in order to diminish the risk of unsuccessful ending.

	Risk
	Consequence
	Possibility
	Priority
	Prevention and Solution

	Loss of enthusiasm and motivation
	Delays

Conflicts

Stress
	3
	5
	Job rotation.

team building

	Illness
	Delays

Loss of Motivation
	4
	5
	Re-assign tasks to other team members.

	Project fall behind schedule
	Delays

Stress

Poor product
	3
	5
	Add weekend days to schedule. Narrow scope of project. More individual work.

	Project uncertainties
	Setbacks

Poor product

Stress
	5
	3
	Consult with advisors. Perform baselines. Consult previous projects.

	All backup media loss
	Loss of entire project

Loss of motivation

Poor Product

Setbacks
	1
	5
	Gather all paper documentation, Re-establish smaller project.

Key:

	Very High
	5

	High
	4

	Medium
	3

	Low
	2

	Very Low
	1

Preventive Measures

Group Structure (Roles)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Roles and Responsibilities Matrix
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	R-responsible

C - consult

Role Name

	Project Deliverable List
	Business model
	Supplementary specification
	Software Development Plan
	Status Report
	Risk List
	
	Use Cases
	Candidate Architecture
	Design Guidelines
	RUP Worker Matrix
	Test Cases
	Test Plan
	User Interface Design Specifications
	Individual Name

	Analyst Worker Set
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	analyst
	
	R
	C
	C
	
	
	
	R/C
	
	C
	
	C
	
	R
	Amir Ghabrial

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Developer Worker Set
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Chief programmer
	
	C
	R
	C
	
	C
	
	C
	R/C
	R
	
	R
	R
	C
	 Eleonora Kulberkyte

	Programmer
	
	
	C
	
	
	
	
	
	
	
	
	
	
	C
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Tester Worker Set
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Programmer
	
	
	C
	
	
	
	
	
	
	
	
	C
	C
	
	 Anders Rademacher

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Manager Worker Set
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Project Manager
	R
	
	
	R
	R
	R
	
	
	
	
	 R
	
	C
	
	 Eleonora Kulberkyte

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Additional Worker Set
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Administrative assistant
	
	
	
	C
	
	
	
	
	
	
	
	
	
	
	 Anders Rademacher

Working schedule

	
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday

	Morning
	GW
	GW
	GW
	GW
	GW
	
	

	Afternoon
	GW
	GW
	GW
	GW
	GW
	PA
	PA

	Evening
	PA
	
	PA
	
	
	
	

Key:

GW- Group-work

PA - Personal assignment

Working practices

The following guidelines show daily project work:

1. Group members come to the working place and check group e-mail.

2. According to the mail messages, group members make an overview of the work of the day before, if it is necessary.

3. While following the schedule, group members continue the assignments, discuss if they meet problems and formulate the tasks for further work.

4. Group members conclude the work of the day and back-up data.

5. If a group member has a personal assignment, it makes it at home and sends it to the group e-mail until the final date, set for the personal assignment.

Working place

Keycard,

Rømersgade 25, kld

1362 København K
Roskilde business College

Group Working Contract

Personal agreement

As a member of the Group,

I agree to follow the rules and conditions:

1. I will communicate with my group if there is something I do not understand, so that I can get all the necessary information needed to complete the assignment to the best of my ability.

2. I will work as much as needed to understand the topic of the book and assignments (homework as well as group work) so that I can help my group to make the best project possible.

3. I will complete every group assignment that I am responsible for, within the timeframe agreed to in the group. If I cannot complete the work in the time that I have agreed to, I will contact someone else of the group, to ask if he could take over the task.

4. If I cannot come to a group meeting, I will send my group work to the group, by email or giving it to another person in the group.

5. The workload of assignments must be shared about equally. Absences for reasonable causes (such as illness, other meetings, work or other commitments outside of the school) from project meetings are not to be counted against group member.

It’s agreed that we will not take any problems that we have in our group outside of group. We will respect and trust each other to make assignments and other group work following the guidelines in this contract.

Penalties

Penalties are to be given to a group member if:

1. The work is not finished in upon time.

2. Members are absent from the project group meeting without informing the group that will not be able to attend.

Members who break the group rules can be warned from the group. If a problem that cannot be dealt with to the satisfaction of the group members comes up, the individual or the group will contact the appropriate teacher and gets help in finding solutions. This should ultimately result in a new group meeting where the teacher is involved.

I have read and understood this contract, and I agree to all of its conditions.

Signatures

With our signature we acknowledge the above rules and roles and will do the best to perform accordingly:

	Anders Radamacher
	
	

APPENDIX C: Project Methodology

“Keycard.dk”

Project Methodology

Version 1.1
Revision History

	Date
	Version
	Description
	Author

	28/aug/04
	1.0
	Project methodology initialization
	

	20/oct/04
	1.1
	Transition phase corrections
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Methodology

2.1 Inception

2.2. Elaboration

2.3 Construction

2.4 Transition

3. Selected RUP roles

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. This Iteration Assessment includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1. Purpose

The purpose of this document is to supply the results of assessing the Construction phase Iteration II of the project “Keycard.dk”

1.2. Scope

The Construction phase iteration II assessment is associated with the Construction phase iteration II of the project “Keycard.dk” and provides the assessing results of the first Construction phase iteration.

1.3. Definitions, Acronyms and Abbreviations

Roles. A role is responsible to produce a particular artifact – the responsible role will create an artifact and ensure that any changes made by other roles do not break the artifact. One role could be performed by one person or a group of people.

Activities. An activity is a unit of work that an individual in that role may be asked to perform. The activity has a clear purpose, usually expressed in terms of initiating, updating or finalizing some artifacts.

Artifacts. An artifact is a piece of information that is produced, modified, or used by a process. Artifacts are the tangible products of the project, the things the project produces or uses while working towards the final product. Artifacts are used as input by workers to perform an activity, and are the result or output of such activities.

1.4. References

· http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/rup_bestpractices.html#4

1.5 Overview

Methodoly. The section provides the definition of each phase, performed during the project “Keycard.dk”

Roles. The section provides the descriptions of roles, which were selected for this project.

2. Methodology

2.1 Inception

	Phase characteristics
	Description

	Phase description
	Inception is a start phase of the project. During this phase, the scope of the project must be defined. The most important activities at this phase are focusing on understanding business case of the project, also addressing important risks and mitigation for them.

	Activities
	Formulate the scope of the project. During this activity, the members of the group try to capture the most important needs of the company, formulate acceptance criteria for the product and gather initial requirements. The vision is a key artifact – it tells what the system will be.

Plan and prepare the business case. With the vision as a guide, the group members define business context, perform some SWOT analysis, domain model, risk assessment and mitigation strategy, success criteria, estimate the resources needed.

Prepare the project environment. This activity includes defining methodology choice and working practices, naming and documentation conventions.

	Artifacts
	An approved business case

Vision

Risk List

Preliminary Project plan

Initial use-case model (10 %)

A plan for the initial elaboration iteration

	Evaluation criteria
	Stakeholder concurrence on scope definition and cost/schedule estimates.

Requirements understanding according to primary use-cases.

Credibility of the cost/schedule estimates, priorities, risks, and development process.

2.2 Elaboration

	Phase characteristics
	Description

	Phase description
	The goal of the Elaboration phase is to baseline the system architecture. The architecture evolves out of a consideration of the requirements and risks, which are the most significant for the architecture.

	Activities
	Capturing other requirements. Supplementary (non-functional) and any requirements that are not associated with a specific use case are captured – that includes system usability, security, reliability (recoverability), performance, supportability (adaptability, configurability). Also, these requirements include an amount of constraints; related to the system – implementation constraints, purchased components, free open source constraints, interfaces and legal issues.

Revisit risk list. Risk list is revisited, expanded with the purpose of eliminating the highest risk elements of the project.

Revisit business case. Business modeling activity also may be revisited.
Refine the vision. According to the revisiting of the formulated requirements, the vision also may be needed to refine.
Define, validate and baseline the architecture. Defining of the candidate architecture, with understanding of the whole system – its scope, major functionality and non-functional requirements. This activity also includes prototyping – building of evolutionary prototype and testing.
Create and baseline iteration plans for the Construction phase. The baseline iteration plans for the construction phase is created – use-cases are prioritized, also scenarios and technical efforts are assigned to the iterations.

	Artifacts
	Use-case model (80%)

Revisited Vision

Supplementary requirements specification

Software architecture document (SAD)

Revisited risk list

Revisited business case

Glossary

Possible architectural prototype

Iteration Plans for Construction

	Evaluation criteria
	Is the vision of the product stable?

Is the architecture stable?

Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible basis of estimates?

Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture?

2.3. Construction

	Phase characteristics
	Description

	Phase description
	The Construction phase is a manufacturing process, where managing resources and controlling operations are emphasized to optimize costs, schedules and quality.

	Activities
	Manage resources and control process. Managing the resources and process controlling is significant at the construction phase – it is important, that work is progressing according to the schedule, also the workload does not exceed the capacity.

Develop and test components. Components, satisfying requirements are built, tested and integrated. Refactoring also could be performed.

Assess iteration. Every iteration is measured to the specific iteration criteria

	Artifacts
	Components (The software product integrated on the adequate platforms)

The user manuals

The description of current release iteration plan for the transition phase

	Evaluation criteria

(for whole phase)
	Is this product release stable and mature enough to be deployed in the user community?

Are all stakeholders ready for the transition into the user community?

2.4 Transition

	Phase characteristics
	Description

	Phase description
	The focus of transition is to ensure that software is available for its end users. The transition phase includes testing the product in preparation for release and making minor adjustments based on user feedback.

	Activities
	Test the product in the developer environment. For preventing of any problems, related to the integration of the entire system, the current product is going to be tested in the developer environment.

Prepare deployment strategy. Even the current release is not going to be delivered to the user, the product deployment strategy is going to be concerned.

	Artifacts
	Deployment plan

Release notes

	Evaluation criteria
	Are the aspects for further product development clearly defined?

Are the actual resources expenditures versus planned expenditures still acceptable?

3.1. Selected RUP roles

	RUP role
	Significant responsibility

	Project manager
	Allocates resources, shapes priorities, coordinates interactions with customers/users, and generally tries to keep project team focused on right goal.

	System analyst
	Leads and coordinates requirements elicitation and use-case modeling by outlining the system's functionality and delimiting the system.

	Process engineer
	Ensures that team is adhering to RUP, following iterations and accomplishing milestones.

	Deployment manager
	Responsible for plans for transition the product to the user community.

	Requirements reviewer
	Responsible to review use-case and supplementary specifications.

	Architecture reviewer
	Responsible to review architectural solutions

	Business process analyst

	Responsible for leading and coordinating business modeling, by outlining and delimiting the organization being modeled.

	Use-case specifier
	Responsible to specify use-cases

	Requirements specifier
	Responsible of detailing a part of the system's functionality by describing the Requirements aspect of one or several use-cases and other supporting software requirements

	User Interface designer
	Responsible of designing user interface

	Software architect
	Establishes the overall structure for each architectural view: the decomposition of the view, the grouping of elements, and the interfaces between these major grouping

	Design reviewer
	Responsible to review design

	Configuration manager
	Responsible for providing the overall infrastructure and environment for the product development team

	Change control manager
	Responsible to oversee the change control process

	Designer
	Responsible to define the responsibilities, operations, attributes, and relationships of one or several classes and determines how they should be adjusted to the implementation environment

	Implementer
	Responsible of constructing components

	Code reviewer

	Responsible of ensuring the quality of the source code and planning and conducting source code reviews

	Integrator

	Responsible to integrate the components to the system

	Test Designer

	Responsible for the planning, design, implementation, and evaluation of testing, including generation of the test plan and test model, implementation of the test procedures, and evaluation of test coverage, test results, and effectiveness

	Tester
	Responsible for testing activity, which involves conducting the necessary tests and recording testing results.

APPENDIX D: Inception iteration Assessment

“Keycard.dk”

Inception iteration Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	2/sep/04
	1.0
	Iteration assessment for Inception phase
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7.
 External Changes Occurred

 8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Inception phase iteration of the project “Keycard.dk”.

1. 2 Scope

The Inception phase iteration assessment is associated with the Inception iteration of the project “Keycard.dk” and provides the assessing results for the Inception phase.

1.3 Definitions, Acronyms and Abbreviations

none

1. 4 References

· Use-case model

· Supplementary specifiacation

· Business case

· Risk list

· Preliminary project plan

· Plan for Inception phase iteration

1.5 Overview

 The Elaboration iteration assessment consists of following aspects:

 Iteration Objectives Reached

 The objectives reached during the activities, performed in the Inception phase.

 Adherence to Plan

 The section assesses the iteration from viewpoint of adhering to the plan

 Test results

 If any of testing on any of testable component has been performed, the section gives an overview about testing results

 Results to the Evaluation Criteria

 The section presents the results to the evaluation criteria, defined in the Inception phase description.

 External changes occurred

 The section describes if any of the external changes occurred

 Rework required.

 The section describes if any of rework is required.

2. Iteration Objectives Reached

· Problem definition. Problem has been defined.

· Project scope. Project scope has been estimated according to problem definition and Company’s needs.

· Vision. A short vision has been formulated according to problem definition and estimated project scope.

· Methodology choice. Methodology has been defined taking RUP as main guideline through the process. Roles, workflows, activities and artifacts has been indicated, project reporting and planning activities defined.

· Business modeling. The initial business model has been started with beginning the SWOT analysis.

· Requirements capturing. Initial functional and non-functional requirements have been captured. The use-case model and supplementary specification have been initiated.

Risks

· Project uncertainty risk has been indicated – it impacted these activities:

· Methodology choice

· Business modeling

 To mitigate this risk, we included consulting our project advisor and previous projects. Also, we still feel this risk has not been mitigated, but we are following the same practices to mitigate it as much as possible.

· Company low level attention risk has been obtained. We have prepared a plan for mitigating this risk and even had to use the techniques for mitigation.

3. Adherence to Plan

Because of mitigation the risks, we had to finish our iteration two-days behind the schedule. We had captured some weekend days’ time to finish this iteration on time. Also, because we still cannot achieve the approval from our company because of their cops-up, we consider the delays and gaps in our level of satisfactory for evaluation criteria.

4. Use Cases and Scenarios Implemented

Not sufficient at this stage

5. Results Relative to Evaluation Criteria

· Stakeholder concurrence on scope definition and cost/schedule estimates. As we have obtained Company’s cops-out risk, we haven’t achieved their concurrence on the scope definition, schedule and artifacts to be approved.

· Requirements understanding according to primary use-cases. We have clearly understood the functional requirements of the system according to the needs of the company, but we still need their approval.

· Credibility of the cost/schedule estimates, priorities, risks, and development process. We are following the development process and feel about have been estimated the schedules, priorities and risks in the right way. We have not done any estimates on costs because this project does not include any cost for any product/tools or equipment.
6. Test Results

Not sufficient at this stage

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX E: Elaboration iteration Assessment

“Keycard.dk”

Construction phase Iteration I Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	16/sep/04
	1.0
	Iteration assessment for Elaboration iteration phase
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Elaboration phase iteration of the project “Keycard.dk”

1.2 Scope

The Elaboration phase iteration assessment is associated with the Elaboration iteration of the project “Keycard.dk” and provides the assessing results for the Elaboration phase.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 Reference

· Use-case model

· Supplementary specifiacation

· Business case

· Risk list

· Preliminary project plan

· Plan for elaboration phase iteration

1.5 Overview

 The Elaboration iteration assessment consists of following aspects:

 Iteration Objectives Reached

 The objectives reached during the activities, performed in the elaboration phase.

 Adherence to Plan

 The section assesses the iteration from viewpoint of adhering to the plan

 Test results

 If any of testing on any of testable component has been performed, the section gives an overview about testing results

 Results to the Evaluation Criteria

 The section presents the results to the evaluation criteria, defined in the Elaboration phase description.

 External changes occurred

 The section describes if any of the external changes occurred

 Rework required.

 The section describes if any of rework is required.

2. Iteration Objectives Reached

· Refining requirements. The activities were performed concerning initiated artifacts – the brief descriptions of the use-cases were developed, SSD of most significant ones were maintained. The approval of the Company was achieved.

· Revisiting business case. The conclusion of business case was formulated – the SWOT analysis was concluded in defining the strategy and goals of the company, also a partial domain model was developed.

· Refining the vision. From the short vision statement, the vision has evolved to the detailed description of the vision system – the vision was developed according to refined business case and requirements.
· Defining a candidate architecture. The candidate architecture was developed according to the requirements specification and business case – the most appropriate solution of multi-tiered architecture in high level of abstraction was provided. The Software Architecture Document (SAD) was initiated.

· Developing an executable prototype. The vertical technical prototype was developed in case of mitigating the uncertainty in synchronizing the existing system components. Having in mind, that the decision of our group was to make an evolutionary prototype, we attempted to develop our prototype strictly related the defined architectural solution.

The prototype was implemented and tested.

· Risks. While refining the requirements, the amount of indicated risks has grown – there were indicated the risks, the impact of which mostly implies to the system.

Also, partial illness risk was observed – the daughter of one of our group members got sick and he could not attend project working hours for one day. The mitigation risk hasn’t been followed, because our group member ensured he would accomplish his tasks at home.

Two important risks:

 possibility of accessing C5 from a web-application

 the manual data file deploying to Pc Pack

has been indicated. The risks were indicated while developing the prototype and the mitigation plans were prepared. In case of the risks exposing, in this stage of development process the implemented prototype was indicated as providing a partly solution for the technical synchronization of the system components.

· Creating plans for Construction phase. Our project team is considering the Construction phase consisting of four iterations. The general Construction iteration plan was developed. The specific details of particular iteration will be developed and provided during the “preparing the iteration” activity.

3. Adherence to Plan

Because of mitigating the risks, the members of the group have found difficulties in some of the activities – these include prototyping and testing. According to the plan, the prototype we were going to develop had to provide the technical solution of synchronizing the system components. Because the risks were not mitigated at the end of this iteration (The solution is still being researched), we assigned the use-case, the realization of which the prototype provides, to the next iteration. We are reasoning such our decision by the fact, that the prototype we have developed is evolutionary prototype, so the missing part of the technical solution is going to be researched and implemented parallel to the components, the implementation of which is going to be planned for next iteration.

4. Use Cases and Scenarios Implemented

Not sufficient at this stage

5. Results Relative to Evaluation Criteria

· Is the vision of the product stable? The vision was refined according to the requirements and the business case. The business case and requirements are approved by the Company, so the vision is stable.
· Is the architecture stable? Our group has defined a multi-tiered architectural solution which partly stable.
· Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible basis of estimates? The plan of Construction phase has been generally developed and it provides general activities, performed during every iteration o Construction phase.
· Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop the complete system, in the context of the current architecture? Because the complete system is going to be developed based on the evolutionary prototype the approval from the company has been achieved.

6. Test Results

Prototype test (1.0)

	Product failures
	Product notes

	Proceeding Order
	Failure because of dependency on other functions:

· registering the data file in Pc Pack

· registering the data file in C5

	registering the data file in Pc Pack

	Failure because access deny to the input folder

	registering the data file in C5

	Failure because access deny to the input folder

	Product passes
	Product notes

	Generating a data file for Pc Pack

	The file was generated

	Generating a data file for C5

	The file was generated

7. External Changes Occurred

none

8. Rework Required

· Prototyping. The prototype provides only partial solution of synchronizing the existing system components. The possible implementation way of accessing the C5 must be found and implemented.

APPENDIX F: Construction Iteration I Assessment

“Keycard.dk”

Construction phase Iteration I Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	27/sep/04
	1.0
	Iteration assessment for Construction phase Iteration I
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in th period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Construction phase Iteration I of the project “Keycard.dk”

1.2 Scope

The Construction phase iteration I assessment is associated with the Construction phase iteration I of the project “Keycard.dk” and provides the assessing results of the first Construction phase iteration.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

none

1.5 Overview

The Construction phase iteration I assessment consists of following aspects:

Iteration Objectives Reached

The objectives reached during the activities, performed in Construction phase iteration I.

Adherence to Plan

The section assesses the iteration from viewpoint of adhering to the plan

Test results

If any of testing on any of testable component has been performed, the section gives an overview about testing results

Results to the Evaluation Criteria

The section presents the results to the evaluation criteria, defined in the Construction phase iteration I.

External changes occurred

The section describes if any of the external changes occurred

Rework required.

The section describes if any of rework is required.

2. Iteration Objectives Reached

· Refining requirements. The activities were performed concerning the main goal of the iteration – implementing the “Manage Order” use-case. The refinements were added to the supplementary specification and use-case model, because the decision was made to use ”Asp.net commerce starter kit” as the web-shop application during this project. The requirement changes were not essential – the project team found this open source application appropriate to the project scope.

· Developing the architecture. The System architecture document was revisited and refined because of the same reasons as supplementary specification and the use-case model – the decision to extend the “Asp.net commerce starter kit” functionality in case of developing the target system raised the need of putting some details to the defined architecture and system design.

· Constructing components. During this activity, there were constructed the following components:

· System synchronization component (PcPackWriter)

· System management component (KIS Admin)

Components were tested and prepared for integration.

· Risks. During the iteration, there were no new risks indicated. The “the data file deploying to Pc Pack” risk was eliminated with detailed investigation of Pc Pack documentation and even using Post Danmark hot-line help.

But still, the “technical possibility of accessing C5 from a web-application” is not eliminated. The risks causes an amount of setbacks of the development process – the risk also causes the decrease of project team motivation.

The first step to find an implementation way was to call Microsoft business solution.

Microsoft told us as expected to call a C5 business partner and give us a phone number.

We called the company (Conzern.dk) and told about our task, unfortunately the company’s response was useless, they told us to buy every thing from them and forget to do anything self.

Next step was to browse the Internet to find other Microsoft business solution partners.

However, we could not succeed in this.

· Creating plans for next iteration. The next iteration is going to be performed with focusing on “Manage Order” use-case implementation. The components are going to be built:

· System synchronization component (C5 Writer)

 Because the component is considered with high complexity (and even uncertainty of being possibly implemented), the whole next iteration is going to be assigned for developing this component.

Managing the process. Process management activity was performed in case to refine the planning strategy for the Construction phase. According to the defined methodology, the different use-cases or scenarios must be assigned to the particular iterations. However, the process current conditions made the project team to revisit planning activity in case of optimizing the resources with expecting better iteration results. The most significant resource at this stage of process is time, spent on eliminating the risks, related to the problem complexity. So, in case of gathering the better results in solving complicated problems, the planning activity is going to be performed with planning the iterations in order to assign one use-case for 2 iterations.

3. Adherence to Plan

The managing process activity has made significant changes to the planning activities. As it was mentioned in the methodology, one particular use-case is assigned for each Construction phase iteration. However, because of the change in the planning activity, which is to assign one use-case for two iterations, the plan was followed correctly and the iteration was finalized on time.

4. Use Cases and Scenarios Implemented

“Manage order” use case

· main success scenario (partly implemented)

· extensions (implemented)

5. Results Relative to Iteration Criteria

· How does the constructed components correspond to the use-case, assigned to the iteration? During the iteration, approximately 60% of “manage order” was implemented – the Admin and PcPackWriter components were constructed.

· How does the components maintain assigned functionality? The constructed components are fully maintaining the “manage order” use-case

· Are the components prepared for integration for the the entire system? The components are constructed, but they are not integrated in the entire system.

6. Test Results

KIS Admin Component test

	Product failures
	Product notes

	4. The order proceeding function is not working

	The failure is observed because the component is not integrated with Pc Pack Writer component

	Product passes
	Product notes

	1. administrator authorization
	The administrator management environment of the system is accessed

	2. accessing customer list
	The customer list with sample data is visible

	3. selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible

PcPackWriter Component test

	Product passes
	Product notes

	1. generate recognizable file for Pc Pack

	The file is generated.

	2. locate the file in Pc Pack Import directory
	Pc pack application recognized the file and data was imported. The label code was generated. The testing environment does not support printing, so the label was not printed – instead, the “can’t access printer” message was showed by Pc Pack

	Product failures
	Product notes

	none
	

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX G: Construction Iteration II Assessment

“Keycard.dk”

Construction Iteration II Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	28/sep/04
	1.0
	Iteration assessment for Construction phase Iteration II
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Construction phase Iteration II of the project “Keycard.dk”

1.2 Scope

The Construction phase iteration II assessment is associated with the Construction phase iteration II of the project “Keycard.dk” and provides the assessing results of the first Construction phase iteration.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

none

1.5 Overview

The Construction phase iteration II assessment consists of following assed aspects:

Iteration Objectives Reached

The objectives reached during the activities, performed in Construction phase iteration II.

Adherence to Plan

The section assesses the iteration from viewpoint of adhering to the plan

Test results

If any of testing on any of testable component has been performed, the section gives an overview about testing results

Results to the Evaluation Criteria

The section presents the results to the evaluation criteria, defined in the Construction phase iteration II.

External changes occurred

The section describes if any of the external changes occurred

Rework required.

The section describes if any of rework is required.

2. Iteration Objectives Reached

· Internal integration of the already-developed components. During previous iteration, the following components were developed:
· KIS Admin

· PcPackWriter
The components have been integrated internally and tested.
· Constructed components. During this activity, there were constructed the following components:

· System synchronization component (C5Writer)

· System management component (KIS Admin)

Components were integrated internally and tested.

· Risks. The “possibility of accessing C5 from a web-application” has been eliminated, because after long investigations and consultations, we have agreed on possible solution. In the following sections, we provide the steps we took in order to find the solution for this risk mitigation.

.

First of all we asked the school for help but the school was not able to help.

We called the C5 business partners to find out what exactly we were looking for. We found out, that the driver already was installed in C5, but needed a license key. We explained the company’s problem, that it would not cost a lot if it worked, but if it wouldn’t, we asked for a trail license to try before discussing about buying the license.

The group frustration was growing. The most likely solutions were tried, with no luck. We called Microsoft and asked for a trial version of the license. The answer was surprising as the person in charge did not rejected us but told us to send an e-mail to a specific Microsoft address.

A week after we received a full but time limited license and a C5 application from Microsoft.

Then we tried to get it to work but again, no luck.

C5 provided no manuals on how to get it to work. On c5forum.dk we found an install guide that doesn’t work.

Again we called. This time to the C5 partner that have sold the C5 system to the Keycard (JBN Consult Aps). As we expected, that company had lower priority for school projects, so this time we presented us as the project group that worked for Keycard and focused on keycards needs for a solution. The output from this phone call was a meeting in Keycard next day with a C5 ODBC expert from JBN.

The meeting was well. Three problems was discovered and solved.

· Conflict between our license and Keycard’s C5 database

· Registration of the ODBC driver in MS Windows

In the end of the meeting we were able to read out data from the C5 database throw Microsoft Excel.

However, we could not make the driver work in the ASP.NET, Microsoft Visual Studio environment.

So After such attempting for problem solution, we have decided to solve the problem in only possible way – using data transition to C5 through comma-separated file.

· Creating plans for next iteration. The next iteration is going to be performed with focusing on “Create Order” use-case implementation. The components are going to be built:

· KIS Shop

Managing the process. Managing activity is still kept on the same track, which was set during the previous iteration – we are going to initiate KIS Shop component development in the next iteration.

3. Adherence to Plan

After we had performed planning revisions in the previous iteration, the adherence to the new plan – 2 iterations for 1 use-case – is tolerated well. Besides all the problems we met, we have managed to finalize the “Manage order” use-case, so we are going to keep on the defined process plan.

4. Use Cases and Scenarios Implemented

“Manage order” use case

· main success scenario (implemented)

5. Results Relative to Iteration Criteria

· How does the constructed components correspond to the use-case, assigned to the iteration? During this iteration, the “manage order” use-case was developed 98%. We are measuring the use-case implementation by such percentage, because we have faced only the most important aspects of the use case (main success scenario).

· Does each component maintain assigned functionality? We have constructed the C5Writer component in this iteration. The component is functioning properly and it was directly integrated in the “Admin” component without transitional testing, because the component was based on model layer classes.

· Are the components prepared for the integration in the entire system? The developed management component KIS admin is prepared for being integrated in the entire system. We are stating this fact, because the Component is maintaining the required functionality and is implementing the main aspects of “manage order” use-case.

6. Test Results

KIS Admin test (with integrated PcPackWriter component)

	Product failures
	Product notes

	none

	

	Product passes
	Product notes

	1. Order proceeding (PcPack)
	The order is proceeded with writing the order data to Pc Pack. The label is generated and Pc Pack called the printer.

	2. Accessing customer list
	The customer list with sample data is visible

	3. Selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible

KIS Admin test (with integrated C5Writer component)

	Product failures
	Product notes

	none

	

	Product passes
	Product notes

	1. Proceeding the order (C5)
	The order is preceded with retrieving data from web shop database and writing the data to correspondent files. After the data was imported to C5, the printer was called in order to print out the invoice.

	2. generate file DebKart.kom
	The file was generated and filled with Customer data

	2. generate file OrdKart.kom
	The file was generated and filled with Order data

	3. generate file OrdLinie.kom
	The file was generated and filled with Order lines of the Order data

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX H: Construction Iteration III Assessment

“Keycard.dk”

Construction Iteration III Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	16/sep/04
	1.0
	Iteration assessment for Construction phase Iteration III
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in th period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Construction phase Iteration III of the project “Keycard.dk”

1.2 Scope

The Construction phase iteration III assessment is associated with the Construction phase iteration III of the project “Keycard.dk” and provides the assessing results of the first Construction phase iteration.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

none

1.5 Overview

The Construction phase iteration III assessment consists of following assed aspects:

Iteration Objectives Reached

The objectives reached during the activities, performed in Construction phase iteration III.

Adherence to Plan

The section assesses the iteration from viewpoint of adhering to the plan

Test results

If any of testing on any of testable component has been performed, the section gives an overview about testing results

Results to the Evaluation Criteria

The section presents the results to the evaluation criteria, defined in the Construction phase iteration III.

External changes occurred

The section describes if any of the external changes occurred

Rework required.

The section describes if any of rework is required.

2. Iteration Objectives Reached

· Constructing components. During this activity, there were developed the following components:

· KIS Shop

· Risks. No new risks were indicated. No risks appeared.
· Creating plans for next iteration. The next iteration is going to be performed with focusing on “Create Order” use-case finalization. The components are going to developed:

· KIS Shop

Managing the process. The process managed while keeping the same direction and continuing KIS Shop development.

3. Adherence to Plan

During this iteration, we have implemented 50% of “create order” use-case. That means, the process is adherent to plan and the development process is well-controlled.

4. Use Cases and Scenarios Implemented

“Create order” use-case

· main success scenario (partly implemented)

5. Results Relative to Iteration Criteria

· How does the constructed components correspond to the use-case, assigned to the iteration? At the beginning of the iteration, it was mentioned, that the emphasis of this iteration is Customer data registration to the database. So, we can evaluate the developed component maintaining 50% of the use-case. The percentage determines, that the use-case is implemented and it directly corresponds to the iteration plan.

· Does each component maintain assigned functionality? During this iteration, the KIS Shop component was developed. It was stated in the beginning of iteration, that this component is going to maintain the whole ”create order” use-case. At this stage of the Construction phase, the component is maintaining half of the “create order” use-case.

· Are the components prepared for integration in the entire system? The developed KIS Shop component is not integrated in the entire system. We have not considered component integration, because the iteration was planned to provide the half of the “create order” use case. So, the component was tested separately and is not prepared for the final integration.

6. Test Results

KIS Shop test

	Product failures
	Product notes

	none

	

	Product passes
	Product notes

	1. Accessing web shop
	The web shop environment of the system is accessed

	4. Accessing the Customer registration page
	Input fields are visible for the customer, with validation check for customer entry data.

	5. Registering Customer in the system
	System registered customer in database. The data is visible by checking it in the MS SQL.

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX I: Construction Iteration IV Assessment

“Keycard.dk”

Construction Iteration IV Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	18/Oct/04
	1.0
	Iteration assessment for Construction phase Iteration IV
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Construction phase Iteration IV of the project “Keycard.dk”.

1.2 Scope

The Construction phase iteration IV assessment is associated with the Construction phase iteration IV of the project “Keycard.dk” and provides the assessing results of the first Construction phase iteration.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

none

1.5 Overview

The Construction phase iteration IV assessment consists of following aspects:

Iteration Objectives Reached

The objectives reached during the activities, performed in Construction phase iteration IV.

Adherence to Plan

The section assesses the iteration from viewpoint of adhering to the plan

Test results

If any of testing on any of testable component has been performed, the section gives an overview about testing results

Results to the Evaluation Criteria

The section presents the results to the evaluation criteria, defined in the Construction phase iteration IV.

External changes occurred

The section describes if any of the external changes occurred

Rework required.

The section describes if any of rework is required.

2. Iteration Objectives Reached

· Constructed components. During this activity, there were developed the following components:

· KIS Shop

· Risks. No new risks were indicated. No risks appeared.
· Creating plans for next iteration. The initial plan for the Transition phase has been developed.

Managing the process. The process management activity has played a significant role at the end of iteration. The project group had to focus on the next iteration planning activity, because the decision has been made, that the entire Construction phase outcome deliverables are not considered as product release, mature to be delivered to the user community. The team has made a decision that the process has to take a specific direction in the project ending – the transition phase is going to be focused on final integration testing and deployment aspects providing.
3. Adherence to Plan

During this iteration, we have implemented approximately 99% of “create order” use-case. That means, the use-case is implemented and the process is adherent to plan.

4. Use Cases and Scenarios Implemented

“Create order” use-case

· main success scenario (implemented)

5. Results Relative to Iteration Criteria

· How does the constructed components correspond to the use-case, assigned to the iteration? We have finalized the KIS Shop component implementation during this iteration. Because the iteration was planned to cover the remaining part of the use-case (order registering), and the previous iteration covered the initial part of the use-case (customer registering), we can strongly state, that the whole “create order” use-case is 100% implemented.
· Does each component maintain assigned functionality? During this iteration we have developed only one component. We have succeeded in implementing whole assigned functionality – the possibility of the entire order data registration is successfully implemented.

· Are the components prepared for integration in the entire system? The developed component – KIS Shop – is definitely prepared for the entire system integration, because it maintains the whole “create order” use-case and is coordinated with the KIS database.
7. Test Results

	Product failures
	Product notes

	none

	

	Product passes
	Product notes

	1. Accessing web shop
	The web shop environment of the system is accessed

	2. Accessing Item Category Menu
	The Item Category with sample item list is visible

	3. Selecting the Item
	Items are selected and added to the shopping cart, with possibility of updating the order.

	4. Confirmation of the order
	Order in the Shopping cart is confirmed by the customer

	5. Registering Order in the web shop database
	The order is registered in web shop database

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX J: Transition Iteration Assessment

“Keycard.dk”

Transition Iteration Assessment

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	27/Oct/04
	1.0
	Iteration assessment for Transition iteration
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Iteration Objectives Reached

3. Adherence to Plan

4. Use Cases and Scenarios Implemented

5. Results Relative to Evaluation Criteria

6. Test Results

7. External Changes Occurred

8. Rework Required

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides assessment results for the Elaboration phase of RUP for the project “Keycard.dk”. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to supply the results of assessing the Transition iteration of the project “Keycard.dk”

1.2 Scope

The Transition iteration assessment is associated with the Transition iteration of the project “Keycard.dk” and provides the assessing results.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

none

1.5 Overview

The Transition iteration assessment consists of following aspects:

Iteration Objectives Reached

The objectives reached during the activities, performed in Transition iteration.

Adherence to Plan

The section assesses the iteration from viewpoint of adhering to the plan

Test results

If any of testing on any of testable component has been performed, the section gives an overview about testing results

Results to the Evaluation Criteria

The section presents the results to the evaluation criteria, defined in the Transition iteration.

External changes occurred

The section describes if any of the external changes occurred

Rework required.

The section describes if any of rework is required.

2. Iteration Objectives Reached

· Final integration testing. The final integration testing was performed in order to produce the product pre-release description. The testing activity has been performed in the developer’s environment, because the product is not mature to be delivered to the user community.

· Deployment strategy. Even the product is not mature to be delivered to the user environment, the deployment aspects has been investigated and initial deployment plan has been prepared.

Risks. During the last process iteration, no more new risks have been indicated. During the whole process, the risks were managed and all applied risk-mitigation strategies have reduced the results of risk exposures.
Managing the process. During the Transition phase, the process management activity was mostly performed in applying changes to the methodology, because the current process state was not able to follow the one, defined in the beginning of process. The methodology changes were applied in the Transition phase description (activities and artifacts) and were applied during the iteration successfully.

3. Adherence to Plan

The managing the process activity, performed in the beginning of the iteration, was one of the core activities, during which the Transition plan was produced. The plan has been followed and the project has been finalized on time.

4. Use Cases and Scenarios Implemented

no sufficient for current stage

5. Results Relative to Iteration Criteria

· Are the aspects for development of the next product release clearly defined? During the testing activity, we have determined a set of areas of instability in the KIS. These testing notes are collected in the release description and could be used for the later KIS development.

· Are the actual resources expenditures versus planned expenditures still acceptable? The actual resources expenditures versus planned expenditures are still acceptable. Because the most important resource was considered time, the resource has been fully exploited and the project has been finalized on time. However, if our project group has more time for the KIS development, we would concern about next product release development.

6. Test Results

Appendix […]: test Prototype 2.0

Final integration test

7. External Changes Occurred

none

8. Rework Required

none

APPENDIX K: Business model

“Keycard.dk”

Business model

Version 1.1

Revision History

	Date
	Version
	Description
	Author

	03/09/04
	1.0
	Initial business modeling
	

	07/09/04
	1.1
	Finalizing business modeling, domain model
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Company profile

3. Company structure analysis

4. Company environment analysis

5. Company strategy

6. SWOT analysis

7. Domain model

1. Introduction

This document is made in order to understand the business process being performed by the company Keycard. We will represent essential information about KeyCard Location, turnover, size, and what does the company do, mission statement, Company analysis, etc.

1.1. Purpose

The purpose of this document is to provide a business model, which in return will help us as a group of developer to define the company's requirements for the system. And eventually that will help Keycard to solve current problems by implementing new IT system and the impact of the new system on the company’s business process.

1.2. Scope

This section will consist of analysis for external and internal environmental factors including SWOT analysis and provide non-technical recommended solutions for current problems facing Keycard Company.

1.3 Definitions, Acronyms and Abbreviations
· Company. The company “Keycard”.

1.4. References:

· Recorded interviews with the company

1.5. Overview

The business model consists of following aspects:

Company profile

The profile of the Company.

Company structure analysis

The section presents the structure of the company.

Company environment analysis

The section provides environment analysis of the company.

2. Company Profile

The company started up in the year 1988 under the name Dk2mac.dk. In the year 2000, because of the governmental refinement of the law, based on naming, related to TV sat, the company felt about changing their name – so this is the first appearance of the company as Keycard.
“KeyCard.dk” is a sales company, based on web and phone orders, which mainly sells empty, electronic key cards and burners
, the legal purpose of which is to use them for electronic lock systems. As the business process of the company is based on selling these kinds of products, Keycard is familiar with fact, that a large part of the customers is misusing these cards to decode satellite pay TV - but the company is not supporting these activities.

When the company started their business up, the only products the company was selling were earlier mentioned cards and burners, but as the law suite from the television company begin to come, the company decided to sell other electronic equipment too.
Although Keycard is selling many kinds of products today, electronic cards and burners are still the bases of their sales.
3. Company structure analysis
The hierarchical structure of Keycard shows, how the tasks are divided and resources deployed in the company. The following organization chart illustrates the structure of Keycard

[image: image35.emf]Owners

Rune & Jasper

Administration &

shop in Sweden

Inge

Shop in Denmark

Rune & Kurt

Administration

Jasper & Tomas

The company is owned by the brothers Jesper and Rune – Jesper is responsible for the Customer Service and Rune is responsible for the shop, where Keycard products are sold in Denmark.

The company consists of three departments – the administration, the physical shop in Denmark and the department in Sweden.

The company has one hierarchical level of management, but the fact is, that nobody could be treated as being in the highest position, simply speaking, the chief of the company – considering the fact, that all employees have their well-defined roles, all of them have equal power to make most of the decisions, related to the company’s business process.

4. Company environment analysis

In this part of our business analysis we start to observe the elements of the environment that have direct and indirect influence on the Keycard business process. The following chart describes some of the main elements, which have impact on the success of the business.

[image: image36.emf]The legal-

political

dimension

International

Dimension

Technological

dimension

The Economic

dimension

Competitors

Suppliers

Labor

market

Customers

Keycard

Company

The External Environment

T

h

e

I

n

t

e

r

n

a

l

E

n

v

i

r

o

n

m

e

n

t

Keycard Environmental analysis

Internal environment (Task environment):

The internal environment includes those components, which have a direct working relationship with the organization. They are:

1. Competition

Keycard.dk should always attempt to create new products or services, in the way to distinguish their supply from their competitors. Also Keycard.dk underpins the market with lower prices for sales than their competitors, at the same time providing good quality.
2. Customers

The successful business process of the company is mostly defined by the amount of Customers it have - the majority of Keycard.dk customers are from Scandinavian countries and from EU members. In addition, to ensure the success in sales business, Keycard.dk obtains the challenges in attracting and keeping customers loyal for the company.

3. Suppliers

The relationship between Keycard and suppliers has traditionally been an adversarial one.

According to an interview with the Keycard, The Company declared that good relationship with suppliers is the key in keeping higher profit, saving resources and maintaining quality. In this case, Keycard has a very stabled and reliable relationship with their suppliers.

4. Labor market

The labor market refers to the people in the environment, who can be hired with a purpose to work for the organization. Keycard needs well-trained and qualified personnel. This availability of certain classes of employees can influence the organization’s labor market. According to an interview with the General Manager of Keycard, the company empowers its employees to handle different tasks in different situations during its daily business work.

External environment

1. The legal-political dimension

This dimension includes government regulations at the local, state, and federal levels as well as political activities designed to influence company behavior. Keycard.dk has recently faced a new law made by the Swedish government, that forbade selling cards and burners from Swedish companies to Swedish customers, but it is still legal to sell such products from Danish companies to Swedish customers. That means more opportunities to Keycard to sell their products in the Swedish market and take over good part of the market share.

2. The International Dimension

The international environment provides new competitors, customers and suppliers; also, it shapes social, technological, and economic trends, as well. Changes in the international domain can abruptly turn the domestic environment upside down – impact of this dimension is serious because of the majority of the Keycard’s supply is oriented by foreign producers from eastern countries who support Keycard with high quality & low prices. And that lead to competing with few companies that distribute the same products in EU for competitive prices.

3. The Technological dimension

It includes scientific and technological advancement in specific industry as well as society. Keycard businesses, meanwhile, are demanding ever more sophisticated network technology to support the new global work environment - the company has just bought new server and updated its network, as well as the development for the existing System that we are going to provide to Keycard. These factors will improve the Company competitive position among the other companies in the same field.

4. Economic dimension

This dimension represents the overall economic health of the country or region in which the organization functions. The economies of the countries are mare closely tied together than ever before. Denmark has a much stabled economy as well as Keycard company. The company has just bought a bigger place 2000 square meters, in order to handle larger amount of products. That is one of the signs of the company’s growth.

5. Company Strategy

After a wise observation, We consider the fact, that the company has not any kind of clearly defined strategies and goals or any grand idea to follow, so in this case we are going to help out the company to think of their business case and also one of our products is to formulate some goals and strategy, which could help the company in the long and short terms and the usage of the system we are going to develop.
6. SWOT Analysis
The purpose of the SWOT analysis is to evaluate the company’s current mission, goals and strategies and scan both the external and internal environment in order to identify the strategic factors like opportunities and threats externally and strengths and weaknesses internally. Next, the implementation of the new strategy via changes in leadership/culture, structure, human resources, control and management of the company’s new system.

STRENGHTS

	component
	description

	Few employees
	Keycard has not so many employees. In that way they are easy to control; every employee knows his/her tasks exactly.

	Supporters and product developers
	Keycard has good relationships with other organizations that provide consultations and advisements for the business.

	Stable suppliers
	One of the key points of success for Keycard is their strong communications with suppliers, which has been built, since the company started in 1988.

	Good economy
	Keycard has stable economy and even willing to invest in another business type.

	Few Competitions
	The company has a very large part of market share; Keycard is one of a small number of distributors of some cards and their burners in the Denmark and other countries.

	Product that is almost impossible to get in physical shops
	Some of the products, which Keycard sells, are not widely distributed in regular shops. Cards and burners are mostly sold for companies that developing accessing systems for buildings or for commercial purposes only and not for individuals

	Knowledge of the law
	Keycard is very aware of new regulations that could have any influence on the business. All employees in the company should have knowledge of law and regulations regarding selling electronic equipments on line and especially Cards and burners.

WEAKNESSES
	Component
	Description

	Few employee
	Although we have described the company’s few employees as strengths, but it could also turn to be weakness if the company does not find the well qualified people for the job, since every employee should be able to work in all places in the company.

	Bad information flow
	Lack of exchanging information between the employees within the company.

Although the number of employees is small, sometimes every employee is busy with his own task and forgets to inform his colleges about some changes in the work process and that leads to lack of information.

	Difficult to get qualified employees
	Since the company has few employees and each employee must know almost every thing within the business, so it’s very major issue that Keycard selects well qualified people for the job and that is not easy to achieve.

	There are no defined strategies or goals
	One of the major weaknesses that Keycard has, is that the company does not have any specific strategy, goals, or plan to follow. This has an impact on the employees and clarifying what Keycard should achieve could effectively motivate its employees.

OPPORTUNITIES

	Component
	Description

	Increase market share
	Keycard has a very stable Position in the market share for selling cards and burners. The company is even the only distributor for some of the cards and burners. Keycard took advantages of that by selling cards and burners to the Danish market and even moving to the Swedish market.

	Starting new branches in other region or country.

	Keycard has already one department in Sweden and there is an available opportunity to start up a new department in one or more Scandinavian countries or even in other EU countries. But we consider this as a potential long term plan.

	Expanding the company’s distribution in Sweden.

	The new Law in Sweden gave Keycard company better opportunity to sell products from Denmark to Sweden and more customers in the Swedish market.

THREATS
	Component
	Description

	New products in the market that the company cannot get and distribute

	One of the threats that could face Keycard is the appearance of new products. For example, a new type of cards appears that could be cheaper and better in quality.

	Shut down the business and start up a new business in different field.

	One of the threats that face Keycard is shutting down the business because of many competitors entering the market, especially large companies trying to sell products for more competitive prices than Keycard.

	Changes in the law that could harm the business

	That threat is considered as a weak threat, which could face the company in the future because of the stable regulations in Denmark.

	New Competitors enter the market.

	The company is not worried about small competitors, but is more worried about these large companies, which could distribute the same products as Keycard and in more competitive prices.

 Comments on the SWOT analysis

· Considering the competition, Keycard stands quite stable, because the company has a solid economy, qualified employs, also a big network of suppliers and supporters and is the only distributor of some products in Denmark.

· Working environment in Keycard consisting of a small number of people suppose to be a good opportunity to correct an existing bad information flow in the company. In this case we recommend that Keycard makes a short meeting only one hour a week, in order to inform every member of the company about what is the company going through.

· The small amount of employees is also a risky thing – especially when it is hard to get qualified employees and it might cost the company a lot of time to train the new employees. To avoid this problem, the company tries hard to have a good working environment – employees should be happy with their work and the can express their dependability.

· Considering the fact, that the business with cards and burners is placed in a gray zone of the law, Keycard is sure, that not many companies are about to sell these products. Customers have to buy these products online because it is almost impossible to get these products in a physical shop.

· The company is built on web and phone orders - this gives an opportunity to expand the amount of sales. Besides, the low-cost position that the company adjusts helps Keycard undercut prices of competitors and still offer comparable quality and earn reasonable profit.

· Also one of the weaknesses, which we mentioned before in the SOWT analysis, is lack of defined goals. Goals should also be effective, we mean by infective that the goals and strategies should improve the company’s profit, business process, and environment within the company. We could offer the company some criteria for effective goals as a guide when Keycard tries to establish its goals in the future.

1) Goals should be specific and measurable.

2) Goals should cover key result areas “targeted goals”.

3) Goals should be challenging but realistic.

4) Goals should be defined time period.

5) Goals should be linked to rewards “motivated for employees”.

· Also, stating the fact, that “few employees” is a strengths and weakness in this particular case, this component seems more to be a weakness if the future business perspective is reflected – if the amount of sales is going to be increased, it seems natural that the current number of employees are not going to handle this deal in an effective way. That gives an obvious need to maintain some clearly defined hierarchical structure of the company to manage the business process in case of raising the number of employees.

7. Domain model

	Name of conceptual class
	Concept’s intension

	Customer
	Customer is able to make Order

	Administrator
	Administrator is able to make and manage Order and Order list

	Order
	Order is made by Customer – it contains items and personal information of the customer.

	Order list
	Order list containts Orders

	Web shop
	Web shop is responsible to present Category catalog. Orders are created in the web shop

	Catalog
	Catalog contains categories

	Category
	Category contains Items

	Item
	Item is a representation of amount of available products to buy from the Company

	Pc Pack
	Pc Pack is a system, where a part of Order information is registered

	C5
	C5 is a system where orders are registered

[image: image37.emf]Registered Registered

Manages

Visits

Visits

C

o

n

t

a

i

n

s

Contains

C

o

n

t

a

i

n

s

Creates

*

1

1

1 1

1

1

1

1

1

1

1 1

*

*

*

*

*

*

*

Administrator

C5 PC_Pack

Order

Customer

Web_Shop

Item

Category Catalog

APPENDIX L: Use-case Model

“Keycard.dk”

Use-case model

Version 1.4
Revision History

	Date
	Version
	Description
	Author

	9/1/2004
	1.0
	Initial version of Use Case
	

	9/6/2004
	1.1
	Refined version of use case. Fully dressed use-case descriptions, SSD
	

	19/9/2004
	1.2
	Refined “manage order” main success scenario
	Eleonora Kulberyte,

	10/10/2004
	1.3
	Refined “create order” main success scenario
	Eleonora Kulberyte,

	20/10/2004
	1.4
	Finalized “create order” main success scenario
	Eleonora Kulberyte,

	
	
	
	

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Actors

3. General system use-case diagram

4. Use - cases

5. System sequence diagrams

Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The Use-case model represents the functional requirements of the system, which is going to be developed. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References, and overview.

Purpose

This document represents all actors, use-cases in fully dressed format, general use-case diagram and the sequence diagram of two particular scenarios of different use-cases.

Scope

The use-case model affects mostly all of the RUP phases with different focus.

Definitions, acronyms and abbreviations

· Actor. An actor is a specific role played by a system user and represents a category of users that demonstrates similar behaviors when using the system.

· Scenario. A Scenario is a specific sequence of actions and interactions between actors and the system.

· Use-case. A use-case is a set of related success and failure scenarios that describe that describe actors using the system to support a goal.

· System Sequence diagram (SSD). Sequence diagram is a graphical representation of one particular scenario in UML notation.

· Company. The sales company “Keycard”.

· Pc_Pack. “PC Pack” is a system, which handles the shipping procedure for the Company – it generates and prints out a digital package label, used for addressee indication. It is one of “Post Danmark” applications, which is used by many enterprises for delivering their products to the customers.

· Package label. Digital package labe, used for addressee indication.
· C5: Application, responsible for completing the tasks, related to accounting, financing, payroll, purchasing and other, performed in the Company.

· Invoice. The invoice is generated and printed out by C5. The invoice presents necessary information about the payment.

· Web shop. An on-line application, which supports Company’s on-line shopping service.

· KIS. Keycard Integration system.

· Available amount of items. amount of the available products in the Web Shop is expressed in 3 colors. Details should be checked in Supplementary specification.

· Product list. the list of available products, presented in the Web-shop.

References

Business case

Overview

The Construction phase iteration I assessment consists of following aspects:

Actors

Section defines actors, indicated in the use-case model

General system use-case diagram

The diagram represents general use-case diagram, including all use-cases and actors.

Use-cases

Indicated KIS use-cases in brief format

System sequence diagrams

The section represents System sequence diagrams of the main success scenarios for the both use-cases.

Actors

Actor 1: Customer. The Customer has only a privilege to order the products on-line, confirm the order and check the status of the order by using the Web shop.

Actor 2: Administrator. The Administrator has a privilege to create an order (in case of the customer need to order the products by phone call), delete, update, check the status of the order and execute the order, confirmed by the Customer. Also, the Administrator is able to manage the product list.

Actor 3: C5.Considering the scope of this project, the main task performed by C5 is order handling – the system registers the customer and prints the invoice for payment. The C5 has a module for order handling for any enterprise - it is part of the whole entity of services that C5 supports.

Actor 4: Pc Pack. PC Pack application, being used by the Company, responsible for generating and printing out the package label for shipping.

General system use-case diagram

[image: image38.wmf]KIS

Create Order

Manage Order

C

5

PC Pack

General KIS use

-

case diagram

Customer

Administrator

Use Cases

Use Case UC1: Create Order

	Primary Actor: Customer

Stakeholders and interests:

- Customer: wants to make an order fast in case of fast delivery of the product. Also wants no payment or other errors.

- Company: wants to satisfy the customer interests and keep track of the confirmed orders. Wants to ensure that Payment Authorization Service payment receivables are recorded. Also wants some fault tolerance to allow sales capture even if the server components (e.g., remote credit validation) are unavailable.

- Government Tax Agencies (Tog og Skat): Want to collect tax from every sale.

- Payment Authorization Service: Wants to receive digital authorization requests in the correct format and protocol. Wants to accurately account for their payables.

Preconditions: none

Success Guarantee (Post conditions): Order is confirmed by Customer. Order is executed by the Company. Tax is correctly calculated. Payment authorization approvals are recorded. The product is delivered to the customer.

Main Success Scenario (or Basic Flow):
Actor Action (or Intention)

System Responsibility

1. Customer Access Web Shop’s main page www.KeyCard.dk.

2. Customer Access one of the “Item Category” in main menu.

2.1 Customer starts selecting items for his/her purchase.

2.2 After selecting an item, customer chooses to add the item to the “Shopping cart”.

3. Customer chooses to finalize the purchase.

4. Customer inserts personal information.

4.1 Customer submits entered Customer information

4.2 Customer selects a payment method

4.3. Customer finally confirms the Order

5. Customer is informed about successfully created order and is redirected to main page.
5.1 The system presents the Home page of the KIS Shop

6. The system presents the categories and the available items in each Category of the KIS Shop.

8. System presents total cost of items with taxes calculated in the shopping cart.

9. System redirects customer to “enter Customer information” page
9.2. System redirects customer to “Shopping cart” page

9.3. System inserts Order data to the database

10. System sends confirmation email to Customer, proving that order has been received from Customer.
Extensions (or Alternative Flows):

1a. Administrator accesses Web Shop’s main page www.KeyCard.dk after customer calls:

 2-8. All actions are performed step by step by Administrator having direct contact to Customer by hanged phone receiver.

3a. Customer cancels the order:

1. Customer clicks the button for canceling the order.

2. Customer is redirected to the main page.

7a. Main web Shop’s page is not presented:

 1.Customer is informed about temporary problems.

8a. The “shopping card” is not accessible:

 1.Customer is informed about temporary problems.
5a. Customer enters invalid data:

 1.After performing the validation, the system informs about the validation error

2.Customer is asked to enter the data again.

5b. Customer enters information about paying:

1. Paying by credit:

1. Customer enters credit account information.

2. System sends payment authorization request to an external Payment Authorization Service.

3. System requests payment approval.

4. Customer approves the payment.

5. Customer confirms the order.

 2a. System detects failure to collaborate with external system:

1. System signals error to the Customer

2. Customer is asked for making an order by using different credit card.

 1a. Paying by bank transfer

 1. Customer confirms paying got the product by bank transfer by marking the check box

 1a. Paying after delivering:

 1. Customer confirms paying for the product when Post Denmark delivers product to the Customer by marking the check box.

.

Use Case UC2: Manage Order

	Primary Actor: Administrator

Secondary Actors: C5, Pc Pack

Stakeholders and interests:

- Customer: wants to make an order fast in case of fast delivery of the product. Also wants no payment or other errors.

- Administrator: wants to have control on executing the orders. Wants to ensure the high accurate in user-information validation. Wants to register the order in Pc Pack and C5.

- Company: wants to satisfy the customer interests and keep track of the confirmed orders. Wants to ensure that Payment Authorization Service payment receivables are recorded. Also wants some fault tolerance to allow sales capture even if the server components (e.g., remote credit validation) are unavailable.

- Government Tax Agencies (Tog og Skat): Wants to collect tax from every sale.

- Payment Authorization Service: Wants to receive digital authorization requests in the correct format and protocol. Wants to accurately account for their payables.

Preconditions: the list of confirmed orders by customers is generated in the system.

Success Guarantee (Postconditions): Administrator is authorized. The “order list” is accessed. The orders from the list are marked for being executed. The orders are registered into C5 and Pc Pack. The package labels and invoices are printed out.

Main Success Scenario (or Basic Flow):

Actor Action (or Intention)

System Responsibility

1. Administrator access the Web Shop’s page www.KeyCard.dk\admin, after validating authorization.

2. Administrator selects the “Customers” from the menu.

2.1. The Administrator selects particular Customer and opens his/her “Order list”

3. Administrator marks the order which supposed to be executed.

4. Administrator confirms the execution of the order.

5.Administrator is informed about successful execution of the order.

6. The System validates the Administrator Access.
6.1. The System presents the “Customers”, generated from the data of the customers in the Web Shop database.
7. The System presents the “Order list”, generated from the data of the orders of the Customer in the KIS Shop database.
8. The System registers the order into C5 and inserts necessary data to Pc_Pack.

9. The invoice and the label is printed out and the system sends a confirmation e-mail message to the customer.
Extensions (or Alternative Flows):

2a. Administrator needs to update the item list:

 1. Administrator opens “manage item list” from main menu.

2. Administrator checks the amount of physical products of each category in the warehouse.

3. Administrator updates the status of the item list.

 1.a Administrator opens “include new item” from the main menu.

1. Administrator insert the picture of the item.

2. Administrator inserts the description of the item.

3. Administrator inserts the cost of the item.

4. Administrator inserts the amount of available items.

3a. Administrator updates the order according to the customer need:

1. Administrator opens the order for editing.

2. Administrator updates information.

3. Administrator confirms the order information.

4. Administrator is redirected to the “order list”

8a. System detects failure to communicate with C5:

1. Administrator is informed about failure.

2. Administrator opens the order for editing.

3. Administrator manually registers the order to C5.

8b. System detects failure to communicate with Pc_Pack:

1. Administrator is informed about failure.

2. Administrator opens the order for editing.

3. Administrator manually inserts data to Pc_Pack

 2.b. Administrator asks the Customer for credit account information of alternate credit card while ordering by phone:

1. Administrator updates the credit account information in the order

2. Administrator confirms the order

System Sequence diagrams

SSD1 Create Order

[image: image39.emf]1. Customer Access the Web Shop’s main

page “www.KeyCard.dk”

2. Customer Access one of the “Item

Category” in main menu

2.2 After selecting an item, customer

choosesto add the item to the

“Shopping cart”.

3. Customer chooses to finalize the

purchase.

4. Customer inserts personal information.

5.Customer is informed about

successfully created order and is

redirected to main page.

Access_Shopping

Cart

Accessing

web_S

hop

Submit

Purchase

Enter

C

ustomer info

Wrong Info

Back to m

a

i

n page

Main_Page

Shopping

Card

Customer

 Card

Confirmation

Page

Customer

Item

Category

SSD2 Manage Order

[image: image40.emf]1. Administrator access the Web Shop’s

main page www.KeyCard.dk\admin,

after validating authorization

2. Administrator selects the “Customers”

from the menu

2.1 The Administrator selects particular

Customer and opens his/her “Order

list”

8. The System registers the order into

C5 and inserts necessary data to

Pc_Pack.

3&4. Administrator marks the order

which supposed to be executed.

Administrator confirms the

execution of the order.

authorization

Accessing

web_Shop

Select

Customer

Main_Page

Administrator

menu

Customer

list

Order

List

Administrator

Openand

executeorder

Register to C5

Register order to Pc Pack

C5 PcPack

APPENDIX M: Supplementary Specification

“Keycard.dk”

Supplementary Specification

Version 1.0
Revision history

	Version
	Date
	Description
	Author

	1.0
	03/09/04
	Capturing initial non-functional requirenemnts

	

	1.1
	09/09/04
	Refining the requirements, approval from the Company

	

	1.2
	20/09/04
	Supplementary Specifications in Details
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

2. Non-functional Requirements

3. Supplementary Specifications Details

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in th period of August 25th and November 3rd. The Supplementary specification represents the non-functional requirements of the system, which is going to be developed. This document includes Purpose, Scope, Definitions, acronyms and abbreviations, Supplementary requirements list.

1.1. Purpose

The purpose of this document is to define non-functional requirements, such as logging and error handling, Security, Usability (Human factors), Reliability, Performance, Configuration constrains, etc..

1.2. Scope

The supplementary specification affects mostly all of the RUP phases with different focus.

1.3. Definitions, acronyms and abbreviations

Company. The sales company “Keycard”.

Pc Pack: Application being used by “Keycard”, responsible for generating and printing out the package label for shipping.

C5: Application, responsible for completing the tasks, related to accounting, financing, payroll, purchasing and other, performed in the Company.

1.4. References

Use-case model

Business model

2. Non-functional Requirements

	Category
	Requirement description

	Logging and error handling
	Errors should be logged and stored in case of later releases of the application

Error handling must be performed in a way to prevent user from direct error throwing

	Security
	All data transfers should be secured

Payment transfer must be secure

	Usability (Human factors)
	Easy to use for a non-experienced users

Simple layout design

	Reliability
	Reliability concerns about the time how long the system might be able to work without crashing down.

	Recoverability (Backup)
	The backup of C5, Pc Pack and KIS database must be stored in a separate location and ensure that only authorized user can access it.

	Performance
	Load time must be under 5 seconds

The system must be able to handle large amount of visitors at the same time.

	Extension of system
	The system must be prepared for adding further functionality

	Configuration
	Manage orders. The administrator must be able to update, execute or delete the order.

manage the web shop in case of updating the product list, or any changes in represented information

	Implementation constraints
	Asp.net

C#

Visual Studio 2003

MS SQL

IIS

Microsoft Server 2003

	Free Open Source components
	Microsoft web-shop

	Domain(Business rules)
	All orders must be registered into C5

a read-only copy of order list must be saved in the system after every Administrator session in case of later reviews

3. Supplementary Specifications Details

· Logging and error handling

Customer will enter the system and order the products on line with out using password or user name. Alternatively, the Administrator must be authorized before he/she login the system using username and pass word. In both cases, if any errors happened the system will display a message indicating that error occurred and what changes should be done.

· Security

Security is very important issue when selling gods on line, so, all data related to the customer should be secured by authorization. And the handling of security for money transfer is covered by credit card payment security services and it is implemented by third party software house in Denmark.

· Usability

The usability of the system is categorized in two dimensions:

Customers

Employees

The customers are considered to be non-experienced users (to make it easy for any visitor to interact with the system) and that is one of the main reasons to simplify user interface as mush as possible.

The Employee is treated as more advanced user of the system and he she is more aware of the functionality the system supports than the simplicity of the user interface.

· Reliability (recoverability)

Reliability might be understood like the non-functional requirement, consisting of two parts:

Recoverability

Reliability

Reliability concerns about the time how long the system might be able to work without crashing down. The server should be on 24 hours a day in order to support the on-line selling service for the customers and keeping track of the order list for afterward conformation by the Administrator.

· Recoverability

 The recoverability aspect must be considered in case of system failure. All unfinished order-handling transactions must be roll backed. A backup copy of created orders must be saved in the different hardware storage in case of Pc Pack and/or C5 fails and/or the server is down. Every half an hour a back-up copy must be updated.

· Performance

The performance is a non-functional requirement, mostly related on physical software measurements. In this particular case, one of the measurements is load time. The decision was declared to limit the load time no more than 5 seconds.

The must be able to handle at least 100 customer sessions.

· Extension of system

The system should be flexible and updatable in case of changing platform technology, web pages technology, programming language, changing DBMS, server technology, or one or more system components (as an example: changing from C5 accounting system to another one).

The system functionality could be updated, for example SMS message could be sent to the customer mobile phone, which indicates the product is shipped from Keycard and on the way to the customer. Other statistical functions could be added to the web application (like measuring the rates of the sales during a specific period or the most sold product of the month, etc.)

· Configuration

The Administrator must be able to create, update, delete and read the orders from the web shop’s database. In addition, the administrator must also be able to update the web shop – in the sense of including and presenting a new product on the web shop. Besides, changing prices of the products must also be available.

· Implementation constraints

· Asp.Net

Asp.Net is the choice of the web application technology. The system architecture solution is developed based on the Asp.Net web application multi tiered structure.

· C#

Asp.Net supports different programming languages and our choice was C# due to the similarity with Java. The members of the project team have gained experience in programming with Java and C# during the previous semesters in Roskilde Business Academy. This experience is treated as one of the project group strengths.

· Visual Studio 2003

Visual Studio 2003 is a tool for developing web applications based on Asp.Net technology. With its rich features and ease of use, we consider this tool as the main developing tool for our web application module.

· MS SQL

Microsoft SQL 2000 will be used as the web shop database. This choice was made according to Keycard needs. The group members have no experience in working with MS SQL, but the experience with working with Oracle, during previous semester, considered being a useful skill, because of similarity of DBMS.

· IIS

Any web application based Asp.Net technology must be deployed on the web server, which runs Microsoft Internet Information Services.

· Microsoft Server 2003

Keycard has expressed the need of using Microsoft Server 2003, because the company is intended for using this technology in the future.

· Free Open Source components

The project developers went through research activities with the purpose of finding open resources regarding web shop. The reason for including open resources is saving time spent on developing the web shop. In addition, it’s not the main task of the project to create a full functioning web shop.

· Domain/Business rules

All orders must be registered into C5.

According to the Danish law, any sale information must be saved and documented in period of 5 years.

The administrator should be able access order list from the web shop database at any time.
 APPENDIX N: Product Vision

“Keycard.dk”

Vision

Version 1.1

Revision History

	Date
	Version
	Description
	Author

	28/aug/04
	1.0
	Initial vision statement
	

	 6/oct/04
	1.1
	Refined vision with capturing more details according to business case and system requirements
	

Table of Contents

1.
INTRODUCTION

1.1.
PURPOSE

1.2.
SCOPE

1.3.
DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

1.4.
REFERENCES

1.5.
OVERVIEW

2.
POSITIONING

2.1.
BUSINESS OPPORTUNITY

2.2.
PROBLEM STATEMENT

2.3.
PRODUCT POSITION STATEMENT

3.
STAKEHOLDER AND USER DESCRIPTIONS

3.1.
STAKEHOLDERS

3.2.
USERS

3.3.
USER ENVIRONMENT

3.4.
STAKEHOLDER PROFILES

3.4.1.
KeyCard

3.4.2.
Project team

3.4.3.
Project advisor

3.5.
USER PROFILES

3.5.1.
Customers

3.5.2.
Company employees

3.5.3.
Accountants

4.
KEY STAKEHOLDER OR USER NEEDS

5.
PRODUCT OVERVIEW

5.1.
PRODUCT PERSPECTIVE

5.2.
SUMMARY OF CAPABILITIES

6.
LICENSING AND INSTALLATION

7.
PRODUCT FEATURES

8.
CONSTRAINTS

9.
OTHER PRODUCT REQUIREMENTS

9.1.
LOGGING AND ERROR HANDLING

9.2.
SECURITY

9.3.
RELIABILITY (RECOVERABILITY)

9.4.
PERFORMANCE

9.5.
DOMAIN/BUSINESS RULES

10.
DOCUMENTATION REQUIREMENTS

10.1.
USER MANUAL

10.2.
ONLINE HELP

10.3.
LABELING AND PACKAGING

1. Introduction

The purpose of this document is to collect, analyze, and define high-level needs and features of the “Keycard.dk”. It focuses on the capabilities needed by the stakeholders, and the target users, and why these needs exist.

The introduction of the Vision document provides an overview of the entire document. It includes the purpose, scope, definitions, acronyms, abbreviations, references, and overview of this Vision document.

1.1. Purpose

The purpose of the Keycard.dk system vision is to provide the needs of the company, expressed in the system vision.

1.2. Scope

The vision document is associated with the project Keycard.dk and is initiated in the RUP Inception phase as a vision statement. The vision document is refined in the Elaboration phase.

1.3. Definitions, Acronyms, and Abbreviations

Any of the definitions, Acronyms and Abbreviations must by find in the Project Glossary.

1.4. References

· Use-case model

· Supplementary Specification

1.5. Overview

The document contains Positioning, Stakeholders and User descriptions, product overview, product features, constraints, other requirements and documentation requirements.

2. Positioning

2.1. Business Opportunity

The business opportunity the company Keycard.dk meets by this project is improvements made on the existing system, the company uses now.

2.2. Problem Statement

	The problem of
	Dataflow duplication in the system

	affects
	The company Keycard

	the impact of which is
	Performing too much of manual work, while inserting data into the component applications of the existing system.

	a successful solution would be
	Less of manual work

Ability of manual control of the order proceeding

2.3. Product Position Statement

	For
	Keycard

	Who
	Is indeed in urgent need of

	The (product name)
	“”KCS” (stands for Keycard System)

	That
	consists of three components – web shop, C5 application, Pc Pack application – which are synchronized in order to provide demanded functionality for the Company

	Unlike
	The web shop, C5 and Pc Pack, which are totally separate applications at the present time

	Our product
	Will support a synchronization mechanism of C5, Pc Pack and web shop

3. Stakeholder and User Descriptions

3.1. Stakeholders

	Name
	Description
	Responsibilities

	Keycard
	Sales company, selling electronic equipment on-line
	ensures that there will be a market demand for the product's features

 provides the hardware and software facilities during the development process

	Project team
	Students:

Roskilde Business academy
	 - develop the existing system of Keycard

ensures that the system will be maintainable

	Project advisor
	Per Jensen

Roskilde Business Academy
	monitors the project’s progress

3.2. Users

	Name
	Description
	Responsibilities
	Stakeholder

	Customers
	Customer is anyone, interested in buying product from Keycard
	- makes order

	None

	Company employees
	
	- register the orders

- receiving orders by phone

- customer service handling

- update the order

- delete the order

- update products data

- manage the system manually
	none

	Accountants
	Two employees, hired to deal with accounting issues
	- managing the accounting system of the Company
	External accounting Company

3.3. User Environment

Three employees are dealing with each customer order:

· Office employee is responsible for receiving the orders from customers by phone

· Administrator is responsible for confirming the orders

· “Package boy” is an employee, who is responsible for packing the products and setting the Post Danmark label and invoice on the package.

Applications, integrated with the system:

· Pc Pack (Post Danmark application for product shipping)

· Microsoft C5 (Accounting application)

· Web shop (built on ASP.NET technology)

· DBMS (Microsoft SQL)

· Microsoft Server 2003

3.4. Stakeholder Profiles

The stakeholder profile will describe deeper information about each stakeholder. The following tables will cover the thorough topics related to the stakeholder.

3.4.1. KeyCard

	Representative
	Keycard represents, the company that project is going to be done for, the customer for the software, which will be developed and it also represent the environment where the project is being developed in.

	Responsibilities
	Keycard responsibilities to the system being developed is to provide the hardware (PCs, Server), software (operating system, server, database, etc.), and the information needed for the developer in order to develop the system. Besides, feedback on the major phases taken during the work.

	Success Criteria
	Keycard define success of the system when the data flow is going as it suppose to be (Orders are created and managed , saved and registered in C5 and Pc Pack systems after confirmation from the Administration). Keycard is this case rewarded by the increase of its sales, the satisfaction of its customers, and the efficiency of the system.

	Involvement
	Keycard is the main player involved in the project. It is one of the most stakeholders of the project that in deed requires the development of the new system.

	Deliverables
	Deliverables of the project that are required by Keycard will be a prototype for a new system consists of web shop, supported by a database, Synchronization component between the web shop and two other systems Pc Pack and C5.

However, the most important deliverable is Synchronization component.

 3.4.2. Project team

	Responsibilities
	The project team’s responsibility is developing an pre-release of a new system and a documentation of whole project.

	Representative
	Project team represents three computer science students in Roskilde business Academy, who are going to act as the developers of the system and they are the main creator of the process output (software and documentation)

	Success Criteria
	The project team defines success of the project when the goals of the project are achieved (alpha- release of the system is working, the Keycard company is satisfied about the results of the project). The reward the project team can get out of the project is high grades in the exam and improved experience.

	Involvement
	Project team involves in the project by the products they produce during the work. They are the main builder of the new system and the documentation related to the project.

	Deliverables
	The deliverables required by the project team are software (prototype for the new system), project documents and study report

3.4.3. Project advisor

	Representative
	Project advisor is Per Jensen, a head master provided by Roskilde Business Academy and represents consultation for the project.

	Responsibilities
	The project advisor is responsible for guiding the project team and making sure that they are on the right track.

	Success Criteria
	Project advisor defines success criteria according to the quality of the report, the progress of the work, besides the accomplishment of the projects assignments. The reward for the Project advisor is making sure that students gained sufficient experience during the work on the project and understood how deal with real life project.

	Involvement
	The involvement of the project advisor is indirect consultation and pointing the weak areas covered in the project, but not the solution for these weaknesses.

	Deliverables
	The deliverables required by the project advisor is his comments on the process of the work and his observations on the results produced by the students after each meeting.

3.5. User Profiles

In the user profiles we are going to describe each unique user of the system. Each profile will hold the representation of the user in the project, his or her responsibilities within the system, how does the user define success of the system, besides a description of his or her involvement in the project.

3.5.1. Customers

	Representative
	The customer representative to the project is any one who is going to buy product from keycard and be served by the new developed system. This customer could be

· Customer using the system directly on line

· Customer using the system indirectly by phone call

	Responsibilities
	The customer’s key responsibilities with regard to the system being developed is using the system and giving his/her comments on evaluating the system.

	Success Criteria
	The customer defines success of the system when he or she could easily make an order, besides the growth of loyalty and trust in the company system. The customer is rewarded when he or she receive the services from Key card as fast as possible.

	Involvement
	The customer does not have a direct involve in the project, but feedback and complains from the customer after the alpha - release of the system will effectively improve the development of the system.

3.5.2. Company employees

	Representative
	The company employees represents two main roles in the project:

· They are one of the main source of information during the development of the system

· They act as the administrator of the system later on after the deployment of the system.

	Responsibilities
	The employees are responsible for giving the developer the right information needed during the development of the system, in addition, sending a review after each phase of the development.

	Success Criteria
	The employees define the success of the system when the system can handle the business process without any failure. The reward the employees get is reducing the amount of the manual work and speed and quality of the data flow.

	Involvement
	The employees are involved in the project by expressing their comment on developer understanding of their needs. As we mentioned before they are one of the main source of information.

	Deliverables
	None

3.5.3. Accountants

	Representative
	They are two employees working as substitute. They represent users of C5 accounting system, but they are not a direct representative to the project.

	Responsibilities
	They are responsible for managing the C5 system in Keycard company. They are direct users of C5, besides they don’t have any administrator privileges in the developed system.

	Success Criteria
	They define success when they receive the right data from the web shop regarding customer orders. The reward that they get is reducing the manual work.

	Involvement
	None

	Deliverables
	None

4. Key Stakeholder or User Needs

	Need
	Priority
	Concerns
	Current Solution
	Proposed Solutions

	Synchronizing with Pc Pack
	High
	Make Right format of file, write construction of the connection string
	Vertical technical prototype
	Prototype is going to be extended for adding whole required functionality

	Synchronizing with C5
	High
	Managing data import using ODBC driver
	None
	· Buy a driver

· Code a driver

· Use a demo version of the driver

	Developed web shop
	Low
	Better layout
	Free open source for web shop
	none

	New database for the web shop
	Medium
	The Speed of database management system
	None
	MS SQL server 2000, open source web-shop database

	
	
	
	
	
	

5. Product Overview

5.1. Product Perspective

[image: image41.wmf]Web

-

shop

Pc Pack

C

5

Web shop

database

Pc Pack

database

C

5

database

IN

Told and

Skat

Payment

Authorization

service

5.2. Summary of Capabilities

	Customer Benefit
	Supporting Features

	New support staff can quickly get up to speed.
	Knowledge base assists support personnel in quickly identifying known fixes and workarounds.

	Customer satisfaction is improved because nothing falls through the cracks.
	Problems are uniquely itemized, classified and tracked throughout the resolution process. Automatic notification occurs for any aging issues.

	Management can identify problem areas and gauge staff workload.
	Trend and distribution reports allow high level review of problem status.

	Distributed support teams can work together to solve problems.
	Server allows current database information to be shared across the enterprise.

	Customers can help themselves, lowering support costs and improving response time.
	Knowledge base can be made available over the Internet.

6. Licensing and Installation

Licenses are provided by the Roskilde Business Academy:

· Microsoft visual studio 2003

· Microsoft visio 2002

· Microsoft server 2003

· Office Package

7. Product Features

· Supporting order creation

· Supporting managing order:

· proceed order (register to C5 and Pc Pack)

· delete order from web shop database

· update order in web shop database

8. Constraints

· Asp.net web application structure

· Constraints of interfaces to access system components (C5 and Pc Pack)

· Microsoft Server 2003 security constraints

· Existing web shop database constraints

9. Other Product Requirements

9.1. Logging and error handling

Errors should be logged and stored in case of later releases of the application. Error handling must be performed in a way to prevent user from direct error throwing

9.2. Security

All data transfers should be secured. Payment transfer must be secure also.

9.3. Reliability (recoverability)

Reliability concerns about the time how long the system might be able to work without crashing down. The server should be on 24 hours a day in order to support the on-line selling service for the customers and keeping track of the order list for afterward conformation by the Administrator.

 The recoverability aspect must be considered in case of system failure. All unfinished order-handling transactions must be roll backed. A backup copy of created orders must be saved in the different hardware storage in case of Pc Pack and/or C5 fails and/or the server is down. Every half an hour a back-up copy must be updated.

9.4. Performance

Load time must be under 5 seconds. The system must be able to handle large amount of visitors at the same time.

9.5. Domain/Business rules

All orders must be registered into C5. A read-only copy of order list must be saved in the system after every Administrator session in case of later reviews.
10. Documentation Requirements

10.1. User Manual

The user manual content will describe usage of the system for both – Customer and Company Employee. This manual will guide the user of the system step-by-step how to use the application in different scenarios.

10.2. Online Help

The customer will access on-line help documentation on processing his/her orders on the web-shop.

10.3. Labeling and Packaging

The final product is going to be labeled by special logo that will present the system. Recommendations for the potential GUI dialogs and look and feel also will be provided.

APPENDIX O: Software Architecture Document

“Keycard.dk”

Software Architecture Document

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	14/sep/04
	1.0
	Intitialization of SAD. Formulating The introduction and overview of the document.
	

	27/sep/04
	1.1
	Refining the SAD document including the system architecture and the application architecture required Diagrams.
	

	04/oktober/05
	1.2
	Finalizing and editing the document with needed diagrams and figures
	

	12/October/05
	1.3
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Architectural Representation

2.1 Underlying Architectural Framework

2.2 Architectural Design Patterns

2.3 Architectural Style

2.4 Architectural Goals and Constraints

3. Use-Case View

3.1 Actors

3.2 Use-cases

3.3 Use-Case Realizations

3.4 Stat chart Diagram

4. Logical View

4.1 Overview

4.2 Architecturally Significant Design Packages

5. Process View

6. Deployment View

7. Implementation View

7.1 Overview

7.2 Class Diagram

8. Data View
9. Appendix A
1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides an architectural overview of the system, which is going to be developed in the duration of the project. This document includes Purpose, Scope, Definitions, acronyms and abbreviations, References and an overview of the Software Architecture Document.

1.1. Purpose

This document provides a comprehensive architectural overview of the system, using a number of different architectural views to represent different aspects of the system. It is intended to capture and express the significant architectural decisions, which have been made on the system.

Benefits

· Improve the communication among Keycard project developers (all group members have the same opinion about the software architecture).

· In addition, getting better understanding of project management, as well as providing a big picture overview of the system structure.

· Improve extensibility for the system by providing a flexible foundation on which to extend the KIS
 system as requirements change.
1.2. Scope

The Software Architecture document is initiated in the Elaboration phase of RUP; the document is refined during Construction phase.

1.3. Definitions, Acronyms and Abbreviations

None

1.4. References
· Supplementary Specification

1.5. Overview

“Keycard.dk” is developed under .NET Framework and going straightly follow the ASP.NET web application structure. The Keycard.dk Technical Architecture (TA) is represented using a UML model at a high level of abstraction that allows us to visualize, understand and reason about the architecturally significant elements and identify areas of risk that require more detailed elaboration.

The technical architecture is decomposed along the following dimensions:

· Architectural constraints: known technical decisions that are independent of the use cases.

· System functionality: Represented by use cases

The architecture of the reference application is represented following the recommendations of the Rational Unified Process (RUP). The UML specification of the system has been divided into the following five views:

· Use-Case View: Describes the actors and use cases for the system, this view presents the needs of the user and is elaborated further at the design level to describe discrete flows and constraints in more detail.

· Logical view: This section describes the architecturally significant parts of the design model, such as its decomposition into subsystems and packages. And for each significant package, its decomposition into classes and class utilities. You should introduce architecturally significant classes and describe their responsibilities, as well as a few very important relationships, operations, and attributes.

· Process view: This section describes the system's decomposition into lightweight processes (single threads of control) and heavyweight processes (groupings of lightweight processes). […]

· Implementation view: This section describes the overall structure of the implementation model, the decomposition of the software into layers and subsystems in the implementation model, and any architecturally significant components.
· Deployment view: This section describes one or more physical network (hardware) configurations on which the software is deployed and run. It is a view of the Deployment Model. At a minimum for each configuration it should indicate the physical nodes (computers, CPUs) that execute the software, and their interconnections (bus, LAN, point-to-point, and so on.) Also include a mapping of the processes of the Process View onto the physical nodes.

However, it is important that the definition of the domain concerns is clearly delineated from the service concerns. The separation must be made in:

· Domain knowledge

· Technical infrastructure

· Constraints on implementation.

 Although we have decided that the realization of this architecture will be based on Asp.Net technology and strictly follow the structure of the asp.net application architecture.
2. Architectural Representation
2.1. Underlying Architectural Framework

The software architecture is represented in by physical, use-case, logical, process, deployment and implementation views. This architecture follows the “4+1” framework [Kruchten 1995] that defines a set of “Views” of the architecture. In this case, the table concerns about mapping the defined views to the “4+1” framework.

[image: image42.png]Logical jDe\r!npmm
View View

O
v |3 vew

	4+1 view
	Architecture Concerns

	Use cases
	Use-case view

	Logical view
	Logical view

	Process view
	Process view

	Development view
	Implementation view

	Physical view
	Deployment view

2.2. Architectural Design Patterns

The main design pattern used to create the KIS
 system is the MVC (Model View Controller) design pattern. The MVC design pattern clearly separated the web application’s behavior, presentation and control. The modularity of this design pattern allows for easier code reuse, more centralized control, bugs easier to track down and code easier to modify. The presentation, or view, of the KIS system has been implemented keeping in mind the Model “code behind” usage pattern in visual studio development tool, which makes use of Asp.Net as front controllers and maps incoming request to specific operation and selects views based on the model.
2.3. Architectural Style

As with any other things, a style may be used to satisfy any functional, non-functional or aesthetic needs in a software system. The KIS System, in particular, follows the three-tier architectural style: presentation tier, business tier, and data tier. The following is a simple description of what will be included in each of the tiers:

Presentation Tier: used to format and present the information to the user.

Business Tier: used to implement the logic that will drive the system and the reason why the system exists.

Data Tier: in charge of storing the data (databases) and other external services that the system may use.

[image: image43.jpg]Cllent Browser (Keyeard Web Shop page)

rernton Comperet "
= b

Uorpssa

Euart Handler Componert

Funstcn Comparat

ssien ssaung

s00NET
5 applaton Po Pack sppication
—_—
WEEEL =
D | p— =

2.4. Architectural Goals and Constraints

1. ASP.net technology. The ASP.net web application structure is followed while defining the architecture and implementation model.

2. C# programming language. The C# is going to be used as programming language while implementing the module.

3. MS SQL Server. MS SQL Server is the DBMS, which is going to be used by the web shop. Constraints of the MS SQL:

3.1. SQL, used in MS SQL Server, constraints;

3.2. ODBC driver to MS SQL Server;

4. IIS. Internet information Services (IIS).

5. Visual Studio 2003. The web application environment, which uses ASP.net technology, will be used to develop the web application. The Visual Studio 2003 environment follows the constraints of ASP.net web application structure.

6. Open Source Components. The open source components are going to be used while developing the web-shop with a partial functionality.
7. C5 accessing constraints and possibilities:

The C5 data file is produced as XSL data file;

The C5 application data file might be produced as comma-separated data file;

C5 ODBC driver might be used while accessing C5 database.

8. Pc Pack accessing constraints:

8.1. The data file, which is going to be accessed by Pc Pack, follows these naming conventions:

FIMPxxxx.IHN

 Where the xxxx is auto-generated number. The file must

 be saved in the Input directory of Pc Pack.

8.2. The file is generated using deliminator “,”.

3. Use-Case View

This view presents the users perception of the functionality provided by implementations of the technical Keycard.dk standards.

3.1. Actors

[image: image44.wmf]Administrator

Customer

3.2. Use-cases

[image: image45.wmf]KIS

Manage Order

 C

5

PC Pack

Mana

ge

 Order Use Case

Administrator

3.3. Use-Case Realizations

[image: image46.emf]+writeToDebKart() : string

+writeToOrdKart() : string

+writeToOrdLinie() : string

-ImportDebKartFile : String

-ImportOrdKartFile : string

-ImportOrdLinieFile : string

C5Writer

+proceedClick()

Orders.ascx.cs

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinies

-generalDataHolder : GeneralDataHolder

-ordKart : OrdKart

-debKart : DebKart

-orderLinieCollection : OrderLinieCollection

ModelController

-modelController : ModelController

-c5Writer : C5Writer

-pcPackWriter : PcPackWriter

OrderController

+writeToPcPack() : void

-fileName : string

PcPackWriter

-generalDataHolder : GeneralDataHolder

PcPackOrder

3.4. Stat chart Diagram

[image: image47.emf]request Keycard site Loging in as Admin

Managing order

Managing web shop

Admin Main Menu

Back to

Main menu

Back to

Main menu

Logout

Logout

Login

End

Session

End Sission

Valid Data

Open

Browser

Order mange Web shop manage

End Sission

Logout

End Session

Invalid

Data

Stat chart diagram for

Administrator

[image: image48.emf]Request Keycard site

Accessing web shop

Selecting Items

CompositeState1

Open

Browser

End Sission

shopping

card delete

Order

confirmed

End Session

End Session

Message will be

 displayed for

 the customer

comfirming the

Purchase

Stat chart diagram for

Customer

[image: image49.emf]Inserting Data Validating data

Logging in as Admin

Composite state

Wrong data

Log in

Data

check

Valid

Data

[image: image50.emf]Accessing order list

Closeing Browser Logging out

Managing Order

Composite state

Delete Order Update Order Proceed Order

Confirm Update

Confirm Delete

Confirm Proceed

Log out

End Session

Back to main menu

Valid

Data

Order list Access

Order

confirmed

Update

Confirmed

Delete

confirmed

[image: image51.emf]Purchasing Item

Composite state

Creating Shopping Card

Item

selected

Update Shopping card

Submit shopping card Filling up customer card

Validating data

Data check

If Wrong Data

redirect to

Customer card

 If data is right

Purchase is done

& back to web shop

End Session

Delete shopping card

back to web shop

Accessing web shop

4. Logical View

This view addresses two types of stakeholders: developers, maintainers and deals with concerns:

· What are the computational elements of a system and the organization of those elements?

· What are their interfaces?

· How do they interconnect?

· What are the mechanisms for interconnection?

· How do they dynamically interact?

The constructed views shall use the Unified Modeling Language as a modeling language. They shall describe the most important classes, their organization in packages and subsystems, and the organization of these packages and subsystems into layers. They shall also describe the most important use-case realizations, for example, the dynamic aspects of the architecture.
4.1. Overview

This view shows both the static and dynamic views of the system. The logical view concentrates on getting the best logical grouping of functionality into objects.

4.1. Architecturally Significant Design Packages

The following package diagram shows the most significant packages in the Admin part

[image: image52.emf]Admin component

functionControls

+writeToDebKart() : string

+writeToOrdKart() : string

+writeToOrdLinie() : string

-ImportDebKartFile : String

-ImportOrdKartFile : string

-ImportOrdLinieFile : string

C5Writer

Model

UserControls

+proceedClick()

Orders.asxc

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinieCollection

-generalDataHolder : GeneralDataHolder

-ordKart : OrdKart

-debKart : DebKart

-orderLinieCollection : OrderLinieCollection

ModelController

-modelController : ModelController

-c5Writer : C5Writer

-pcPackWriter : PcPackWriter

OrderController

+writeToPcPack() : void

-fileName : string

PcPackWriter

-generalDataHolder : GeneralDataHolder

PcPackOrder

5. Process View

The process view describes the process structure of the system. Since the process structure has great architectural impact, all processes should be presented. Within processes, only architecturally significant lightweight threads need be presented. The process view describes the tasks (processes and threads) involved in the system's execution, their interactions and configurations, as well as the allocation of objects and classes to tasks.

The following diagram will illustrate the interactions between processes in the form of collaboration diagrams, in which the objects are actual processes that cover their own threads of control.

[image: image53.emf]<<Process>>

Client Browser

<<Process>>

Commerc

Application

<<Process>>

Client Browser

<<Process>>

Admin

Application

<<Process>>

webshop

Database

<<Process>>

C5

Application

<<Process>>

PcPack

Application

?

?

in this case, we don't know

if the commer separt file

is part of the process

or not

6. Deployment View

The system deployment is represented in the diagram “physical system view” (figure 1).

1. Web Server Client. Web server client represents a customer, which is able to access the web shop and create orders. Web server client is described by used web browser.

2. Web Server. Web server is a server, where the web application is executed.

3. Client. Client also may be Customer, which is making the order by phone.

4. Administrator. Administrator is a web-server client with high privileges. Administrator is located in the inner Company network.
5. MS SQL Web shop Database. The web shop database is located in the inner company network.
6. Pc Pack. Pc Pack is a client of the server.

7. C5. C5 is a client of the server.
8. Printer. Printer is connected to C5 and Pc pack in case of printing necessary products.

[image: image54.wmf]Client

Web Server

MS SQL

Web Shop

Database

PcPack

C

5

Administrator

Printer

h

t

t

p

r

e

q

u

e

s

t

h

t

t

p

r

e

s

p

o

n

s

e

h

t

t

p

r

e

q

u

e

s

t

h

t

t

p

r

e

s

p

o

n

s

e

h

t

t

p

r

e

q

u

e

s

t

h

t

t

p

r

e

s

p

o

n

s

e

1

2

3

4

5

6

7

8

9

*

8

#

order product by phone

Receives confirmation

Client

Keycard company

Client

Client

 Figure 27. physical system v

[image: image55.emf]Web Shop Server

Customer

Admin Server

Admin

Client: Browser

<<HTTP>>

<<HTTP>>

Web Shop database

<<OLEDB>>

Client,C5

C5 Datbase PcPack Datbase

Client,PcPack

<<OLEDB>>

7. Implementation View

This section describes the overall structure of the implementation model, the decomposition of the system into layers and subsystems in the implementation model, and any architecturally significant components.

The Artifacts we created during the Design phase are used as inputs to the code generation process
7.1. Overview

This subsection names and defines the various layers and their contents, the rules that govern the inclusion to a given layer, and the boundaries between layers. The following tables represent the Customer and Administration part of implementation. The classes and components which are highlighted with bold are those the project developers developed and the rest are those implemented in the web commerce kit.

Table of web shop layers Contents

	Layers
	Layer Contents
	Responsibilities

	Presentation

Layer(ASP.NET)

	Components:

CheckOut

ShoppingCart

Menu

AddToCart

Register

ProductList

SearchResults

ProductDetails

ErrorPage

Header

Default

ErrorPage
	Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

Responsible for Presentation component.

	Business Layer(ASP.NET)

	Classes:

CheckOut (Event Handler layer)

ShoppingCart (Event Handler layer)

C_Menu (Event Handler layer)

AddToCart (Event Handler layer)

Register (Event Handler layer)

ProductList (Event Handler layer)

SearchResults (Event Handler layer)

ProductDetailsPage (Event Handler layer)

ErrorPage (Event Handler layer)

Cdefault (Event Handler layer)

CustomerDetails (model layer)

CustomerDB (Control layer)

OrderDB (Control layer)

ShoppingCartDB (Control layer)

ProductDetails (Model layer)

ProductsDB (control layer)

	Responsible for approve and finalize the order.

Responsible for displaying the items included in the order

Responsible for displaying the categories in the web shop

Responsible for Obtaining current user's shopping cart ID and Adding Product Items to Cart

Responsible for registering customer information
Responsible for presenting all items of one category
Responsible for searching the Product database for Product Descriptions

Responsible for presenting one particularly item.
Responsible for presenting error massage to customer

Responsible for presenting the start page of the web shop

Responsible for presenting the error massage

Encapsulates details about a particular customer inside the Customer table in the database.

Responsible for all reading and writing to and from the Customer table
Responsible for all reading and writing to and from the Order table
Responsible for all reading and writing to and from the ShoppingCart table in the database
Encapsulates details about a particular product inside the Product table in the database.

	Data Layer

(ASP.NET)

	Components:

ODBC (Component)

ADO.NET (Component)

Database:

MS SQL (Database)

	This is a driver used to connect to C5 application

This component is responsible for connection the web shop to the database

This is a DBMS used to save the data for the KIS web shop

Table of Admin layers Contents

	Layers
	Layer Contents
	Responsibilities

	Presentation

Layer

(ASP.NET)

	Components:

Default

Admins

BreadCrumbs

Category

Customers

Footer

Header

LeftPane

RightPane

Login

Logout

Menu

MessageTemplate

OrderDetail

Orders
Product
ProductAdd

Profile
Reviews
RightPane
Tabs
	Responsible for Presentation component.

Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.
Responsible for Presentation component.

	Business Layer

(ASP.NET)

	Classes:

Default (Event Handler layer)

Admins (Event Handler layer)

BreadCrumbs (Event Handler layer)

Category (Event Handler layer)
Customers (Event Handler layer)

Footer (Event Handler layer)

Header (Event Handler layer)

LeftPane (Event Handler layer)

RightPane (Event Handler layer)
Login (Event Handler layer)

Logout (Event Handler layer)

MenuList (Event Handler layer)

MessageTemplate (Event Handler layer)

OrderDetail (Event Handler layer)

Orders (Event Handler layer)

txtboxProductNo (Event Handler layer)

ProductAdd (Event Handler layer)

DebKart (Model layer)

OrdKart (Model layer)

OrdLinie (Model layer)

PcPackOrder (Model layer)

GeneralDataHolder (Model layer)

OrdLinies (Model layer)

PcPackWriter (Controle layer)

C5Writer (Control layer)

Ordercontroller (Control layer)

ModelController.cs
AdminDB (Control layer)

OrderDB (Control layer)

Security (Control layer)

SiteGlobals (Control layer)
	Responsible for presenting the start page of the admin.

Responsible for displaying and handling administrators of the web shop

 Kind of BreadCrumbs Navigations of the sites

Responsible for Summary description for Category
Responsible for Summary description for Customers
Responsible for Summary description for Footer
Responsible for Summary description for header

Responsible for Summary description for Left Pane
Responsible for Summary description for Right Pane
Responsible for Administrator login to the system

Responsible for Administrator logout login to the system

Rspossible for Displaying the main menu of the admin

Responsible for displaying a text message

Responsible for displaying a summary description for Order Details
Responsible for displaying a list of orders and event hander for them

Responsible for editing of products
Responsible for adding products to the product list in the web shop
Responsible for holding C5 data for customers

Responsible for holding C5 data for order
Responsible for holding C5 data for order line

Responsible for holding data for PcPack

Responsible for holding shared data for the other 4 model classes.
Responsible for creating and filling in the right data in each OrdLinie object and collecting them in a ArrayList
Responsible for writing comma separated files to PcPack

Responsible for writing comma separated files to C5
Responsible for running the process of what goes on when Proceed_Click is called in Orders.ascx.cs

Responsible for creating and filling in the right data in the model objects and hold this object for later use

Responsible for reading and writing administrator data to an from the database

Responsible for reading and writing order data to an from the database

Responsible for encrypting the password

Responsible for holding web-site shared data

	Data Layer

(ASP.NET)

	Database:

MS SQL (Database)

	This is a DBMS used to save the data for the KIS web shop

7. 2. Class Diagram

Is this section of our document we will present two class diagrams. The first class diagram illustrates the group of classes that have been used in the implantation of the web shop and the interaction between them. The second class diagram illustrates the classes involved in the administration part of the system.

[image: image56.emf]ShoppingCartDB

CustomersDB

OrdersDB

ProductsDB

ProductDetails

SearchResults

Register

ProductDetailsPage

ShoppingCart

AddToCart ProductsList

C_Menu

CheckOut

FunctionControlls

Model

[image: image57.emf]AdminDB

AdminDetailes

C5Writer

OrderDetails

OrderDB

PCPackWriter

Security

SiteGlobals

DebKart OrdKart

Admins

Header Tabs

BreadCrumbs

Customers

ProductAdd

OrderDetail

Profile

Login

OrdLinies OrdLinie

GeneralDataHolder PcPackOrder

GenericFunctions

ModelController OrderController

FunctionControlls

Model

8. Data View (optional)

The system is required to store the following data:
Table DebKart
	Attribute
	type
	This attribute is included in
OrdKart
	This attribute is included in
OrdLine

	Lås
	int
	
	

	Konto
	Varchar(10)
	X
	X

	Navn
	Varchar(30)
	X
	

	Adresse1
	Varchar(30)
	X
	

	Adresse2
	Varchar(30)
	X
	

	PostBy
	Varchar(30)
	X
	

	Land
	Varchar(30)
	X
	

	Attention
	Varchar(30)
	X
	

	Telefon
	Varchar(20)
	X
	

	Telefax
	Varchar(20)
	X
	

	Fakturakonto
	Varchar(10)
	X
	

	Gruppe
	Varchar(10)
	X
	

	FastRabat
	numeric(28, 12)
	X
	

	Godkendt
	tinyint
	X
	

	Prisgruppe
	Varchar(10)
	X
	

	Rabatgruppe
	Varchar(10)
	X
	

	Kasserabat
	Varchar(20)
	X
	

	Billede
	Varchar(20)
	X
	

	Valuta
	Varchar(3)
	X
	

	Sprog
	tinyint
	X
	

	Betaling
	Varchar(10)
	X
	

	Levering
	Varchar(10)
	X
	

	Spærret
	tinyint
	X
	

	Sælger
	Varchar(10)
	X
	

	Moms
	Varchar(10)
	X
	X

	SLETStatistik
	tinyint
	X
	X

	Gironummer
	Varchar(20)
	X
	

	Momsnummer
	Varchar(25)
	X
	

	Rente
	Varchar(10)
	
	

	Afdeling
	Varchar(10)
	X
	

	Rykkerkode
	tinyint
	
	

	Engangskunde
	tinyint
	
	

	Beholdning
	tinyint
	X
	

	EDIadresse
	Varchar(15)
	
	

	Saldo
	numeric(28, 12)
	
	

	Saldo30
	numeric(28, 12)
	
	

	Saldo60
	numeric(28, 12)
	
	

	Saldo90
	numeric(28, 12)
	
	

	Saldo120
	numeric(28, 12)
	
	

	SaldoOver120
	numeric(28, 12)
	
	

	Forfalden
	numeric(28, 12)
	
	

	Beregnet
	smalldatetime
	
	

	SaldoMax
	numeric(28, 12)
	
	

	SaldoDKK
	numeric(28, 12)
	
	

	Søgenavn
	Varchar(10)
	X
	

	SLETTransport
	tinyint
	
	

	Kontant
	tinyint
	X
	

	IndbetalMåde
	Varchar(10)
	
	

	OrdreGruppe
	Varchar(10)
	
	

	ProjektGruppe
	Varchar(10)
	
	

	HandelsKode
	Varchar(10)
	X
	x

	TransKode
	Varchar(10)
	X
	

	Email
	Varchar(80)
	X
	

	URL
	Varchar(80)
	
	

	Mobil
	Varchar(20)
	
	

Table OrdKart

	Attribute
	Type
	This attribute is included in
DebKart
	This attribute is included in
OrdLinie

	Lås
	Int
	
	

	Nummer
	varchar(10)
	
	X

	Søgenavn
	varchar(30)
	X
	

	Oprettet
	smalldatetime
	
	

	Leveres
	smalldatetime
	X
	

	Konto
	varchar(10)
	X
	X

	Navn
	varchar(30)
	X
	

	Adresse1
	varchar(30)
	X
	

	Adresse2
	varchar(30)
	X
	

	PostBy
	varchar(30)
	X
	

	Land
	varchar(30)
	X
	

	Attention
	varchar(30)
	X
	

	Telefon
	varchar(20)
	X
	

	Telefax
	varchar(20)
	X
	

	Fakturakonto
	varchar(10)
	X
	

	Gruppe
	varchar(10)
	X
	

	FastRabat
	numeric(28, 12)
	X
	

	Prisgruppe
	varchar(10)
	X
	

	Rabatgruppe
	varchar(10)
	X
	

	Kasserabat
	varchar(10)
	X
	

	Valuta
	varchar(3)
	X
	

	Sprog
	Tinyint
	X
	

	Betaling
	varchar(10)
	X
	

	Levering
	varchar(10)
	X
	

	Spærret
	Tinyint
	X
	

	Sælger
	varchar(10)
	X
	

	Moms
	varchar(10)
	X
	X

	Beholdning
	tinyint
	X
	

	Afdeling
	varchar(10)
	X
	

	Gironummer
	varchar(20)
	X
	

	Momsnummer
	varchar(10)
	X
	

	Billede
	varchar(20)
	X
	

	Levering1
	varchar(30)
	
	

	Levering2
	varchar(30)
	
	

	Levering3
	varchar(30)
	
	

	Levering4
	varchar(30)
	
	

	LevLand
	varchar(30)
	
	

	DeresRef
	varchar(30)
	
	

	VorRef
	varchar(30)
	
	

	Ordre
	varchar(30)
	
	

	Momsberegnes
	numeric(28, 12)
	
	

	Momsberegnet
	numeric(28, 12)
	
	

	Rabat
	numeric(28, 12)
	
	

	AfgiftFM
	numeric(28, 12)
	
	

	GebyrFM
	numeric(28, 12)
	
	

	Afrunding
	numeric(28, 12)
	
	

	Momsbeløb
	numeric(28, 12)
	
	

	AfgiftEM
	numeric(28, 12)
	
	

	GebyrEM
	numeric(28, 12)
	
	

	Fakturatotal
	numeric(28, 12)
	
	

	Liniemoms
	numeric(28, 12)
	
	

	Transaktion
	int
	
	X

	SLETStatistik
	tinyint
	X
	X

	SLETTransport
	Tinyint
	
	

	Godkendt
	Tinyint
	
	

	LagerStatus
	Tinyint
	
	X

	FakturaFølgeseddel
	varchar(20)
	
	

	FakturaFølgeseddelDato
	smalldatetime
	
	

	Kontant
	tinyint
	X
	

	Listekode
	tinyint
	
	

	Linierabat
	numeric(28, 12)
	
	

	Varebeløb
	numeric(28, 12)
	
	

	Momsgrundlag
	numeric(28, 12)
	
	

	HandelsKode
	varchar(10)
	X
	X

	TransKode
	varchar(10)
	
	

	eNummer
	varchar(10)
	
	

	Email
	varchar(80)
	X
	

	LevEmail
	varchar(80)
	
	

	BetalingsId
	varchar(10)
	
	

Table OrdLinie
	Attribute
	type
	This attribute is included in
OrdKart
	This attribute is included in
DebKart

	Nummer
	varchar(10)
	X
	

	Linienr
	numeric(28, 12)
	
	

	Varenummer
	varchar(20)
	
	

	Lokation
	varchar(10)
	
	

	Antal
	numeric(28, 12)
	
	

	Pris
	numeric(28, 12)
	
	

	Rabat
	numeric(28, 12)
	
	

	Beløb
	numeric(28, 12)
	
	

	Tekst
	numeric(28, 12)
	
	

	Enhed
	varchar(10)
	
	

	Moms
	varchar(10)
	X
	X

	LeverNu
	numeric(28, 12)
	
	

	Oprettet
	smalldatetime
	
	

	Levering
	smalldatetime
	
	

	Bekræftet
	smalldatetime
	
	

	Konto
	varchar(10)
	X
	X

	Serienummer
	varchar(20)
	
	

	Leveret
	numeric(28, 12)
	
	

	Faktureret
	numeric(28, 12)
	
	

	LeveretDKK
	numeric(28, 12)
	
	

	Transaktion
	Int
	X
	

	Kostpris
	numeric(28, 12)
	
	

	SLETStatistik
	tinyint
	X
	X

	SLETAfgift
	varchar(10)
	
	

	LinieStatus
	tinyint
	
	

	LagerStatus
	tinyint
	X
	

	Medarbejder
	varchar(10)
	
	

	SamleRefId
	int
	
	

	OrdreRef
	varchar(10)
	
	

	HandelsKode
	varchar(10)
	X
	X

	AntalFysisk
	numeric(28, 12)
	
	

	FjernListeKode
	tinyint
	
	

	Prisenhed
	numeric(28, 12)
	
	

Equal for DebKart + OrdKart + OrdLinie
	Attribute
	type

	Moms
	varchar(10)

	Konto
	tinyint

	SLETStatistik
	varchar(10)

	HandelsKode
	varchar(10)

Equal for DebKart + OrdKart
	Attribute
	type

	Navn
	Varchar(30)

	Adresse1
	Varchar(30)

	Adresse2
	Varchar(30)

	PostBy
	Varchar(30)

	Land
	Varchar(30)

	Attention
	Varchar(30)

	Telefon
	Varchar(20)

	Telefax
	Varchar(20)

	Fakturakonto
	Varchar(10)

	Gruppe
	Varchar(10)

	FastRabat
	numeric(28, 12)

	Godkendt
	tinyint

	Prisgruppe
	Varchar(10)

	Rabatgruppe
	Varchar(10)

	Kasserabat
	Varchar(20)

	Billede
	Varchar(20)

	Valuta
	Varchar(3)

	Sprog
	tinyint

	Betaling
	Varchar(10)

	Levering
	Varchar(10)

	Spærret
	tinyint

	Sælger
	Varchar(10)

	Gironummer
	Varchar(20)

	Momsnummer
	Varchar(25)

	Afdeling
	Varchar(10)

	Beholdning
	tinyint

	Søgenavn
	Varchar(10)

	Kontant
	tinyint

	TransKode
	Varchar(10)

	Email
	Varchar(80)

Equal for OrdKart + OrdLinie
	Attribute
	type

	Nummer
	Varchar(10)

	Transaktion
	Int

	LagerStatus
	Tinyint

9. Appendix A: Pc Pack documentation fragment

Import af forsendelser

PcPack kan importere forsendelser fra andre systemer. Forsendelser overføres som varelinier/kollilinier. Overføres samme ordrenummer flere gange, opfattes hver linie som et nyt kolli til samme forsendelse. Det forudsættes, at kollilinier/varelinier er ordnet, således at de er placeret forsendelsesvis i samme fil. Bemærk, at der maksimalt kan oprettes 999 kolli pr. forsendelse.

Hvis en forsendelse allerede er oprettet i PcPack databasen, vil den normalt kun blive opdateret, hvis ordrestatus enten er ”Ikke færdig”eller ”Labels ikke udskrevet”. I modsat fald gives en fejlmeddelelse i systemloggen, og forsendelsen opdateres ikke.

Det er muligt at angive serviceydelser til de importerede forsendelser. Serviceydelserne angives fra det administrative system vha. deres ServiceYdelsesId, som er på tre tegn. Hvis der er valgt flere serviceydelser til en forsendelse, sættes forkortelserne sammen til én tekst og placeres i Serviceydelser feltet. Benyttes f.eks. serviceydelserne Privatpakke og Lørdagsekspres, skal teksten ”Z45Z46” placeres i Serviceydelser feltet.

Hvis en serviceydelse har tilknyttet yderligere information, benyttes ét eller flere af felterne Postopkr, Forsikring og Reference.

Hvis serviceydelserne lørdagsekspres eller morgenekspres benyttes i forbindelse med import af Erhvervspakker, vil der i nogle tilfælde automatisk blive konverteret imellem lørdagsekspres og morgenekspres. Dette vil fremgå af systemloggen. For en yderlige beskrivelse af serviceydelserne morgenekspres og lørdagsekspres, og hvorfor konvertering kan forekomme henvises til Error! Reference source not found. side Error! Bookmark not defined..

Hvis et givet varenummer eller modtagerkundenummer ikke findes i PcPack databasen, så vil hhv. varen eller modtageren blive oprettet under importen. Hvis der i forsendelsesimporten kun er udfyldt varenummer vil PcPack hente oplysningerne for det angivne varenummer i PcPack databasen og varen vil ikke blive opdateret i PcPack databasen. Er der i forsendelsesimporten udfyldt flere felter for varen end varenummer, vil alle felter for den eksisterende vare blive opdateret. Det vil sige at hvis et felt er tomt i importfilen vil det overskrive et evt. udfyldt felt i varetypen i PcPack databasen. Den samme regel gør sig gældende for modtagere.

Hvis ikke ISOlandekode er angivet for varetypen og modtageren, indsættes automatisk DK i databasen. For modtagere og varetyper fra udlandet gælder dog, at ISOlandekode skal angives.

Hvis der ikke er angivet et bynavn i importfilen, vil PcPack forsøge at slå dette op i databasen ud fra det angivne postnummer og det angivne land. Hvis PcPack finder et bynavn, sættes det ind. I modsat fald vil bynavn være tomt. Databasen indeholder postnumre for Danmark, Færøerne og Grønland.

Ved forsendelsesimport er PcPack sat op til som standard at mappe filer inden de importeres i PcPack, dvs. gadenavn og husnummer er samlet i ét felt i importfilen.

Formatbeskrivelse

Formatet, som ikke behøver mapning ser sådan ud:

”<OrdreNr>”, ”<Forholdsordre>”, <AfsenderID>, ”<ProduktKode>”, ”<Bemærkninger>”, ”<Oprettelsesdato*>”, ”<AfhentFra*>”, ”<AfhentTil*>”, ”<ModtagerKundeNr>”, ”<ISOlandekode>”, ”<Navn1>”, ”<Navn2>”, ”<AttPerson>”, ”<Gade>”, ”<HusNr>”, ”<PostBox>”, ”<PostNr>”, ”<ByNavn>”, ”<ProvinsStat>”, ”<MomsNr>”, ”<TlfNr>”, ”<KontaktPerson>”, ”<E-mail*>”, <KolliNr>, ”<Stregkode*>”, ”<VareNr>”, ”<LandeId>”, ”<Varebeskrivelse>”, ”<Toldindhold>”, <Toldværdi>, ”<Møntfod>”, <Længde>, <Bredde>, <Højde>, <Nettovægt>, <Volumen>, ”<Toldtarif>”, <Toldbeskrivelse>”,

<Kollivægt>, ”<Serviceydelser>”, <Postopkr>, <Forsikring>, <Reference> <CR/LF>

Formatet, som skal mappes ser sådan ud:

”<OrdreNr>”, ”<Forholdsordre>”, <AfsenderID>, ”<ProduktKode>”, ”<Bemærkninger>”, ”<Oprettelsesdato*>”, ”<AfhentFra*>”, ”<AfhentTil*>”, ”<ModtagerKundeNr>”, ”<ISOlandekode>”, ”<Navn1>”, ”<Navn2>”, ”<AttPerson>”, ”<Gade+HusNr>”, ”<PostBox>”, ”<PostNr>”, ”<ByNavn>”, ”<ProvinsStat>”, ”<MomsNr>”, ”<TlfNr>”, ”<KontaktPerson>”, ”<E-mail*>”, <KolliNr>, ”<Stregkode*>”, ”<VareNr>”, ”<LandeId>”, ”<Varebeskrivelse>”, ”<Toldindhold>”, <Toldværdi>, ”<Møntfod>”, <Længde>, <Bredde>, <Højde>, <Nettovægt>, <Volumen>, ”<Toldtarif>”, ”<Toldbeskrivelse>”, <Kollivægt>, ”<Serviceydelser>”, <Postopkr>, <Forsikring>, <Reference> <CR/LF>

I kollinr angives altid et 0, hvis man kun ønsker at sende én enkelt forsendelse. Hvis man ønsker at sende flerkolli, starter man med 0, derefter 1, derefter 2 osv. Dvs. at hvis man ønsker at sende flerkolli, skal hele ordren importeres for hver tilhørende kolli.

Nedenstående tabel beskriver formatet af de felter, som benyttes ved import af forsendelser.

	Felt
	Type
	Tabel
	Kolonne
	Bemærkninger

	OrdreNr
	AN(35)
	Forsendelse
	KundeOrdreNr
	

	ForholdsOrdre
	AN(3)
	Forsendelse
	ForholdsordreId
	Benyttes kun ifm. Udenlands- forsendelser.

Se afsnit Error! Reference source not found..

	AfsenderID
	NU
	Afsender
	AfsenderId
	

	Produktkode
	AN(4)
	Forsendelse
	ProduktKode
	Se afsnit Error! Reference source not found..

	Bemærkninger
	AN(45-72) ****
	Forsendelse
	Bemaerkninger
	

	Oprettelsesdato*
	DA
	Forsendelse
	Oprettelsesdato
	Udfyldes kun hvis pakken ikke afsendes samme dag

	AfhentFra*
	TI
	Forsendelse
	TidligstAfhentning
	Pakkens afhentnings tidspunkt (fra). Gælder kun Jetpost Udenrigs

	AfhentTil*
	TI
	Forsendelse
	SenestAfhentning
	Pakkens afhentnings tidspunkt (til)

Gælder kun Jetpost Udenrigs

	ModtagerKundeNr
	AN(17)
	Forsendelse
	ModtagerKundeNr
	

	
	AN(17)
	Modtager
	ModtagerKundeNr
	Indsættes kun, hvis modtageren ikke findes.

	ISOlandekode
	AN(2)
	Forsendelse
	ISOlandekode
	ISO 3166. Hvis feltet er tomt indsættes DK.

Se afsnit Error! Reference source not found..

	
	AN(2)
	Modtager
	ISOlandekode
	ISO 3166. Hvis feltet er tomt indsættes DK.

Se afsnit Error! Reference source not found..

	Navn1
	AN(35)
	Forsendelse
	Navn1
	

	
	AN(35)
	Modtager
	Navn1
	

	Navn2
	AN(35)
	Forsendelse
	Navn2
	

	
	AN(35)
	Modtager
	Navn2
	

	AttPerson
	AN(35)
	Forsendelse
	AttPerson
	

	
	AN(35)
	Modtager
	AttPerson
	

	Gade
	AN(35)
	Forsendelse
	Navn2
	

	
	AN(35)
	Modtager
	Navn2
	

	HusNr
	AN(35)
	Forsendelse
	HusNr
	

	
	AN(35)
	Modtager
	HusNr
	

	Gade+HusNr
	AN(35+35)
	Modtager
	Gade + HusNr
	Dette felt adskilles i to via mapning. **

	
	AN(35+35)
	Modtager
	Gade + HusNr
	Dette felt adskilles i to via mapning. **

	PostBox
	AN(35)
	Forsendelse
	PostBox
	

	
	AN(35)
	Modtager
	PostBox
	

	PostNr
	AN(9)
	Forsendelse
	PostNr
	

	
	AN(9)
	Modtager
	PostNr
	

	ByNavn
	AN(35)
	Forsendelse
	ByNavn
	

	
	AN(35)
	Modtager
	ByNavn
	

	ProvinsStat
	AN(35)
	Forsendelse
	ProvinsStat
	

	
	AN(35)
	Modtager
	ProvinsStat
	

	MomsNr
	AN(13)
	Forsendelse
	MomsNr
	

	
	AN(13)
	Modtager
	MomsNr
	

	TlfNr
	AN(20)
	Forsendelse
	TlfNr
	

	
	AN(20)
	Modtager
	TlfNr
	

	KontaktPerson
	AN(35)
	Forsendelse
	KontaktPerson
	

	
	AN(35)
	Modtager
	KontaktPerson
	

	E-mail*
	AN(254)
	Forsendelse
	Email
	

	
	AN(254)
	Modtager
	Email
	

	KolliNr
	NU
	Colli
	ColliNr
	Fortløbende løbenummer i intervallet 0-998

	Stregkode*
	AN(35)
	Colli
	Stregkode
	Udfyldes kun hvis blanketterne udskrives af det administrative system.

	VareNr
	AN(17)
	Colli
	VareNr
	Varen skal eksistere i VareType tabellen

	
	AN(17)
	Varetype
	VareNr
	Indsættes kun, hvis varetypen ikke findes.

	LandeId
	AN(2)
	Colli
	OprindelsesLandeId
	ISO 3166. Hvis feltet er tomt indsættes DK. Se afsnit Error! Reference source not found..

	
	AN(2)
	VareType
	LandeId
	ISO 3166. Hvis feltet er tomt indsættes DK.

Se afsnit Error! Reference source not found..

	Varebeskrivelse

	AN(35)
	Colli
	VareBeskrivelse
	

	
	AN(35)
	VareType
	Varebeskrivelse
	

	Toldindhold
	NU
	Colli
	Indhold
	Se afsnit Error! Reference source not found..

	
	NU
	VareType
	Toldindhold
	Se afsnit Error! Reference source not found..

	Toldværdi
	FL
	Colli
	Toldvaerdi
	

	
	FL
	VareType
	Toldvaerdi
	

	Møntfod
	AN(3)
	Colli
	Moentfod
	Se afsnit Error! Reference source not found..

	
	AN(3)
	VareType
	Moentfod
	Se afsnit Error! Reference source not found..

	Længde
	FL
	Colli
	Laengde
	

	
	FL
	VareType
	Laengde
	

	Bredde
	FL
	Colli
	Bredde
	

	
	FL
	VareType
	Bredde
	

	Højde
	FL
	Colli
	Hoejde
	

	
	FL
	VareType
	Hoejde
	

	Nettovægt
	FL
	Colli
	Nettovaegt
	

	
	FL
	VareType
	Vaegt
	

	Volumen
	FL
	Colli
	Volumen
	

	
	FL
	VareType
	Volumen
	

	Toldtarif
	AN(15)
	Colli
	Toldtarif
	

	
	AN(15)
	VareType
	Toldtarif
	

	Toldbeskrivelse
	AN(254)
	Colli
	Toldbeskrivelse
	

	
	AN(254)
	VareType
	Toldbeskrivelse
	

	Kollivægt
	FL
	Colli
	EgenVaegt
	

	Serviceydelser
	AN(60)
	ForsendelsesServiceydelse
	ServiceydelsesId
	Streng indeholdende Id for de valgte serviceydelser.

Se afsnit Error! Reference source not found..

	Postopkr
	FL
	ServiceydelsesInfo
	InputVaerdi
	Postopkrævningsbeløb

	Forsikring
	FL
	Colli
	Forsikringsvaerdi
	Forsikringsbeløb

	
	FL
	VareType
	Forsikringsvaerdi
	Forsikringsbeløb ***

	Reference
	NU
	ServiceydelsesInfo
	InputVaerdi
	Afsenders referencenummer

*
Er kun indeholdt i det udvidede format

**
Feltet ’Gade+HusNr’ kan maksimalt være 70 tegn. Men da det skilles ad via mapning til felterne ’Gade’ og ’HusNr’, må ’Gade’-delen og ’HusNr’-delen af ’Gade+HusNr’-feltet hver især kun være 35 tegn.

Værdien indsættes, hvis varetypen oprettes samtidig, men opdateres ikke, hvis varetypen findes i forvejen.

Formatet afhænger af, hvilken type forsendelse, der importeres. For Privat- og Erhvervspakker og Letgods må feltet maksimalt indeholde 72 tegn. For CarryOn Business og CarryOn BulkSplit må feltet maksimalt indeholde 66 tegn og for Jetpost Udenrigs må feltet maksimalt indeholde 45 tegn.

Bemærk: Når der angives tal med decimaler, skal der benyttes punktum som decimalseparator.

Validering af forsendelsesimport

Når der importeres forsendelser i PcPack fra administrative systemer, bliver disse valideret, før de kan udskrives af PcPack.

Valideringen afhænger af, hvilken forsendelsestype der importeres samt hvilket modtagerland forsendelsen skal sendes til. Skal forsendelsen sendes til et ikke EU land skal oplysningerne om varetype medtages, hvilket ikke er nødvendigt for indenlandsforsendelser eller forsendelser til EU lande.

For at en forsendelse kan valideres, er det nødvendigt at enten vejnavn eller postboks er udfyldt.

Der findes mange kombinationer, som kan resultere i at forsendelser ikke kan valideres. Opstår der fejl under valideringen af en forsendelse, vil dette stå i systemloggen (CTRL + S) eller det vil fremgå af kollilisten i kolonnen Problemer.

Eksempler på forsendelsesimport

Nedenstående viser eksempler på import (udvidet format med mapning) af Erhvervspakke, Privatpakke, CarryOn og CarryOn Business. Eksemplerne er minimumseksempler, hvilket vil sige at kun de felter, der er nødvendige for at forsendelsen kan valideres, er udfyldte.

	Erhvervs-pakke *
	"1", "", 1, "EPK", "", "", "", "", "Modtager01", "DK", "Glarmester Nielsen", "", "", "Solvang 25", "", "5000", "", "", "", "", "", "", 0, "", "", "", "", "",, "",,,,,, "", "",, "Z05",,56.25,

	Privat-

pakke *
	"2", "", 1, "PPK", "", "", "", "", "Modtager02", "DK", "Tom Kristensen", "", "", "Frederiksgade 12, 1. tv.", "", "5000", "", "", "", "", "", "", 0, "", "", "", "", "",, "",,,,,, "", "",, "Z07Z25",145.75,,876456743

	CarryOn Business *
	"3", "", 1, "CPAK", "", "", "", "", "Modtager03", "DE", "Hans Hermann", "", "", "Strasse 12, 1.", "", "632121", "Berlin", "", "", "0049308484009", "", "", 0, "", "", "", "", "",, "",,,,,, "", "",, "",,,

	CarryOn *
	"4", "CA1", 1, "CON", "", "", "", "", "Modtager04", "CA", "Tim Carrigan", "", "", "Fifth Avenue 12, 1.", "", "132121", "Montreal", "", "", "0016108484009", "", "", 0, "", "A.101", "DK", "Test","",, "",,,,,, "", "",, "",,,

 * Der benyttes mapning af importfilen.

APPENDIX P: ODBC driver for Microsoft® Navision C5 Development solution

“Keycard.dk”

ODBC driver for Microsoft® Navision C5

Development solution

Version 1.0
Revision History

	Date
	Version
	Description
	Author

	6/Oct/04
	1.0
	Initialization of Microsoft Navision C5 ODBC driver Development solution
	

	
	
	
	

	
	
	
	

Table of Contents

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitions, Acronyms and Abbreviations

1.4. References

1.5.
Overview

2.
Introduction to ODBC

3.
ODBC Driver overview

3.1.
Driver architecture

3.2.
Types of drivers

4.
Microsoft Navision C5 database considerations

4.1.
Microsoft Navision C5 data source format

4.2.
Microsoft Navision C5 database

5.
Writing ODBC 3.x Driver for Microsoft Navision C5

6.
Microsoft Navision C5 database engine

7.
Driver Code Modules

8. Appendix A: C5 database tables

9. Appendix B: Table DebKart Sharable Attributes

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides an development overview of the ODBC driver for the Microsoft Navision C5 application, corresponding to the system, which is going to be developed in the duration of the project. The introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and an overview of the ODBC driver for Microsoft Navision C5 development solution.

1.1. Purpose

This document provides a comprehensive overview of the Microsoft Navision C5 ODBC driver solution, while presenting different decisions, significant to the driver development.

1.2. Scope

Microsoft Navision C5 ODBC driver solution in the Construction phase of RUP.

1.3. Definitions, Acronyms and Abbreviations

Company. The company “Keycard”.

1.4. References

· Microsoft ODBC programmer’s reference, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcodbc_api_reference.asp
1.5. Overview

The following sections and objectives present the Microsoft Navision C5 ODBC driver development process:

Introduction to ODBC. The section presents a short description of Open Database Connectivity, concerning the following aspects:

ODBC overview. Shortly describes ODBC technology.

ODBC Driver overview. Gives an overview of ODBC driver architecture and describes, what kind of drivers are maintained in the ODBC.

Microsoft Navision C5 database considerations. The section describes the aspects, which must be considered while developing the ODBC driver for C5 database:

 Microsoft Navision C5 datasource format. Describes the format of MS Navision C5 database.

 Microsoft Navision C5 database. Describes the main aspects of MS Navision C5 database – tables, relationships, etc.

2. Introduction to ODBC

ODBC is a standard software API, used for connecting to different DBMS. The API is independent of any programming language, database or operating system. ODBC is based on CLI (Call Level Interface) specifications from SQL and ISO/IEC. ODBC was created in September 1992, by SQL Access Group.

In addition to a standard call-level interface, ODBC defines a standard SQL grammar. This grammar is based on the X/Open SQL CAE specification. If a statement uses ODBC grammar that is different from DBMS-specific grammar, the driver converts it before sending it to the data source. However, such conversions are rare because most DBMSs already use standard SQL grammar.

The following picture represents the ODBC components:

[image: image58]

 INCLUDEPICTURE "mk:@MSITStore:C:\\Program%20Files\\Microsoft%20Data%20Access%20SDK%202.8\\Docs\\odbc.chm::/htm/odbcdriverovrvuarch.gif" * MERGEFORMATINET [image: image59]
[image: image60.wmf]Application

ODBC driver

manager

ODBC driver

External data

source

Application

An application is a program that calls the ODBC API to access data.

ODBC Driver

A specific ODBC driver is required for each DBMS that supports ODBC. The driver implements the ODBC API functions, so when using a driver, the application loads the driver and calls the functions in it. The ODBC drivers are operating system specific – for Windows OS, the driver is a dynamic-link library.

ODBC Driver Manager

Actually, the application is not calling Driver functions directly. When calling a function, it uses Driver Manager - the Driver Manager implements all the ODBC functions by passing-through calls to the functions in ODBC drivers. It is statically linked to the application or loaded by the application at run time. So, the application is not calling functions in the driver – the functions are called in the Driver manager and passed to the driver. For usage in Microsoft Windows operating systems, the Driver manager is a dynamic-link library.

3. ODBC Driver overview

3.1. Driver architecture

Driver architecture lays into 2 categories:

File-based drivers. The driver accesses the physical data directly. In this case, the driver acts as both driver and data source. So, it processes ODBC calls and SQL statements; that mean, the driver must implement a database engine to process SQL statements. As a standard practice, the database engines in file-based drivers implement the subset of ODBC SQL defined by the minimum SQL conformance level (for example: dBASE drivers).

 DBMS-based drivers. The driver accesses the physical data through a separate database engine. In this case the driver processes only ODBC calls; it passes SQL statements to the database engine for processing (for example: Oracle drivers).

3.2. Types of drivers

According to the Microsoft Open Database Connectivity (ODBC) interface (Microsoft Data Access SDK 2.8), the ODBC drivers lie into five categories:

· 32-bit ODBC 2.x driver (32-bit driver)

· ISO and X/Open–compliant driver (32-bit driver)

· ODBC 3.0 driver (32-bit driver)

· ODBC 3.5 (or higher) ANSI driver (32-bit driver)

· ODBC 3.5 (or higher) Unicode driver (32-bit driver)

Full description of each driver category may be found in the Microsoft Data Access SDK 2.8 documentation.

4. Microsoft Navision C5 database considerations

4.1. Microsoft Navision C5 data source format

The data of Microsoft Navision C5 application is held in the c5data.dat file. The file lies in the root C5 application directory:

C:\C5Keyc300\c5data.dat

4.2. Microsoft Navision C5 database

Microsoft Navision C5 database is a set of tables, held in the c5data.dat file. The database has not standard relational database structure and does not support any of SQL standards. The relationships of the database tables, triggering functions, indexes etc. are implemented in the application level or in the level between application and data levels. The following picture presents C5 application data access (picture 2):

[image: image61.wmf]C

5

application

C

5

data

.

dat

relational DB

support

mechanism

Figure 28. C5 application data access

Because Microsoft Navision C5 does not provide any documentation, further investigations in the component, which is responsible for relational DB behaving supporting, were not performed.

5. Writing ODBC 3.x Driver for Microsoft Navision C5

According to the following sections, the Microsoft Navision C5 ODBC driver:

· is a file-based Driver (the data source of the Microsoft Navision is a pure data file)

· belongs to the ODBC 3.5 (or higher) Unicode driver (32-bit driver) driver category (in order of using UNICODE for character transitions)

6. Microsoft Navision C5 database engine

Considering the fact, that Microsoft Navision C5 database is a .dat file, the database engine must be implemented for the C5 database.

After performing the investigation on the C5 database, the database structure is presented as follows:

1. Database consists of separate data tables.

2. No relationships, constraints or other relational database features are not observed in the database.

So for that reasons, the C5 database engine must be a DLL file, which maintain minimal relational database functionality:

1. Foreign keys. The database has no foreign keys. The database engine has to maintain foreign keys for the database tables.

2. Unique constraints. The database engine also has to maintain unique constrains for columns, which contain data with unique values.

3. Primary keys. After performing the investigations on the tables, the tables were found to have columns with unique values. For this reason, the driver engine has to maintain the primary keys in for the database.

The database engine might be implemented in C language.

7. Driver Code Modules

The driver could be written in the C programming language, because the functions, supported by ODBC, maintain C implementantation.

The Sample ODBC driver may contain of the following sample modules, implementing such functions:

Connect.c (code for connection)

SQLConnect (ISO 92)

SQLDriverConnect (ODBC)

SQLDisconnect (ISO 92)

Cursor.c (client side cursor functionality handling)

SQLSetCursorName (ISO 92)

SQLGetCursorName (ISO 92)

SQLCloseCursor (ISO 92)

SQLSetPos (ODBC)

Error.c (ODBC error handling)

SQLGetDiagField (ISO 92)

SLQGetDiagRec (ISO 92)

SQLError (ODBC)

Execute.c (code for executing SQL commands)

SQLExecute (ISO 92)

SQLExecDirect (ISO 92)

SQLParamData (ISO 92)

SLQPutData (ISO 92)

SQLCancel (ISO 92)

Appendix A: C5 database tables

The tables, used by Company, are marked in grey

Address Table

Løbenummer
SidstRettet
AdrFileId
AdrRecId
LinieNr
Type
Kode
Navn
Adresse1
Adresse2
Adresse3
Attention
Telefon
Telefax
Land
SWIFTNummer
RecID
FileID

Afdeling Table

Løbenummer
SidstRettet
Afdeling
Navn
C4Afdeling
RecID
FileID

AfgiftGrp Table

Løbenummer
SidstRettet
Gruppe
Navn
AfgiftTidspunkt
Konto
Modkonto
AfgiftGrundlag
Afgiftrapport
MomsBeregnes
MomsKode
Kombineres
RecID
FileID

AfgiftCode Table

Løbenummer
SidstRettet
Afgift
Tekst
SLETAfgiftType
SLETSats
Konto
SLETMoms
SLETMomsRapport
Modkonto
Myndighedskode
Gruppe
SalgKøb
Fortegn
RecID
FileID

AfgiftLinie Table

Løbenummer
SidstRettet
RefFileId
Nummer
Grundlag
Afgift
Behandling
Transaktion
SLETTES
Export
Tmp
Varenummer
Antal
SrcFileId
Linienr
RecID
FileID

AfgiftPost

Løbenummer
SidstRettet
RefFileId
Afgift
Grundlag
Sats
BeløbDKK
BeløbVAL
Dato
Modkonto
Konto
Behandling
ØkoDato
FysDato
Transaktion
Nummer
Varenummer
SLETTES
Faktura
Følgeseddel
Beløb2
FinansBilag
SalgKøb
Antal
Gruppe
FakturaKonto
MomsBeløb
Moms
Valuta
Linienr
RecID
FileID

AfgiftSats

Løbenummer
SidstRettet
Afgift
Dato
Sats
RecID
FileID

1. Aktion

Løbenummer
SidstRettet
RESERVERET1
Aktion
Proces
Element
Kopier
RESERVERET2
Banner
Option_
Spærret
RecID
FileID

2. AktionListe

Løbenummer
SidstRettet
Modul
Konto
Linienr
Aktion
Kopier
RESERVERET1
Adviser
Banner
Option_
Spærret
Funktion
RecID
FileID

3. Appointment

LøbeNummer
SidstRettet
AppTime
AppEnd
UserNo
Description
AppDate
AppType
MultiRef
BookedBy
Alarm
RecID
FileID

4. Patch

Løbenummer
SidstRettet
BestiltAf
BestiltDato
BestiltKl
Prioritet
Gruppe
Privat
Status
StartDato
StartKl
SlutDato
SlutKl
UdførtAf
Proc
Element
Filnavn
Svar
Database
Pr
PrEnhed
RecID
FileID

5. Betaling

Løbenummer
SidstRettet
Betaling
Tekst
Metode
Antal
Enhed
RecID
FileID

6. Bilag

Løbenummer
SidstRettet
Navn
Minimum
Maximum
Adgang
Bilag
SessionId_
RecID
FileID

BrugerProfil

Løbenummer
SidstRettet
UtilType
UtilNavn
Blok
ElementNavn
SkjultFra
GruppeId
RecID
FileID

Calendar

Løbenummer
SidstRettet
Calendar
Date_
Txt
Hours
Sum
Weekday
Week
RecID
FileID

DebBudgetKaldde

Løbenummer
SidstRettet
Linienr
RESERVERET1
Konto
Afdeling
Dato
Tekst
BeløbVAL
Valuta
Kurs
Moms
Forfald
Gentag
Til
FejlTekst
Varegruppe
KursTri
RecID
FileID

7. DebGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
Omsætning
Forbrug
Slutrabat
GebyrFM
GebyrEM
Samlekonto
Kontant
LinieRabat
RecID
FileID

8. DebJournal

Løbenummer
SidstRettet
Fakturakonto
Konto
Afdeling
Nummer
Tekst
Dato
Forfald
Faktura
Bilag
Varebeløb
Linierabat
Momsberegnes
Slutrabat
GebyrFM
AfgiftFM
Afrunding
Liniemoms
Moms
GebyrEM
AfgiftEM
SaldoVAL
Valuta
SaldoDKK
Vareforbrug
Korrektion
Provision
Sælger
LagerStatus
Udskrevet
Transaktion
Listekode
Land
Vægt
Rumfang
Kurs
Modul
KursTri
Momsgrundlag
ListeBeløb
RecID
FileID

9. DebKart Table

Løbenummer
SidstRettet
Lås
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Godkendt
Prisgruppe
Rabatgruppe
Kasserabat
Billede
Valuta
Sprog
Betaling
Levering
Spærret
Sælger
Moms
SLETStatistik
Gironummer
Momsnummer
Rente
Afdeling
Rykkerkode
Engangskunde
Beholdning
EDIadresse
Saldo
Saldo30
Saldo60
Saldo90
Saldo120
SaldoOver120
Forfalden
Beregnet
SaldoMax
SaldoDKK
Søgenavn
SLETTransport
Kontant
IndbetalMåde
OrdreGruppe
ProjektGruppe
HandelsKode
TransKode
Email
URL
Mobil
RecID
FileID

10. DebKontakt

Løbenummer
SidstRettet
Konto
Primær
Navn
Stilling
Adresse1
Adresse2
PostBy
Land
Email
Telefon
Telefax
Lokalnummer
Mobil
RecID
FileID

11. DebPost

Løbenummer
SidstRettet
Budgetkode
Konto
Afdeling
Dato
Faktura
Bilag
Tekst
Posttype
BeløbDKK
BeløbVAL
Valuta
Moms
Momsbeløb
Godkendt
Godkender
KasserabatBeløb
KasserabatDato
Forfald
Åben
Kurs
RESERVERET2
RESERVERET3
DiffBogført
RefRecID
Transaktion
RykkerKode
Kasserabat
RykketDato
KursTri
BetalingsId
RecID
FileID

12. DebPostUdlign

Løbenummer
SidstRettet
Konto
Dato
PostRef
BeløbVAL
BeløbDKK
Kursdiff
Ophævet
Transaktion
Kasserabat
ØreDiff
Reserveret
RecID
FileID

13. DebRabatGruppe

Løbenummer
SidstRettet
Rabatgruppe
Bemærkning
RecID
FileID

14. DebStat

Løbenummer
SidstRettet
Konto
Periodestart
Budget
Varebeløb
Linierabat
Slutrabat
Vareforbrug
Korrektion
AfgiftFM
GebyrFM
Moms
Kursdiff
Rente
Provision
Betaling
Fakturabeløb
AfgiftEM
GebyrEM
Reserveret
RecID
FileID

15. DocuDefinition

LøbeNummer
SidstRettet
Type
Code
DefText
RunProcess
UtilName
RecID
FileID

16. DocuFields

Løbenummer
SidstRettet
Type
TableId
Linenum
DataTablId
DataFldId
Name
RefFldId
DataValue
RecID
FileID

17. DocuRef

Løbenummer
SidstRettet
DocuId
RefTablId
RefRecId
CreateDate
DocuText
Type
CreateId
CreateTime
RecID
FileID

18. DocuTables

Løbenummer
SidstRettet
Type
TableId
RecID
FileID

19. DocuType

Løbenummer
SidstRettet
Type
Name
RecID
FileI

20. DocuValue

Løbenummer
SidstRettet
CreateDato
CreateBy
ValueText
Filename
Filetype
Path
RecID
FileID

eCategory

Løbenummer
SidstRettet
Category
UpperCategory
RecID
FileID

eDebContact

Løbenummer
SidstRettet
AccountNumber
ContactId
ContactName
eLevel
Password
eMail
ShowHelp
RecID
FileID

EDIRegnskab

Løbenummer
SidstRettet
Indeks
Beløb
Slet1
Tekst
BeløbSÅ
Beløb2
Beløb2SÅ
RecID
FileID

eLabel

Løbenummer
SidstRettet
TextId
eLanguage
Text1
LineNumber
System
RecID
FileID

eLanguage

Løbenummer
SidstRettet
eLanguage
PicFile
Publish
Description
RecID
FileID

eNewDebtor

Løbenummer
SidstRettet
Name
Address1
Address2
Address3
Country
ContactName
Phone
VatNo
eMail
ContactId
AccountNumber
Accept
MailSent
Zip
Region
RecID
FileID

21. Enhed

Løbenummer
SidstRettet
Enhed
Tekst
RecID
FileID

eSalesTable

Løbenummer
SidstRettet
Name
Address1
Address2
Address3
Phone
eMail
DeliveryType
PaymentType
DeliveryName
DeliveryAddress1
DeliveryAddress2
DeliveryAddress3
DeliveryCountry
eSalesNumber
eReference
DebtorAccount
DeliveryDate
Status
Lines
ContactId
CreateDate
CreateTime
Currency
Fee
Freight
Country
Accept
eButik
PaymentId
Status_ORIG
Postage
zip
Region
DeliveryZip
DeliveryRegion
SalesNumber
RecID
FileID

eSalesTrans

Løbenummer
SidstRettet
eSalesNumber
LineNumber
ItemNumber
Quantity
Price
DeliveryDate
Variant
RecID
FileID

eStockCat

Løbenummer
SidstRettet
ItemNumber
Category
RecID
FileID

eStockTable

Løbenummer
SidstRettet
ItemNumber
PriceGroup
Weight
eStockLevel
Campaign
CampaignStart
CampaignEnd
DeliveryDate
PictureFileName
RecID
FileID

eText

Løbenummer
SidstRettet
LineNumber
RefFileName
RefKey
eLanguage
IDno
Text1
RecID
FileID

FinBudget

Løbenummer
SidstRettet
UserId
IndexType
IndexVærdi
Konto
FinKonto
Betaling
CurVærdi
Afdeling
Moms
Samlekonto
Lagerdage

Error
RecID
FileID

FinBudgetBeh

Løbenummer
SidstRettet
UserId
Konto
Rentekonto
RentePct
Grænse
RentePct2
RenteKontoInd
RentePctInd
RecID
FileID

FinBudgetKladde

Løbenummer
SidstRettet
Linienr
RESERVERET1
Konto
Afdeling
Dato
Tekst
Antal
BeløbVAL
Valuta
Kurs
Moms
Modkonto
Posttype
Forfald
Gentag
Til
FejlTekst
KursTri
RecID
FileID

FinBugetPer

Løbenummer
SidstRettet
RefFileId
RefRecId
Dato
Procent
CurVærdi
CurAntal
Salgspris
Købspris
RecID
FileID

FinBudgetSlag

Løbenummer
SidstRettet
UserId
Varenummer
IndexType
IndexVærdi
CurAntal
Afdeling
DebitorType
Debitor
DebBetaling
DebFinkonto
DebMoms
Kreditor
KreBetaling
KreFinKonto
KreMoms
Lagerdage
Prisgruppe
Lokation
Error
RecID
FileID

FinFordeling

Løbenummer
SidstRettet
Konto
Afdeling
FKonto
FAfdeling
Fordeling
Værdi
Bemærkning
RecID
FileID

22. FinKart

Løbenummer
SidstRettet
Lås
Konto
Kontonavn
Kontotype
Kode
DKforslag
Afdeling
TvungenAfd
Modkonto
Adgang
SumFraKonto
Moms
SaldoVAL
Valuta
Art
Tælleværk
Billede
SaldoDKK
TmpTal01
TmpTal02
TmpTal03
TmpTal04
TmpTal05
TmpTal06
TmpTal07
TmpTal08
TmpTal09
TmpTal10
TmpTal11
TmpTal12
TmpTal13
TmpTal14
KoncernKonto
Kursreguleres
Saldo2
EDIIndeks
RecID
FileID

FinKladde

Løbenummer
SidstRettet
Navn
Linienr
RESERVERET1
Dato
Bilag
Kontotype
Konto
Afdeling
Tekst
BeløbVAL
Valuta
Valutakurs
Moms
Modkonto
Posttype
Forfald
Kasserabat
KasserabatDato
Projekt
Art
Antal
ReturStatus
Faktura
Godkendt
Godkender
FejlTekst
ModBilag
BetalId
BetalNummer
BetalSpec
KladdelinieType
ValutaKursTri
RecID
FileID

23. FinKladdeNavn

Løbenummer
SidstRettet
Navn
Betegnelse
Balance
Kladdenr
Ibrug
UserId
RESERVERET1
Gem
Minimum
Maximum
Bilag
LinieSkift
RecID
FileID

FinLikviditet

Løbenummer
SidstRettet
Valuta
Dato
Type
RefRecId
BeløbVAL
SumBeløbVAL
RecID
FileID

24. FinPeriode

Løbenummer
SidstRettet
Start_
Slut
Status
Kode
Kommentar
Konsolideret
RecID
FileID

25. FinPost

Løbenummer
SidstRettet
Konto
Budgetkode
Afdeling
Dato
Bilag
Tekst
BeløbDKK
BeløbVAL
Valuta
Moms
Momsbeløb
Antal
Posttype
Forfald
Transaktion
OprettetAf
KladdeNr
Beløb2
LåsBeløb2
TmpSumId
RecID
FileID

26. FinSaldi

Løbenummer
SidstRettet
Konto
Start_
Budget
SaldoSÅ
SaldoDÅ
AntalBudget
AntalSÅ
AntalDÅ
SaldoVALDÅ
SaldoSÅ2
SaldoDÅ2
Budget2
RecID
FileID

27. FirmaOplysninger

Løbenummer
SidstRettet
Navn
Adresse1
Adresse2
PostBy
Telefon
Telefax
Bank
Giro
RESERVERET1
Regnskab
RegNr
Land
ImportMomsNr
RESERVERET2
SEnr
PBSnr
DatoForKonvertering
KonverteringsDato
OpdaterSekundær
KonverteringsKurs
Lightmenu
CVR
Email
URL
BankNavn
Swift
MobilTelefon
Iban
FIK
ÅrsregnskabsId
GeneralforsamlingsDato
Revisor
EdiFilDato
RevisorEmail
RecID
FileID

28. Funktion

Løbenummer
SidstRettet
Funktion
Betegnelse
RecID
FileID

29. HandelsKode

Løbenummer
SidstRettet
Handel
Navn
DSKode
RecID
FileID

IndGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
RecID
FileID

IndKart

Løbenummer
SidstRettet
Lås
Nummer
Søgenavn
Oprettet
Leveres
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
Fakturamoms
FastRabat
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Levering
Spærret
Indkøber
Moms
Beholdning
Afdeling
Gironummer
Momsnummer
Billede
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Momsberegnes
Momsberegnet
Rabat
AfgiftFM
GebyrFM
Afrunding
Liniemoms
Momsbeløb
AfgiftEM
GebyrEM
Fakturatotal
Transaktion
SLETStatistik
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Kontant
InvestAfgift
Linierabat
Varebeløb
Momsgrundlag
Omkostning
SLETAfgiftExcl
LevKonto
HandelsKode
TransKode
Email
LevEmail
RecID
FileID

IndKartArkiv

Løbenummer
SidstRettet
Lås
Nummer
Søgenavn
Oprettet
Leveres
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
Fakturamoms
FastRabat
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Levering
Spærret
Indkøber
Moms
Beholdning
Afdeling
Gironummer
Momsnummer
Billede
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Momsberegnes
Momsberegnet
Rabat
AfgiftFM
GebyrFM
Afrunding
Liniemoms
Momsbeløb
AfgiftEM
GebyrEM
Fakturatotal
Transaktion
SLETStatistik
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Kontant
InvestAfgift
Linierabat
Varebeløb
Momsgrundlag
Omkostning
SLETAfgiftExcl
LevKonto
HandelsKode
TransKode
Email
LevEmail
RecID
FileID

30. Intrastat

LøbeNummer
SidstRettet
Dato
Ekspedition
Nummer
DKType
Kontonummer
Land
SLETStatistik
SLETTransport
Toldposition
Vægt
Supplerende
BeløbDKK
Retning
RESERVERET1
Delsending
Korrektion
RESERVERET2
Handelskode
TransKode
RecID
FileID

Kasserabat

Løbenummer
SidstRettet
Kasserabat
Tekst
Metode
Dage
Procent
Konto
KasseRabGrundlag
RecID
FileID

KreBudgetKladde

Løbenummer
SidstRettet
Linienr
RESERVERET1
Konto
Afdeling
Dato
Tekst
BeløbVAL
Valuta
Kurs
Moms
Forfald
Gentag
Til
FejlTekst
Varegruppe
KursTri
RecID
FileID

31. KreGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
Tilgang
RESERVERET1
Slutrabat
GebyrFM
GebyrEM
Samlekonto
Kontant
LinieRabat
RecID
FileID

32. KreJournal

Løbenummer
SidstRettet
Fakturakonto
Konto
Afdeling
Nummer
Tekst
Dato
Forfald
Faktura
Bilag
Varebeløb
Linierabat
Momsberegnes
Slutrabat
GebyrFM
AfgiftFM
Afrunding
Liniemoms
Moms
GebyrEM
AfgiftEM
SaldoVAL
Valuta
SaldoDKK
Omkostning
InvestAfgift
Provision
Indkøber
LagerStatus
Udskrevet
Transaktion
EUMoms
Land
Vægt
Rumfang
Korrektion
Kurs
Modul
KursTri
Momsgrundlag
RecID
FileID

33. KreKart

Løbenummer
SidstRettet
Lås
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Rabatgruppe
Kasserabat
Godkendt
SLETAfgiftExcl
Fakturamoms
Valuta
Sprog
Betaling
Levering
Rente
Spærret
Indkøber
Moms
SLETStatistik
PBSnummer
Gironummer
VorKonto
Bankkonto
Momsnummer
Afdeling
Engangsleverandør
Billede
Beholdning
EDIadresse
Saldo
Saldo30
Saldo60
Saldo90
Saldo120
SaldoOver120
Forfalden
Beregnet
SaldoMax
SaldoDKK
Søgenavn
SLETTransport
Kontant
BetalMåde
BetalSpec
Telex
BetalId
IndkøbsGruppe
HandelsKode
TransKode
Email
URL
Mobil
RecID
FileID

34. KreKontakt

Løbenummer
SidstRettet
Konto
Primær
Navn
Stilling
Adresse1
Adresse2
PostBy
Land
Email
Telefon
Telefax
Lokalnummer
Mobil
RecID
FileID

35. KrePost

Løbenummer
SidstRettet
Budgetkode
Konto
Afdeling
Dato
Bilag
Tekst
Posttype
BeløbDKK
BeløbVAL
Valuta
Moms
Momsbeløb
Godkendt
Godkender
KasserabatBeløb
KasserabatDato
Forfald
Åben
Kurs
RESERVERET3
RESERVERET4
DiffBogført
Faktura
RESERVERET1
RefRecId
Transaktion
RESERVERET6
BetalId
Ekspeditionsdato
Kasserabat
BetalMåde
BetalSpec
KursTri
RecID
FileID

36. KrePostUdlign

Løbenummer
SidstRettet
Konto
PostRef
BeløbVAL
BeløbDKK
Kursdiff
Dato
Ophævet
Transaktion
Kasserabat
ØreDiff
Reserveret
RecID
FileID

37. KreRabatgruppe

Løbenummer
SidstRettet
Rabatgruppe
Bemærkning
RecID
FileID

38. KreStat

Løbenummer
SidstRettet
Konto
Periodestart
Budget
Varebeløb
Linierabat
Slutrabat
Omkostning
Korrektion
AfgiftFM
GebyrFM
Moms
Kursdiff
Rente
Provision
Betaling
Fakturabeløb
AfgiftEM
GebyrEM
Reserveret
RecID
FileID

39. LagBeholdning

Løbenummer
SidstRettet
Varenummer
Lokation
Beholdning
Reserveret
Bestilt
Leveret
Modtaget
Minimum
Maximum
Placering
Levering
Disponering
Periode
Pakning
VærdiBeholdning
VærdiLeveret
VærdiModtaget
Trukket
RecID
FileID

LagBevægelse

Løbenummer
SidstRettet
Varenummer
Dato
Antal
Bevægelse
Nummer
Akkumuleret
RESERVERET1
RESERVERET2
Lokation
Gruppe
Leverandør
Senest
Brugt
RecID
FileID

LagBudgetKladde

Løbenummer
SidstRettet
Linienr
RESERVERET1
Varenummer
Dato
Lokation
Antal
Pris
BeløbVAL
Valuta
Kurs
Tekst
Lagertype
Afdeling
Gentag
Til
FejlTekst
Gruppe
KursTri
RecID
FileID

40. LagDebRabat

Løbenummer
SidstRettet
Varekode
Kontokode
Varerelation
RESERVERET1
Kontorelation
RESERVERET2
Type
Antal
FraDato
TilDato
Sats
SøgVidere
SøgSamme
Valuta
RecID
FileID

41. LagGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
Omsætning
Forbrug
LinierabatSalg
Tilgang
Afgang
Tab
Vind
Modtaget
Leveret
Avance
TilgangModtaget
AfgangLeveret
LinierabatKøb
RecID
FileID

42. LagKart

Løbenummer
SidstRettet
Lås
Varenummer
Varenavn1
Varenavn2
Varenavn3
Varetype
Rabatgruppe
Kostvaluta
Kostpris
Gruppe
Salgsmodel
Lagermodel
Købskvanti
Leverandør
LevVarenummer
Spærret
Alternativ
AltVare
Decimaler
RESERVERET1
SLETSalgsafgift
Provision
Billede
Nettovægt
Rumfang
Toldposition
Enhed
Engangsvare
Art
Omkostning
Kostmodel
Hovedlager
Lokation
Købsmoms
RESERVERET2
Beholdning
Leveret
Reserveret
Modtaget
Bestilt
VærdiBeholdning
VærdiLeveret
VærdiModtaget
Afdeling
Kostprisenhed
SLETKøbsafgift
Niveau
Trukket
AdvarselNegativBeholdning
NegativLagerBeholdning
FjernListeKode
RecID
FileID

LagKladde

Løbenummer
SidstRettet
Navn
Linienr
RESERVERET1
Varenummer
Antal
Pris
Beløb
Valuta
Lagertype
Bilag
Afdeling
Lokation
Dato
Tekst
Opdater
Prisgruppe
FejlTekst
Serienummer
TilLokation
PostRef
BogførNu
Bogført
Beholdning
Optalt
RecID
FileID

43. LagKladdeNavn

Løbenummer
SidstRettet
Navn
Betegnelse
Balance
Ibrug
UserId
RESERVERET1
Gem
Minimum
Maximum
Bilag
LagKladdeType
RecID
FileID

LagKreRabat

Løbenummer
SidstRettet
Varekode
Kontokode
Varerelation
RESERVERET1
Kontorelation
RESERVERET2
Type
Antal
FraDato
TilDato
Sats
SøgVidere
SøgSamme
Valuta
RecID
FileID

44. LagPost

Løbenummer
SidstRettet
Varenummer
Budgetkode
Lokation
Dato
Antal
AfgiftBeløb
Rabat
BeløbDKK
BeløbVAL
Valuta
Bilag
Faktura
Modul
Nummer
Konto
Afdeling
Medarbejder
Tekst
LagRetning
Kostbeløb
Serienummer
UdlignetAntal
UdlignetBeløb
InvestAfgift
DiffBogført
Åben
Lagertype
PostRef
Transaktion
LagerStatus
Følgeseddel
VareGruppe
DKgruppe
RabatBeløb
FinansKonto
Art
ProvisionsBeløb
ProvisionsAfregnet
Moms
DriftsførtProjekt
DriftsførtKonto
ForbrugKonto
BeholdKonto
TabVindBeløb
SLETAfgift
Kurs
KursTri
Slettes
RecID
FileID

45. LagPostUdlign

Løbenummer
SidstRettet
Varenummer
Dato
PostRef
Antal
Kostbeløb
Korrektion
Ophævet
Transaktion
DriftsførtProjekt
RecID
FileID

46. LagPris

Løbenummer
SidstRettet
Varenummer
Pris
Prisenhed
Valuta
Prisgruppe
Dækningsgrad
Dato
Salgsmoms
RecID
FileID

47. LagPrisgruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
MomsIncl
Afrund1
Afrund10
Afrund100
Afrund1000
Afrund1000Plus
RecID
FileID

LagRabatgruppe

Løbenummer
SidstRettet
Rabatgruppe
Bemærkning
RecID
FileID

LagStat

Løbenummer
SidstRettet
Varenummer
Periodestart
SalgStk
SalgBeløb
SalgRabat
SalgStkBudget
SalgVareforbrugBudget
AfgangStk
AfgangBeløb
AfgangStkBudget
AfgangBeløbBudget
SalgAfgiftFM
KøbStk
KøbBeløb
KøbRabat
KøbStkBudget
KøbBeløbBudget
TilgangStk
TilgangBeløb
TilgangStkBudget
TilgangBeløbBudget
KøbAfgiftFM
SalgVareforbrug
SalgAfgiftEM
KøbAfgiftEM
RecID
FileID

48. LagStykliste

Løbenummer
SidstRettet
Stykliste
Linienr
Varenummer
Antal
Position
Tid
Maskine
Lokation
Bemærkning
Prisgruppe
RecID
FileID

Lagtekst

Løbenummer
SidstRettet
Varenummer
Sprog
Tekst
Linienr
RecID
FileID

49. Land

Løbenummer
SidstRettet
Land
Type
Valuta
Sprog
MomsKøb
MomsSalg
Mokode
DSkode
Landebetegnelse
RecID
FileID

50. Levering

Løbenummer
SidstRettet
Levering
Navn
RecID
FileID

51. Log

Løbenummer
SidstRettet
Modul
Relation
Nummer
Id
Dato
Tekst
Tidspunkt
Bruger
RecID
FileID

Lokation

Løbenummer
SidstRettet
Lokation
Navn
RESERVERET1
RecID
FileID

52. Mail

Løbenummer
SidstRettet
FromUser
ToUser
Subject
TraceId
MailStatus
MailType
MailSeen
Arkiv
RecID
FileID

MailArchive

Løbenummer
SidstRettet
UserId
Arkiv
Navn
RecID
FileID

53. Medarbejder

Løbenummer
SidstRettet
Medarbejder
Navn
Adresse1
Adresse2
PostBy
Bruger
Telefon
Lokalnummer
Afdeling
Billede
Medarbejdertype
Email
RecID
FileID

54. Modultekst

Løbenummer
SidstRettet
Modul
Nummer
Sprog
Tekst
RecID
FileID

55. Moms

Løbenummer
SidstRettet
Moms
Tekst
Sats
Konto
EUkøb
MomsFriPct
InvestPct
InvestKonto
InvestGrundKonto
InvestGrundModkonto
Type
MomsForfald
RecID
FileID

56. Notat

Løbenummer
SidstRettet
NotatFileId
NotatRecId
Linienummer
Tekst
Dato
RecID
FileID

57. NotatGlobl

LøbeNummer
SidstRettet
NotatFileId
NotatRecId
LinieNummer
Tekst
RecID
FileID

OrdGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
RecID
FileID

58. OrdKart

Løbenummer
SidstRettet
Lås
Nummer
Søgenavn
Oprettet
Leveres
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Prisgruppe
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Levering
Spærret
Sælger
Moms
Beholdning
Afdeling
Gironummer
Momsnummer
Billede
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Momsberegnes
Momsberegnet
Rabat
AfgiftFM
GebyrFM
Afrunding
Momsbeløb
AfgiftEM
GebyrEM
Fakturatotal
Liniemoms
Transaktion
SLETStatistik
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Kontant
Listekode
Linierabat
Varebeløb
Momsgrundlag
HandelsKode
TransKode
eNummer
Email
LevEmail
BetalingsId
RecID
FileID

59. OrdKartArkiv

Løbenummer
SidstRettet
Lås
Nummer
Søgenavn
Oprettet
Leveres
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Prisgruppe
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Levering
Spærret
Sælger
Moms
Beholdning
Afdeling
Gironummer
Momsnummer
Billede
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Momsberegnes
Momsberegnet
Rabat
AfgiftFM
GebyrFM
Afrunding
Momsbeløb
AfgiftEM
GebyrEM
Fakturatotal
Liniemoms
Transaktion
SLETStatistik
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Kontant
Listekode
Linierabat
Varebeløb
Momsgrundlag
HandelsKode
TransKode
eNummer
Email
LevEmail
BetalingsId
RecID
FileID

60. OrdKladde

Løbenummer
SidstRettet
Navn
Nummer
Linienr
Varenummer
Tekst
Antal
Pris
Rabat
Beløb
Bekræftet
RESERVERET1
Lokation
LeverNu
Oprettet
Levering
Konto
Enhed
Moms
FejlTekst
SLETAfgift
Kostpris
SLETStatistik
Medarbejder
Serienummer
Debitor
HandelsKode
PrisEnhed
RecID
FileID

61. OrdKladdeNavn

Løbenummer
SidstRettet
Navn
Betegnelse
Ibrug
UserId
RecID
FileID

62. OrdLinie

Løbenummer
SidstRettet
Nummer
Linienr
Varenummer
Lokation
Antal
Pris
Rabat
Beløb
Tekst
Enhed
Moms
LeverNu
Oprettet
Levering
Bekræftet
Konto
Serienummer
Leveret
Faktureret
LeveretDKK
Transaktion
Kostpris
SLETStatistik
SLETAfgift
LinieStatus
LagerStatus
Medarbejder
SamleRefId
OrdreRef
HandelsKode
AntalFysisk
FjernListeKode
Prisenhed
RecID
FileID

63. OrdLinieArkiv

Løbenummer
SidstRettet
Nummer
Linienr
Varenummer
Lokation
Antal
Pris
Rabat
Beløb
Tekst
Enhed
Moms
LeverNu
Oprettet
Levering
Bekræftet
Konto
Serienummer
Leveret
Faktureret
LeveretDKK
Transaktion
Kostpris
SLETStatistik
SLETAfgift
LinieStatus
LagerStatus
Medarbejder
SamleRefId
OrdreRef
HandelsKode
AntalFysisk
FjernListeKode
Prisenhed
RecID
FileID

64. Parametre

Løbenummer
SidstRettet
UserId
Name
Tekst1
Tekst2
Tekst3
Tekst4
Tekst5
Tekst6
Tekst7
Tekst8
Tekst9
Tekst10
Tekst11
Tekst12
Tekst13
Tekst14
Int1
Int2
Int3
Int4
Int5
Int6
Dato1
Dato2
Dato3
Dato4
Real1
Real2
Real3
Real4
NejJa1
NejJa2
NejJa3
NejJa4
NejJa5
NejJa6
NejJa7
NejJa8
NejJa9
NejJa10
NejJa11
NejJa12
NejJa13
NejJa14
NejJa15
NejJa16
Dato5
Real5
Real6
Real7
Real8
Real9
Tekst15
Tekst16
Tekst50
Tekst17
RecID
FileID

PayAbsenceType

Løbenummer
SidstRettet
AbsenceType
Txt
DAAbsenceCode
RecID
FileID

PayBalances

Løbenummer
SidstRettet
Counterunit
Employee
FromDate
ToDate
PayRun
Transferof
Correct
RecID
FileID

PayCalcSequence

Løbenummer
SidstRettet
Scanning
Txt
CalcCounterunits
CalcPaycosttypes
Active
PayRun
PayGroup
FromCtype
ToCtype
RecID
FileID

PayCalculate

Løbenummer
SidstRettet
Counterunit
LineNo
BeforeCriterion
Action
From_
To_
Field
Period
LinCriterion
Operator
Minimum
MinSpecified
Maximum
MaxSpecified
RoundoffType
Roundoff
PeriodLag
Formula
BeforeEmployment
Type
RecID
FileID

PayCounterunit

Løbenummer
SidstRettet
Counterunit
Name
Scanning
LineType
Period
Account
SetoffAccount
Help_
DimCtype
SkipDimension
RecID
FileID

PayDAStatistics

Løbenummer
SidstRettet
StatisticsNumber
IndividualType
TypeNumber
ToField
FromType
From_
To_
FromField
RecID
FileID

PayEmplTable

Løbenummer
SidstRettet
Employee
PersRegNo
EmploymentDate
Resigned
PayFutures
NoticeTo
Blocked
Payslip
BirthDate
Birthday
Employmentday
BlockedFrom
Calendar
LedgerGroup
SenDate
Position
TemplateEmployee
RecID
FileID

PayGroup

Løbenummer
SidstRettet
PayGroup
GroupName
PayRun
Blocked
Department
RecID
FileID

PayGroupMember

Løbenummer
SidstRettet
PayGroup
Employee
FromDate
ToDate
RecID
FileID

PayHistory

Løbenummer
SidstRettet
HistType
Number_
StartDate
EndDate
DACodeType
DACode
Txt
SystemType
SystemNumber
SystemValue
Accountcode
RegNumber
AccountNumber
Address1
Address2
Address3
Hours
PBSRecipient
PBSDepartment
PBSAgreement
PBSCollectiveagr
PBSInfoType
FromRegNumber
FromAccountNumber
SumTrans
Country
AbsenceType
RecID
FileID

PayJour

Løbenummer
SidstRettet
Employee
Date_
Available
Entering
Voucher
FromDate
PayRun
FixedSlip
Transaktion
RecID
FileID

PayLedgerAccount

Løbenummer
SidstRettet
Number_
Account
SetoffAccount
Group_
Type
RecID
FileID

PayParm

Løbenummer
SidstRettet
LineNo
Parameter
Txt
Check_
RecID
FileID

PayParmValue

Løbenummer
SidstRettet
Parameter
Employee
Contents
RecID
FileID

PayPeriodTable

Løbenummer
SidstRettet
Period
Name
RecID
FileID

PayPeriodTrans

Løbenummer
SidstRettet
Period
PeriodStart
PeriodEnd
Txt
RecID
FileID

PayRateTable

Løbenummer
SidstRettet
PayRate
Name
Type
Hook
RecID
FileID

PayRateTrans

Løbenummer
SidstRettet
PayRate
Criterion
Employee
Value
Description
FromDate
ToDate
Period
RecID
FileID

Payslip

Løbenummer
SidstRettet
Payslip
LineNo
Type
Number_
Txt
Col1
Col2
Col3
Sum
Zero
RecID
FileID

PayStatistics

Løbenummer
SidstRettet
Employee
Date_
Counterunit
Status
Value
Department
PayRun
AccountNumber
SetoffAccount
SkipDimension
RecID
FileID

PayTable

Løbenummer
SidstRettet
Payctype
Name
Rate_
LineType
Scanning
FromType
PayRate
From_
Percent
Unit
RoundoffType
Roundoff
Open
AutoCreate
Dataentry
Account
SetoffAccount
Deleted01
Help_
CountRate
CountAmount
DimCtype
Deleted02
SkipDimension
RecID
FileID

PayTableRate

Løbenummer
SidstRettet
Payctype
Number_
Rate_
Percent
PayRate
FromCtype
FromFactor
FromExtra
TransType
RecID
FileID

PayTrans

Løbenummer
SidstRettet
Status
Date_
Number_
Payctype
Txt
Qty
Rate_
Amount
Del
ByCode
ByLag
EndDate
Department
TransDate
Percent
PayRun
TransType
AccountNumber
SetoffAccount
SkipDimension
RecID
FileID

PayWorksh

Løbenummer
SidstRettet
WorkshName
Workshtype
LineNo
Date_
Number_
Payctype
Txt
Qty
Rate_
Amount
TimeStart
ByCode
ByLag
EndDate
ErrorTxt
Department
PayRun
TransType
RecID
FileID

PayWorkshName

Løbenummer
SidstRettet
WorkshName
InUse
UserId
RecID
FileID

65. Postnummer

LøbeNummer
SidstRettet
Postnr
Bynavn
Gadenavn
FraNummer
TilNummer
LigeUlige
RecID
FileID

66. ProArt

Løbenummer
SidstRettet
Art
Tekst
Drift
Status
Procent
Tillæg
Fakturaart
Modkonto
C4Art
AcontoArt
RecID
FileID

67. ProKald

Løbenummer
SidstRettet
Type
Kode
Handling
ProcNum
ProcParm
RecID
FileID

68. ProKode

Løbenummer
SidstRettet
Type
Kode
Navn
Int1
Int2
Int3
Int4
NejJa1
RecID
FileID

69. ProSpec

Løbenummer
SidstRettet
Type
Kode
Spec
Tekst
RecID
FileID

ProDriftsFørt

Løbenummer
SidstRettet
RefRecId
ProjektNummer
Transaktion
Dato
BeløbVAL
BeløbDKK
DriftsKonto
StatusKonto
Antal
RecID
FileID

ProGruppe

Løbenummer
SidstRettet
Gruppe
Gruppenavn
Drift
Status
RecID
FileID

ProKart

Løbenummer
SidstRettet
Nummer
Søgenavn
Oprettet
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Prisgruppe
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Spærret
Sælger
Moms
Gironummer
Momsnummer
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Beholdning
Leveres
Billede
Lås
Momsberegnes
Momsberegnet
AfgiftFM
GebyrFM
Afrunding
Liniemoms
Momsbeløb
AfgiftEM
FaktureretSTD
Fakturatotal
Rabat
Afdeling
Levering
Varebeløb
GebyrEM
Transaktion
Overnummer
Pris
FaktureretVAL
Omkostninger
Driftsført
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Startdato
Listekode
SLETStatistik
Linierabat
Momsgrundlag
AcontoFaktureretSTD
AcontoFaktureretVAL
HandelsKode
TransKode
Email
LevEmail
FastRabatAkkDKK
FastRabatAKKVal
RecID
FileID

ProKartArkiv

Løbenummer
SidstRettet
Nummer
Søgenavn
Oprettet
Konto
Navn
Adresse1
Adresse2
PostBy
Land
Attention
Telefon
Telefax
Fakturakonto
Gruppe
FastRabat
Prisgruppe
Rabatgruppe
Kasserabat
Valuta
Sprog
Betaling
Spærret
Sælger
Moms
Gironummer
Momsnummer
Levering1
Levering2
Levering3
Levering4
LevLand
DeresRef
VorRef
Ordre
Beholdning
Leveres
Billede
Lås
Momsberegnes
Momsberegnet
AfgiftFM
GebyrFM
Afrunding
Liniemoms
Momsbeløb
AfgiftEM
FaktureretSTD
Fakturatotal
Rabat
Afdeling
Levering
Varebeløb
GebyrEM
Transaktion
Overnummer
Pris
FaktureretVAL
Omkostninger
Driftsført
SLETTransport
Godkendt
LagerStatus
FakturaFølgeseddel
FakturaFølgeseddelDato
Startdato
Listekode
SLETStatistik
Linierabat
Momsgrundlag
AcontoFaktureretSTD
AcontoFaktureretVAL
HandelsKode
TransKode
SletVægt
SletRumfang
Email
LevEmail
FastRabatAkkVal
FastRabatAkkDKK
RecID
FileID

ProKladde

Løbenummer
SidstRettet
Navn
Nummer
Linienr
Varenummer
Tekst
Antal
Pris
Beløb
RESERVERET1
Lokation
Dato
DriftsKonto
Enhed
Art
Medarbejder
Bilag
Afdeling
Valuta
Prisgruppe
Modkonto
FejlTekst
Serienummer
RecID
FileID

70. ProKladdeNavn

Løbenummer
SidstRettet
Navn
Betegnelse
Ibrug
UserId
RESERVERET1
Minimum
Maximum
Bilag
RecID
FileID

ProLinie

Løbenummer
SidstRettet
Nummer
Linienr
Art
Varenummer
Lokation
Antal
Pris
Rabat
Beløb
Tekst
LeverNu
Oprettet
Levering
Bekræftet
Konto
Leveret
Faktureret
Enhed
Moms
Medarbejder
Transaktion
LeveretDKK
Serienummer
Fakturaart
SLETStatistik
SLETAfgift
LinieStatus
LagerStatus
Kopieret
SamleRefId
OrdreRef
Handelskode
AntalFysisk
FjernListeKode
Prisenhed
RecID
FileID

ProLinieArkiv

Løbenummer
SidstRettet
Nummer
Linienr
Art
Varenummer
Lokation
Antal
Pris
Rabat
Beløb
Tekst
LeverNu
Oprettet
Levering
Bekræftet
Konto
Leveret
Faktureret
Enhed
Moms
Medarbejder
Transaktion
LeveretDKK
Serienummer
Fakturaart
SLETStatistik
SLETAfgift
LinieStatus
LagerStatus
Kopieret
SamleRefId
OrdreRef
Handelskode
AntalFysisk
FjernListeKode
Prisenhed
RecID
FileID

ProLønartTyper

Løbenummer
SidstRettet
Projekt
Art
Medarbejder
Payctype
RecID
FileID

ProPost

Løbenummer
SidstRettet
Dato
Nummer
Art
Varenummer
Lokation
Antal
Kostbeløb
Medarbejder
Tekst
Enhed
Bilag
Afdeling
Budgetkode
Transaktion
BeløbVAL
BeløbSTD
Valuta
DriftsførtAntal
DriftsførtBeløbVAL
ProType
DriftsførtBeløbSTD
Driftskonto
Statuskonto
Oprindelse
Kopieret
Kurs
BenyttetArt
Modkonto
KursTri
OverførtLøn
RecID
FileID

ProStat

Løbenummer
SidstRettet
Nummer
Sumart
Linienr
Budget
Antal
Kostbudget
LøbendeProcent
LøbendeKost
Kostprocent
Kostbeløb
SalgBeløb
DriftsførtAntal
DriftsførtBeløb
RecID
FileID

ProSum

Løbenummer
SidstRettet
Sumart
Tekst
Linienr
RecID
FileID

ProSumArt

Løbenummer
SidstRettet
Sumart
Art
RecID
FileID

ProvisionKart

LøbeNummer
SidstRettet
Medarbejder
VareRelation
KontoRelation
Basis
Niveau
Sats
FraDato
TilDato
VareKode
KontoKode
SøgVidere
RESERVERET1
RecID
FileID

Rente

Løbenummer
SidstRettet
Rente
Tekst
Sats
Konto
Forfalden
Rentebeløb
Respit
Minimum
Gebyr
RecID
FileID

RESERVERET1

Løbenummer
SidstRettet
RecID
FileID

71. Specifikation

Løbenummer
SidstRettet
SpecFileId
SpecRecId
SpecType
LinieNr
Kode
Saldo01
Saldo02
Saldo03
RefId
Tekst1
Session_
Dato
NejJa1
Saldo04
RecID
FileID

Stilling

Løbenummer
SidstRettet
Stilling
Beskrivelse
RecID
FileID

SysCall

LøbeNummer
SidstRettet
CallerId
CalledId
LinieNummer
ExpLinie
Spec
DbOperation
CallerType
CallerName
CalledType
CalledName
RecID
FileID

SysElement

LøbeNummer
SidstRettet
Type
Name
AntalKaldTil
AntalKaldFra
ChangeDate
ChangeTime
ChangeUser
InUse
InUseBy
ExportName
Argument
Spec
Class
RecID
FileID

72. Systemkonti

Løbenummer
SidstRettet
Systemnavn
Systemkode
Linienr
Gruppe
Konto1
Konto2
Konto3
Konto4
Konto5
Konto6
RESERVERET1
Afgift
UserId
Tekst
NejJa1
RecID
FileID

Tekster

LøbeNummer
SidstRettet
TekstId
SprogKode
Tekst1
Tekst2
Tekst3
TekstFileId
RecID
FileID

TmpBetaling

LøbeNummer
SidstRettet
Session_
Id
Navn
Adresse1
Adresse2
Adresse3
Dato
Beløb
RecID
FileID

TmpDatoSum

Løbenummer
SidstRettet
Session_
Dato
Sum
Afdeling
RecID
FileID

TmpFrmBruger

Løbenummer
SidstRettet
Session_
Type
KalderUtilType
KalderUtilNavn
Blok
ElementNavn
Nummer
PromptTekst
Hjælpetekst
VisNode
RefRecId
Niveau
Udfoldet
VisFeltNode
FeltRefRecId
DBDKartotek
UtilType_Cur
UtilNavn_Cur
Sti
RecID
FileID

TmpFrmVirtuel

LøbeNummer
SidstRettet
Session_
File_
Record
Nummer
Tekst1
Int1
Real1
Dato1
Tekst2
Tekst3
Tekst4
HelpTxt
RecID
FileID

TmpKontoSum

Løbenummer
SidstRettet
Session_
Konto
Saldo01
Saldo02
Saldo03
Saldo04
Saldo05
Saldo06
Saldo07
Saldo08
Saldo09
Saldo10
Saldo11
Saldo12
Saldo13
Saldo14
Budgetkode
Dato
Afdeling
Valuta
Moms
Tekst
RecID
FileID

TmpPayCalculate

Løbenummer
SidstRettet
Session_
Employee
Type
Number_
Qty
Rate_
Amount
Date_
Txt
Department
Scanning
Percent
LineId
AccountNumber
SetoffAccount
RecID
FileID

TmpPayDA

Løbenummer
SidstRettet
DS
DA
IndividualType
Employee
Contents
Units
Amount
Effective
FromDate
ToDate
RecID
FileID

TmpPaySum

Løbenummer
SidstRettet
Session_
Txt1
Txt2
Txt3
Txt4
Txt5
Balance01
Balance02
Balance03
Balance04
Balance05
Balance06
Balance07
Balance08
Balance09
Balance10
Balance11
Balance12
Balance13
Balance14
RecID
FileID

TmpSum

Løbenummer
SidstRettet
Session_
Key
Saldo01
Saldo02
Saldo03
Saldo04
Tekst1
Int1
Int2
Int3
Dato1
Int4
RecID
FileID

TmpVareNiveau

Løbenummer
SidstRettet
Session_
VareNummer
Niveau
RecID
FileID

73. TrasportKode

Løbenummer
SidstRettet
TransKode
Navn
TvungenHavn
DSKode
RecID
FileID

74. UserInfo

Løbenummer
SidstRettet
Type
UserId
Int1
Int2
Int3
Int4
Int5
Int6
Int7
Int8
Int9
Dato1
Dato2
Dato3
Tekst1
Tekst2
Tekst3
Tekst4
Tekst5
Tekst6
Tekst7
Tekst8
Tekst9
Tekst10
Tekst50
Real1
NejJa1
NejJa2
NejJa3
NejJa4
NejJa5
NejJa6
NejJa7
NejJa8
NejJa9
Tekst51
Int10
Int11
RecID
FileID

75. Valuta

Løbenummer
SidstRettet
Valuta
Tekst
KontoVind
Afrund1
Afrund10
Afrund100
Afrund1000
Afrund1000Plus
KontoTab
Prefix
Postfix
EMU
RecID
FileID

76. ValutaKurs

Løbenummer
SidstRettet
Valuta
Kurs
FraDato
Kommentar
Triangulering
RecID
FileID

Appendix B: Table DebKart Sharable Attributes

The following tables describe each attribute and what tables are sharing this attribute. The order of the following tables follows the order of the attributes in the DebCat table within C5 database.

Key:

· If the DebKart attribute is a parent value, it is marked in bold.
· The attributes in the related tables are marked in grey.

	DebKart Table

Attribute Name
	Sharing Tables

	Lås (0)

?
	FinKart (Lås)
FinPost (Lås)

KreKart (Lås)
LagKart (Lås)
OrdKart (Lås)
OrdKartArkiv (Lås)

	DebKart Table

Attribute Name
	Sharing Tables

	Konto

	DebJournal (konto) (Fakturakonto)
DebKontakt (konto)
DebPost (konto)
DebPostUdlign (konto)
DebStat (konto)
LagPost (konto)
OrdKart (konto) (Fakturakonto)
OrdKartArkiv (konto) (Fakturakonto)

	DebKart Table

Attribute Name
	Sharing Tables

	Navn

	OrdKart (Navn)
OrdKartArkiv (Navn)

	DebKart Table

Attribute Name
	Sharing Tables

	Adresse1

	OrdKart (Adresse1)

OrdKartArkiv (Adresse1)

	DebKart Table

Attribute Name
	Sharing Tables

	Adresse2

	OrdKart (Adresse2)

OrdKartArkiv (Adresse2)

	DebKart Table

Attribute Name
	Sharing Tables

	PostBy

	OrdKart (PostBy)
OrdKartArkiv (PostBy)

	DebKart Table

Attribute Name
	Sharing Tables

	Land

	Land (Land)

	DebKart Table

Attribute Name
	Sharing Tables

	Attention

	OrdKart (Attention)
OrdKartArkiv (Attention)

	DebKart Table

Attribute Name
	Sharing Tables

	Telefon

	DebKontakt (Telefon)
OrdKart (Telefon)
OrdKartArkiv (Telefon)

	DebKart Table

Attribute Name
	Sharing Tables

	Telefax

	DebKontakt (Telefax)
OrdKart (Telefax)
OrdKartArkiv (Telefax)

	DebKart Table

Attribute Name
	Sharing Tables

	Gruppe

	DebGruppe (Gruppe)

	DebKart Table

Attribute Name
	Sharing Tables

	FastRabat (0)

?
	OrdKart (FastRabat)
OrdKartArkiv (FastRabat)

	DebKart Table

Attribute Name
	Sharing Tables

	Godkendt

	DebPost (Godkendt)
OrdKart (Godkendt)
OrdKartArkiv (Godkendt)

	DebKart Table

Attribute Name
	Sharing Tables

	Prisgruppe

	OrdKart (Prisgruppe)
OrdKartArkiv (Prisgruppe)

	DebKart Table

Attribute Name
	Sharing Tables

	Rabatgruppe

	OrdKart (Rabatgruppe)
OrdKartArkiv (Rabatgruppe)

	DebKart Table

Attribute Name
	Sharing Tables

	Kasserabat

	OrdKart (Kasserabat)
OrdKartArkiv (Kasserabat)

	DebKart Table

Attribute Name
	Sharing Tables

	Billede
(null)

?
	OrdKart (Billede)
OrdKartArkiv (Billede)

	DebKart Table

Attribute Name
	Sharing Tables

	Valuta

	DebJournal

DebPost

FinPost

LagPost

OrdKart

OrdKartArkiv

	DebKart Table

Attribute Name
	Sharing Tables

	Sprog (0)

?
	OrdKart (Sprog)
OrdKartArkiv (Sprog)

	DebKart Table

Attribute Name
	Sharing Tables

	Betaling

	Betaling (betalig)

	DebKart Table

Attribute Name
	Sharing Tables

	Levering

	Levering(Levering)

	DebKart Table

Attribute Name
	Sharing Tables

	Spærret (0)

?

	OrdKart (Spærret)
OrdKartArkiv (Spærret)

	DebKart Table

Attribute Name
	Sharing Tables

	Sælger

	DebJournal (Sælger)
OrdKart (Sælger)
OrdKartArkiv (Sælger)

	DebKart Table

Attribute Name
	Sharing Tables

	Moms
	Moms(Moms)

	DebKart Table

Attribute Name
	Sharing Tables

	SLETStatistik (0)

?
	OrdKart (SLETStatistik)
OrdKartArkiv (SLETStatistik)

	DebKart Table

Attribute Name
	Sharing Tables

	Gironummer (0)

?
	OrdKart (Gironummer)
OrdKartArkiv (Gironummer)

	DebKart Table

Attribute Name
	Sharing Tables

	Momsnummer

	OrdKart (Momsnummer)
OrdKartArkiv (Momsnummer)

	DebKart Table

Attribute Name
	Sharing Tables

	Rente (0)

?
	DebStat (Rente)

	DebKart Table

Attribute Name
	Sharing Tables

	Afdeling(null)

	DebJournal (Afdeling)
DebPost (Afdeling)
FinPost (Afdeling)

LagPost (Afdeling)
OrdKart (Afdeling)
OrdKartArkiv (Afdeling)

	DebKart Table

Attribute Name
	Sharing Tables

	Rykkerkode (0)
?
	DebPost (Rykkerkode)

	DebKart Table

Attribute Name
	Sharing Tables

	Beholdning(0)

?
	OrdKart (Beholdning)
OrdKartArkiv (Beholdning)

	DebKart Table

Attribute Name
	Sharing Tables

	EDIadresse(null)

?
	KreKart (EDIadresse)

	DebKart Table

Attribute Name
	Sharing Tables

	SaldoDKK

?
	DebJournal (SaldoDKK)
(In many cases has the same value as Saldo and Slado30 in DebKart table)

	DebKart Table

Attribute Name
	Sharing Tables

	Søgenavn

	KreKart (Søgenavn) (has the same value as navn in DebKart table but in Capetal laters)
OrdKart (Søgenavn) (has the same value as navn in DebKart table but in Capetal laters)
OrdKartArkiv (Søgenavn) (has the same value as navn in DebKart table but in Capetal laters)

	DebKart Table

Attribute Name
	Sharing Tables

	SLETTransport (0)

?
	Intrastat (SLETTransport)
OrdKart (SLETTransport)
OrdKartArkiv (SLETTransport)

	DebKart Table

Attribute Name
	Sharing Tables

	Kontant (0)

?
	OrdKart (Kontant)
OrdKartArkiv (Kontant)

	DebKart Table

Attribute Name
	Sharing Tables

	HandelsKode

	Intrastat (HandelsKode)
KreKart (HandelsKode)
OrdKart (HandelsKode)
OrdKartArkiv (HandelsKode)
OrdLinieArkiv (HandelsKode)

	DebKart Table

Attribute Name
	Sharing Tables

	TransKode(null)

?
	Intrastat (TransKode)
KreKart (TransKode)

OrdKart (TransKode)
OrdKartArkiv (TransKode)

	DebKart Table

Attribute Name
	Sharing Tables

	Email

	DebKontakt (Email)
OrdKart (Email)
OrdKartArkiv (Email)

	DebKart Table

Attribute Name
	Sharing Tables

	Mobil

	DebKontakt (Mobil)

APPENDIX Q: Product Pre-release Description

“Keycard.dk”

Product Pre-release Description

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	01/Nov/04
	1.0
	Description for pre-release of software product.
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Product Features

3. Product Instabilities

4. Functionality for future release

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides pre-release description of the KIS system for the project “Keycard.dk”. This introduction includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1 Purpose

This document is produced to help the user understanding the major features of the pre-release software product according to the output of the system integration test done during the transition phase of the project Keycard.dk.

1.2 Scope

This Product Pre-release Description is associated with the Transition phase of the project “Keycard.dk”.

1.3 Definitions, Acronyms and Abbreviations

None

1.4 References

Prototype Test 2.0

1.5 Overview

The Product Pre-release Description is considering the following aspects:

Product Features. The product features describes the major functionality of the system that has been implemented.

Product Instabilities. The product Instabilities describe the major functionality of the system that has been incompletely developed.

Functionality for future release. The functionality for future release describes the potential further development of the software product
2. Product Features

	Feature
	Feature description

	1. Accessing the KIS Shop
	The KIS Shop has to be accessed by typing the following address in the Internet browser: “www.keycard.dk”

	2. Creating on-line Order
	The KIS shop represents item categories and items ready for purchasing. Order creation is done by adding items to the shopping cart. The purchase action is finalized when the shopping cart is submitted and the customer personal information is filled in and confirmed.

	3. Validating inserted information
	When the customer inserts personal information, the system is validating it.

	4. Editing shopping cart
	The shopping cart can be updated only before the final confirmation from the customer.

	5. Admin authorization
	The KIS authorizes the Administrator of the system

	6. Registering user with administrator role
	The system supports registration for new administrators.

	7. Proceeding the order
	The KIS generates import files for the C5 and PcPack when clicking proceed on the order.

	8. Importing the data to the Pc Pack
	The data from file is imported automatically to PcPack database (if the PcPack application is running)

	9. Importing the data to C5
	The C5 application is launched. The generated file is imported manually. The producing of the invoice also has to be invoked manually.

3. Product Instabilities

	Instabilities
	Reasoning and sources

	1. Data

 incompatibility
	The system is incompatible in character coding format:

1. C5 supports ANSI and ASCII.

2. KIS Shop supports UNICODE-8.

3. Pc Pack supports ASCII

The system does not support item prices in value float format (10.35). Such price will be registered as number until comma (10) in the comma-separated file.

	2. KIS database integrity with C5 database
	The data in KIS database is not being validated according to the data in C5 database.

4. Features for next release

	Feature
	Reasoning and sources

	1. Sending confirmation email/SMS to the customer
	After customer confirms the order, the system sends an email/SMS proving that the order is registered in KIS database.

	2. After order is proceeded, an e-mail/SMS is sent to the customer
	After the Administrator proceeds the order, the KIS sends e-mail/SMS to the customer consisting of a “track and trace” number to track the package on the internet.

	3. Data compatibility considerations
	The system has to support registering price in double format.

	4. Statistical Functions
	Measuring the rates of the sales during a specific period

	5. KIS shop graphic layout
	KIS shop will be improved to follow Keycard’s web shop existing layout.

	6. KIS shop global environment
	The KIS shop has to support global environment considering:

1. language

2. law

3 .Price (currency)

4. shipment aspects:

 4.1. transport companies

 4.2. transport fees

 4.3. approximate delivery duration

	7. Backup
	A backup copy of:

1. Pc Pack

2. C5

3. KIS database

Is made every half an hour has to be stored in different location.

	8. credit card payment implementation
	The customer will be able to pay by credit cards.

	9. Reading data from C5 for supporting synchronization integrity
	The KIS shop database has to be synchronized with C5 database. For that reason, the system will support data reading from C5 and importing to KIS database to ensure the integrity.

	10. improving input validation control
	The improvement of input validation control will cover checking for acceptable address, post number, city.

APPENDIX R: Risk list

“Keycard.dk”

Risk List

Version 1.2

Revision History

	Date
	Version
	Description
	author

	27/Aug/04
	1.0
	Initial Risk list, inception phase (1 iteration)

	

	 07/Sep/04
	1.1
	The company’s low level attention risk involved

The bad communication risk involved

	

	11/Sep/04
	1.2
	After interview with a company, more technological risks involved

	

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Risk list

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The risk list represents the available risks, their probability and level of impact and mitigation. This document includes Purpose, Scope, Definitions, acronyms and abbreviations, References and risk list.

1.1. Purpose

The purpose of this document is to enumerate the risks, their possibility and priority, also their mitigation strategy.

1.2. Scope

As RUP is indicated as risk-driven process, the risk list is refined during all the phases of the process.

1.3. Definitions, Acronyms and Abbreviations

 System (requirements) risks. The risks, which are related to wrong understanding of the system requirements – this leads to developing the system, which is not fulfilling the requirements.

System (technological) risks. These risks are related to the choices of technological components - such as programming platforms, languages, environments. Also these risks affects the Company’s work.

Development process risks. These are the risks, which rise during the workflow of the project group. they are related to the working practices, group members’ motivation and skills. Most of them are identified at the start of the project and affect the duration of the project.

Company. The sales company “Keycard”.

Pc_Pack: “PC Pack” is a system, which handles the shipping procedure for the Company – it generates and prints out a digital package label, used for addressee indication. It is one of “Post Danmark” applications, which is used by many enterprises for delivering their products to the customers.

Package label. Digital package labe, used for addressee indication.
C5: Application, responsible for completing the tasks, related to accounting, financing, payroll, purchasing and other, performed in the Company.

Invoice. The invoice is generated and printed out by C5. The invoice presents necessary information about the payment.

Web shop. An on-line application, which supports Company’s on-line shopping service.

Impact Order. A numeric ranking of the risk priority, depending on the impact for the project.

Likelihood. A numeric ranking of the probability of the risk manifesting.

Exposure. The numerical product of the risk Impact Order and Likehood. This is the primary measure of ranking the risks. The most attention should be given to those risks, which have the highest Exposure.

1.4. References

· Use-case model

· Supplementary specification

· Business case

1.5. Overview

Risk list. Risk list provides the risks, with given information about risk description and impact, risk Category, likelihood, impact order, Exposure and mitigation strategy.

2. Risk List

Key:

	value
	rank

	Extremely high
	9

	Very High
	8

	High
	7

	Above medium
	6

	Medium
	5

	Below medium
	4

	Low
	3

	Very Low
	2

	Almost impossible
	1

	Risk description and impact
	Category
	Likelihood
	Impact
 order
	Exposure
	Mitigation strategy

	Loss of enthusiasm and motivation. It would cause delays, conflicts and stress
	Development Process
	6
	9
	54
	Job rotation.

team building

	Illness. This would cause delays, difficulties in work sharing and loss of motivation.
	Development Process
	5
	8
	40
	Re-assign tasks to other team members.

	Project fall behind schedule. The risk would cause a poor product and stress.
	Development Process
	6
	9
	54
	Add more working time on the weekends, evenings. Take a look to the planning strategies, project management - More individual work and focus on most important activities.

	Project uncertainties. Depending on the skills and knowledge of group members, this risk would cause setbacks, stress and poor product.
	Development Process
	8
	9
	72
	Consult with advisors. Perform baselines. Consult previous projects.

	All backup media loss. The risk would cause loss of entire project, also setbacks and loss of motivation.
	Development Process
	2
	9
	18
	To prevent from the risk, the backup procedures should be followed strictly. If an Gather all paper documentation, Re-establish smaller project.

	Company cops-out. The risk would cause delays, set-backs, loss of motivation.
	Development Process
	8
	8
	64
	To prevent this risk, we are going to be stricter with the actions being performed by the company – such as contract signing, requirements specification approving.

	Bad communication. The risk appears in the daily workflow and causes delays, overwork and misunderstandings
	Development Process
	9
	9
	81
	To avoid the risk, more of work sharing must be performed in case of better understanding each other’s needs and capabilities in the project team.

	The Pc Pack computer is down. Would cause incomplete and not-executable orders in the company

	System (technological)
	3
	8
	24
	The possibility to use manual work on completing the orders

	The C5 computer is down. The risk would cause also incomplete and unexecuted orders.
	System (technological)
	3
	8
	24
	The possibility of manual registration.

	The web server is down. The risk would cause loosing of customer and orders
	System (technological)
	3
	9
	27
	Check the server and restart it

	The system functionality is not understood clearly. This risk would cause delays of the project and product with lower functionality
	System (requirements)
	3
	7
	21
	Refine the functional requirements, avoiding the less important ones

	The DBMS is down or works improperly. The risk would cause data corruption or delays in the Company’s day work
	System (technological)
	3
	9
	27
	Restart the DBMS. Cover back-up copies and upload to the DBMS.

	The main “Keycard.dk” page is loaded slowly. This risk would cause not satisfied customers
	System (technological/

requirements)
	5
	6
	30
	Avoid complicated graphical components in the web-shop design

	The system handles orders slowly because of large amount customers
	System (technological/

requirements)
	8
	8
	64
	The module responsible of handling the orders and synchronizing the system must be redeveloped and optimized.

	The authorization information for the Administrator is lost. The risk would cause impossibility to access the system for managing the orders
	System (requirements)
	5
	9
	45
	Producing the authorization for System administrator, which can fix the problem. Reinstall the system.

	The web-shop is inflexible in case of including/removing new product
	System (requirements)
	4
	9
	36
	The web-shop module is redeveloped.

	The printer is not working
	System (technological)
	4
	6
	24
	Another printer must be connected

	The data transferred to the C5 is not proper. The risk would cause the problems in C5 performance. This would cause delays and improper invoices.
	System (requirements)
	7
	9
	63
	The manual data inserting must be performed.

	The data transferred to the Pc Pack is not proper. This would cause problems of delivery or Pc Pack delays and improper digital package labels.
	System (requirements)
	7
	9
	63
	The manual data inserting must be performed.

	The system does not send a confirmation e-mail message about executed order to the customer. This risk would cause the Customer uncertainty and delays.
	System (requirements/

technological)
	7
	8
	56
	The manual e-mail messaging could be used. The module of system must be redeveloped to fix the bug.

	The network is down. The risk would cause total delay in the Company’s work
	System (technological)
	2
	9
	18
	The network administrator must be called to fix the problems

	The customer service operator (administrator) is not able to work
	System (requirements)
	2
	9
	18
	The administrator authority must be granted to some other reliable replaceable employee.

APPENDIX T: Testing Procedure

Revision History

	Date
	Version
	Description
	Author

	27/sep/04
	1.0
	Testing procedure initialization
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2. Elements of testing

3. Performing the test

4. Testing procedure

5. Testing functions

6. Testing functionality and stability

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in th period of August 25th and November 3rd. The document provides Testing procedure for the product of the project “Keycard.dk”. The document includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.
1.1 Purpose

The purpose of this document is to the testing procedure for the product of the project “Keycard.dk”

1.2 Scope

The testing procedure is produced during the Elaboration phase and is associated with Construction and Transition phases of the project “Keycard.dk”

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

· general Functionality and stability Test procedure (http://www.satisfice.com)
1.5 Overview

The Testing procedure consists of the following components:

Elements of testing. The section presents, what are the elements of the testing procedure, used in the duration of the project “Keycard.dk”

Performing the test. The section provides the order of steps to perform the procedure.

Testing procedure. The actual testing procedure.

Testing functions. The description of available function categories for testing

Testing functionality and stability. The table, indicating how the functionality and stability should be tested.

2. Elements of testing

· Product Exploration. Discover and record the purposes and functions of the product, types of data processed, and areas of potential instability.

· Test Design. Determine strategies of operating, observing, and evaluating the product.

· Test Execution. Operate the product, observe its behavior, and use that information to form hypotheses about how the product works.

· Reviewable Results. It is finished once it is produced deliverables that meet the specified requirements. It’s especially important for the test results to be reviewable and defensible for certification.
3. Performing the test

· Test all the primary functions that can reasonably be tested in the time available.

· Test a sample of interesting contributing functions.

· Test selected areas of potential instability.
4. Procedure

	task
	outcome
	It is done, when:

	Identify the purpose of the product
	Purpose statement

[Issues/questions]
	The purpose statement is based on explicit or implicit claims. All aspects of the product’s purpose that are important to a normal user are identified. The purpose statement is fundamental (if it couldn’t be fulfilled, the product wouldn’t be fit for use).

	Identify functions
	Function outline

[Issues/questions]
	Identify primary and contribution functions. Categorize them.

	Identify areas of possible instability
	List of potential instabilities and challenging data

[Issues/questions]

	Potential instability is identified. The reasoning and sources are stated.

	Test each function and record results
	Product failures

Product notes

[Issues/questions]
	List of product failures and detailed product notes is built.

5. Functions
	definition
	Notes

	Primary function

Any function so important that, in the estimation of a normal user, its inoperability or impairment would render the product unfit for its purpose.

	A function is primary if it can be associate with the purpose of the product and it is essential to that purpose.
Primary functions define the product.

Groups of functions, taken together, may constitute a primary function, too.

	Contributing Function

Any function that contributes to the utility of the product, but is not a primary function.

	Even though contributing functions are not primary, their inoperability may be important.

6. Testing functionality and stability

	Definition
	Pass Criteria
	Fail Criteria

	Functionality

The ability of the product to function
	1. Each primary function tested is observed to operate in a manner apparently consistent with its purpose, regardless of the correctness of its output

	At least one primary function appears incapable of operating in manner consistent with purpose

	
	2. Any incorrect behavior observer in the product does not seriously impact for normal use

	The product is observer work incorrectly in a manner that seriously impairs for a normal use

	Stability

The ability of the product to continue to function, over time and over its full range of use, without failing or causing failure.

	3. The product is not observed to hang, crash or loose data

	The product is not observed to hang, crash or loose data

	
	4. No primary function is observed to become inoperable or obstructed in the course of testing
	No primary function is observed to become inoperable or obstructed in the course of testing

APPENDIX S: Prototype test 1.0

“Keycard.dk”

Prototype test

Version 1.0
Revision History

	Date
	Version
	Description
	Author

	15/sep/04
	1.0
	Prototype test 1.0
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the prototype for the project “Keycard.dk”. This prototype test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the prototype.

1.2. Scope

This prototype test is associated with the Elaboration phase of the project “Keycard.dk”.

1.3. Definitions, Acronyms and Abbreviations

none

1.4. References

Testing procedure

1.5. Overview

The prototype test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the prototype is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.
2. Purpose of the product

The purpose of the prototype is to give a view of the technical solution for system components synchronization.
3. Function list

	function
	category
	Function description

	Proceeding Order
	Primary

	The order is simulated and the prototype must proceed the order with writing the necessary data to Pc Pack and C5

	Generating a data file for Pc Pack

	Primary
	The data file must be generated according to the format of the file, described by Pc Pack documentation

	Generating a data file for C5

	Primary
	The data file must be generated according to the format of the file, described by C5 documentation

	registering the data file in Pc Pack

	Primary
	Pc Pack precede the comma-separated file to Pc Pack database.

	registering the data file in C5

	Primary
	PcPack precede the comma-separated file to C5 database.

4. Areas of Potential Instability

	Areas of instability
	Reasoning and sources

	The file is not generated

	Run-time errors are raised.

	The Pc Pack input directory is not accessed

	The security of the Microsoft Server 2003 prevents the application from accessing files or directories from web application

	The C5 input directory is not accessed

	The security of the Microsoft Server 2003 prevents the application from accessing files or directories from web application

	The generated file is not recognized by Pc Pack

	The extension of the file is not right

	The generated file is not recognized by C5

	The extension of the file is not right

	The content of generated file is not compatible with the Pc Pack defined file format

	Errors in programming logics

	The content of generated file is not compatible with the C5 defined file format

	Errors in programming logics

5. Testing results

	Product failures
	Product notes

	1. Proceeding Order
	Failure because of dependency on other functions:

3. Registering the data file in Pc Pack

4. Registering the data file in C5

	2. Registering the data file in Pc Pack

	Failure because of denial access to the input folder

	3. Registering the data file in C5

	The File has not been recognized by C5

	Product passes
	Product notes

	Generating a data file for Pc Pack

	The file was generated

	Generating a data file for C5

	The file was generated

APPENDIX U: KIS Admin Test 1.0

“Keycard.dk”

Admin component Test

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	26/sep/04
	1.0
	Admin component Test 1.0
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.6 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the KIS Admin component test for the project “Keycard.dk”. This component test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the KIS Admin part of the system.

1.2. Scope

This test is associated with the Construction phase Iteration I of the project “Keycard.dk”.

1.3. Definitions, Acronyms and Abbreviations

none

1.4. References

Testing procedure

1.5. Overview

The Admin test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the Admin component test is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.

2. Purpose of the product

Admin component is responsible to support the system management functionality – the administrator must be able to proceed the selected order and retrieve printed package label by Pc Pack.

3. Function list

	function
	category
	Function description

	1. administrator authorization
	primary
	The administrator must be able to be authorized by the system

	2. accessing customer list
	primary
	The administrator must be able to access the customer list

	3. selecting the customer and accessing the order list
	primary
	The administrator must be able to select a particular customer and access the order list

	4. proceeding the order
	primary
	The administrator must be able to proceed the order with writing the order data to Pc Pack

4. Areas of Potential Instability

	Areas of instability
	Reasoning and sources

	1. Administrator is not authorized
	The administrator login or password is not correct. The access to the system database is denied.

	2. The customer list is not populated
	The access to the database is denied

	3. The order list is not populated
	The access to the database is denied

	4. The proceed function is not working
	The Pc Pack Writer component is not integrated properly

5. Testing results

	Product failures
	Product notes

	4. The order proceeding function is not working
	The failure is observed because the component is not integrated with Pc Pack Writer component

	Product passes
	Product notes

	1. administrator authorization
	The administrator management environment of the system is accessed

	2. accessing customer list
	The customer list with sample data is visible

	3. selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible

APPENDIX V: KIS PCPack Writer Test 1.0

“Keycard.dk”

PCPack Writer Test

Version 1.0

Revision History

	Date
	Version
	Description
	Author

	26/SepOct/04
	1.0
	Admin component Test 1.0
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.7 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

6. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the KIS PCPack Writer Component of the developed system for the project “Keycard.dk”. This component prototype test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.6. Purpose

The purpose of this document is to supply the results of testing the KIS PCPack Writer Component of the system.

1.7. Scope

This test is associated with the Construction phase Iteration I of the project “Keycard.dk”.

1.8. Definitions, Acronyms and Abbreviations

none

1.9. References

Testing procedure

1.10. Overview

The KIS PCPack Writer Component test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the KIS PCPack Writer Component test is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.

7. Purpose of the product

PCPack Writer component is responsible for supporting the system management functionality – the administrator must be able to proceed the selected order and retrieve printed package label by Pc Pack.

8. Function list

	function
	category
	Function description

	1. generate recognizable file for Pc Pack
	primary
	The component must generate recognizable file by Pc pack.

	2. locate the file in Pc Pack Import directory
	primary
	The Pc Pack Writer must locate the generated file in the import directory. When Pc Pack application is launched, the file is imported by automatic import service. The package label is generated and printed.

9. Areas of instability list

	Areas of instability
	Reasoning and sources

	the file name is not recognizable
	The file name is generated wrongly (program logics).

	The file is located in wrong directory
	The file path is determined wrongly

	3. The file content is not recognizable
	1. The component logics are not correct.

2. The Pc Pack documentation is not correct

10. Testing results

	Product passes
	Product notes

	1. generate recognizable file for Pc Pack
	The file is generated.

	2. locate the file in Pc Pack Import directory
	Pc pack application recognized the file and data was imported. The label code was generated. The testing environment does not support printing, so the label was not printed – instead, the “can’t access printer” message was showed by Pc Pack

	Product failures
	Product notes

	none
	No failures

APPENDIX W: KIS Admin Test 1.1

“Keycard.dk”

Admin component Test

Version 1.1

Revision History

	Date
	Version
	Description
	Author

	15/Oct/04
	1.1
	Admin component Test 1.1
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.8 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

 1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the KIS Admin component test version 1.1 (PcPack writer) for the project “Keycard.dk”. This component test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the KIS Admin component of the system, this is the second testing done.

1.2. Scope

This test is associated with the Construction phase Iteration II of the project “Keycard.dk”.

1.3. Definitions, Acronyms and Abbreviations

none

1.4. References

Testing procedure

1.5. Overview

The Admin test 1.1 is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the Admin component test 1.1 is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.

2. Purpose of the product

Admin component is responsible to support the system management functionality – the administrator must be able to proceed the selected order and retrieve printed package label by Pc Pack.

3. Functions list

	function
	category
	Function description

	1. proceeding the order (PcPack)
	primary
	The administrator must be able to proceed the order with writing the order data to Pc Pack

4. Areas of instability list

	Areas of instability
	Reasoning and sources

	4. The proceed function is not working
	The Pc Pack Writer component is not integrated properly

5. Testing results

	Product failures
	Product notes

	none

	none

	Product passes
	Product notes

	1. Order proceeding (PcPack)
	The order is proceeded with writing the order data to Pc Pack. The label is generated and Pc Pack called the printer.

	2. accessing customer list
	The customer list with sample data is visible

	3. selecting the customer and accessing the order list
	After selecting the customer, the order list with sample data is visible

APPENDIX X: KIS Admin Test 1.2

“Keycard.dk”

Admin component Test

Version 1.2

Revision History

	Date
	Version
	Description
	Author

	16/Oct/04
	1.2
	Admin component Test 1.2
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.9 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

11. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the KIS Admin component test version 1.2 (C5 writer) for the project “Keycard.dk”. This component test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.11. Purpose

The purpose of this document is to supply the results of testing the KIS Admin component of the system, this is the second testing done.

1.12. Scope

This test is associated with the Construction phase Iteration II of the project “Keycard.dk”.

1.13. Definitions, Acronyms and Abbreviations

none

1.14. References

Testing procedure

1.15. Overview

The Admin test 1.2 is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the Admin component test 1.2 is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.

12. Product Purpose

Admin component is responsible to support the system management functionality – the administrator must be able to proceed the selected order and retrieve printed invoice by C5.

13. Functions list

	function
	category
	Function description

	1. proceeding the order (C5)
	primary
	The administrator must be able to proceed the order with exporting data to C5 application

	2. generate file DebKart.kom
	primary
	The component has to be able to generate the DebKart.kom file filled with data

	2. generate file OrdKart.kom
	primary
	The component has to be able to generate the OrdKart.kom file filled with data

	3. generate file OrdLinie.kom
	primary
	The component has to be able to generate the OrdLinie.kom file filled with data

14. Areas of instability list

	Areas of instability
	Reasoning and sources

	1. The necessary data from web shop is not retrieved
	The SQL queries to the web shop database are improper (program logics)

the web shop server is down

	2. The file directories are not accessed
	1. The system security settings are too high

	3. The import files are not recognized by C5
	1. The file content format is not proper (program logics)

15. Testing results

	Product failures
	Product notes

	none

	none

	Product passes
	Product notes

	1. Proceeding the order (C5)
	The order is preceded with retrieving data from web shop database and writing the data to correspondent files. After the data was imported to C5, the printer was called in order to print out the invoice.

	2. generate file DebKart.kom
	The file was generated and filled with Customer data

	2. generate file OrdKart.kom
	The file was generated and filled with Order data

	3. generate file OrdLinie.kom
	The file was generated and filled with Order lines of the Order data

APPENDIX Y: C5 ODBC driver test 1.0

“Keycard.dk”

C5 ODBC driver test

Version 1.0
Revision History

	Date
	Version
	Description
	Author

	3/oct/04
	1.0
	C5 ODBC driver test in ASP.net platform (Microsoft visual studio.net)
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

15 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the C5 ODBC driver. This test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1 Purpose

The purpose of this document is to supply the results of testing the C5 ODBC driver on ASP.net technology using Microsoft Visual studio .net.

1.2 Scope

This C5 ODBC test is associated with the Construction phase iteration II of the project “Keycard.dk”

1.3 Definitions, Acronyms and Abbreviations

· C5. Microsoft Navision C5

1.4 References

Testing procedure

1.5 Overview

The C5 ODBC test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the C5 ODBC test is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.
2. Purpose of the product

C5 ODBC driver is responsible for maintaining ODBC for C5 database. The test is going to be performed using Visual Studio .NET tool in ASP.net environment.

3. Function list

	function
	category
	Function description

	1. registering data source for the driver
	primary
	The OS has to maintain data source registering for the driver capability.

	1. retrieving C5 data from ASP.net application
	primary
	The function is a composite function, the result of which is depending on the results of other listed functions.

	2. generating C5 ODBC driver adapter
	primary
	In case of using C5 ODBC driver, the driver adapter has to be generating.

	3. generating dataset for the adapter.
	primary
	When the adapter is generated, the dataset for the adapter has to be generated. For this function testing, the SQL query “select * from orders” is going to be used.

	4. populate dataset with data
	primary
	DataSet has to be populated with data

	5. Perform SELECT statement
	primary
	The driver has to support SELECT statement execution

	6. Perform UPDATE statement
	primary
	The driver has to support UPDATE statement execution

	7. Perform DELETE statement
	primary
	The driver has to support DELETE statement execution

	Perform INSERT statement
	primary
	The driver has to support INSERT statement execution

4. Areas of instability list

	Areas of instability
	Reasoning and sources

	1.The driver is not compatible with operating system

	The driver is implemented in 16-bit architecture. This fact may be reasoning as instability for testing the driver in 32-bit architecture.

	2. The driver is not compatible with ASP.net environment

	The driver may not be compatible with ASP.net environment, because the driver is built in the 16-bit architecture

	4. The adapter for the driver is generated improperly

	Because the driver might not be compatible with the ASP.net environment, the data adapter may not be generated properly.

5. Testing results

	Product failures
	Product notes

	1. retrieving C5 data from ASP.net application

	Fails because of the driver is not generated properly.

	4. populate dataset with data
	The dataset is not populated with data (only metadata (column names) is obtained)[2]

	5. Perform SELECT statement
	The statement is generated improperly[1]

	6. Perform UPDATE statement
	The statement is generated improperly[1]

	7. Perform DELETE statement
	The statement is generated improperly[1]

	Perform INSERT statement
	The statement is generated improperly[1]

	Product passes
	Product notes

	1. Order proceeding (PcPack)
	The order is proceeded with writing the order data to Pc Pack. The label is generated and Pc Pack called the printer.

[image: image62.png]=1BIx|
Fie £t yew Insert Fomat ook Table Window o x|
R] " commerceadmin - Microsoft Visual C# NET [run] -ODBC testaspn =]
" He ot Vew o uid Dsbug Dats Fomst Table Frames ook wndow el I'm
os0 plo o B E =R -, |
T = e D e
D)) B | s Jereones @t €] - L5 {7 | meeker conmeconsnn# %]
Adiress [2] htp ocahost]CommercohdninODBC_test aspx BN Lol =ll=]
(Solution ‘CommerceAdmin' (1 project)
Commerceadmin
@) References
data, retrieved from the C5 database: (table DebKart): Components.
rors
Lobenummer SidstRettet Gruppe Gruppenavn Omszetning Forbrug Shutrabat GebyrFM GebyrEM Sameke
UserCortrols
) assenblinfo.cs
copioht et
Ostasett s
Eloett.sspx
&) chbalasax
[
5 web.config
: | sl
[E10ore | [[tosaimanet Y
HML | 63 Solution Explo... | Bl Runing Doc... |
Autos & x [callstack 7%
Name value Tope =l |Name [Langi =
B
§ § g
ofels [Autos [Tl Local [fd Watch 1 | 1B cal Stack [T breskpoints | E1 Command Window |] Output, 5
Draw - [Ready Il Il 1~

Page & sec 1 &7 [mas s cas [[o o [DK

Figure 30
APPENDIX Z: C5 ODBC driver test 1.1

“Keycard.dk”

C5 ODBC driver test

Version 1.1
Revision History

	Date
	Version
	Description
	Author

	4/oct/04
	1.1
	C5 ODBC driver test in MS Windows environment (MS Excel)
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

6. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the C5 ODBC driver. This test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the C5 ODBC driver in the MS Windows environment, using Microsoft Excel.

1.2. Scope

This C5 ODBC test is associated with the Construction phase iteration II of the project “Keycard.dk”

1.3. Definitions, Acronyms and Abbreviations

· C5. Microsoft Navision C5

1.4. References

Testing procedure

1.5. Overview

The C5 ODBC test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the C5 ODBC test is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.
7. Purpose of the product

C5 ODBC driver is responsible for maintaining ODBC for C5 database. The test is going to be performed using Visual Studio .NET tool in ASP.net environment.

8. Function list

	function
	category
	Function description

	1. registering data source for the driver
	primary
	The OS has to maintain data source registering for the driver capability

	1. retrieving data to Microsoft excel
	primary
	The data has to be retrieved to Microsoft Excel from C5 database

	2. processing INSERT statement
	primary
	The insert statements have to be accepted by the driver and performed to the database

	3. processing DELETE statement.
	primary
	The delete statements have to be accepted by the driver and performed to the database

	4. processing UPDATE statement
	primary
	The update statements have to be accepted by the driver and performed to the database

9. Areas of instability list

	Areas of instability
	Reasoning and sources

	1.The driver is not compatible with operating system

	The driver is implemented in 16-bit architecture. This fact may be reasoning as instability for testing the driver in 32-bit architecture.

	2. The driver is not compatible with MS Excel

	The driver may not be compatible with MS Excel, because the driver is built in the 16-bit architecture

10. Testing results

	Product failures
	Product notes

	none
	

	Product passes
	Product notes

	1. registering data source for the driver
	The driver is registered successfully.

	1. retrieving data to Microsoft excel
	The data is retrieved successfully

	2. processing INSERT statement
	The insert statement is processed successfully

	3. processing DELETE statement.
	The delete statement is processed successfully

APPENDIX A1: KIS Shop test 1.0

“Keycard.dk”

KIS Shop

Version 1.0
Revision History

	Date
	Version
	Description
	Author

	13/oct/04
	1.0
	KIS Shop component testing for initial functionality
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

5. Testing results

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the prototype for the project “Keycard.dk”. This KIS Shop test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the KIS Shop component.

1.2. Scope

This prototype test is associated with the Construction phase iteration III of the project “Keycard.dk”.

1.3. Definitions, Acronyms and Abbreviations

none

1.4. References

Testing procedure

1.5. Overview

The KIS Shop test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the KIS Shop component is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.
2. Purpose of the product

The test of KIS Shop component is produced in order to test the customer data insertion to the database.

3. Function list

	function
	category
	Function description

	1. Accessing the KIS shop
	primary
	The customer should be able to access the web shop through browser

	4. Inserting the customer data
	primary
	The customer should be able to insert the needed data through the input fields with possibility of validation check (in case of wrong input data)

	5. Confirming the inserted data
	primary
	The customer should be able to confirm the inserted data, before registering the data in the system

4. Areas of Potential Instability

	Areas of instability
	Reasoning and sources

	1. The browser cannot find the server
	The reasons could be connection error, server is down or time out. The user could refresh the browser, or try another time.

	2. The inserted data is not validated properly

	The user inserted wrong data, then validation event handler is activated and text message is displayed.

	3. The Confirmation is not correctly processed

	The reason could be access denied to write to the database or connection is not established.

5. Testing results

	Product failures
	Product notes

	none

	none

	Product passes
	Product notes

	1. Accessing web shop
	The web shop environment of the system is accessed

	4. Accessing the Customer registration page
	Input fields are visible for the customer, with validation check for customer entry data.

	5. Registering Customer in the system
	System registered customer in database. The data is visible by checking it in the MS SQL.

[image: image63.png]€] http:/flocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Flo Edt View Favortes Took Help

Qs -

[[B) @) Dsmcn Joraone: €0 (2

[e ——————

Communications
Deception
General
Munitions
Protection
Tools

Travel

Enter data

Full Name

Email

Contry

street HouseNo

PostNo city

PhoneNo

G

Figure 31
[image: image64.png]€] nttp:/llocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qeeck - BREKA) Search Favoritss 2] B

[T T —————

Communications Enter data
Deception

General Full Name
Per Jensen

Email
perensen@

Contry
Denmark

street HouseNo
Bakkesinget 6

PostNo city
40000 | Roskilde

PhoneNo
22334455

Figure 32
[image: image65.png]€] http:flocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Fie

Qs -

Edt vew

Favortes

Tools

ElE)

Help

) search

Favortes €9) | (3

[T —————

Communications
Deception
General
Munitions
Protection
Tools

Travel

Enter data

Full Name
Per Jensen

Email
perjensen@hotrmail com

Contry
Denmark

street
Bakkesinget

HouseNo

&3

PostNo
4000

city
Roskilde

PhoneNo
22334455

Figure 33
[image: image66.png]“%1 SQL Server Enterprise Manager

Fle Acion Vew Took Window Help

- @E sk XEB @ * N0 @B

“h Console RootWicrosoft SQL Servers\SQL Server Group\(local) (Windows NT)\atabases\Commerce\Tables

‘Console Root.
=) Mirosoft 50L Servers
e
=l (ocal) (windows NT)
= (1 Databases
5§ Commerce
2 Dizgrams
Tables
6 iews
Stored Procecirc
Users
Roles
Rules
=] pefauts

g, User Defined Dat
7, User Defined Fur

Tables 27 Items

T [Cam—rm— =
e 0 User 15102008 17212
ScRC Custoners o = 110208 1721182
R ordepetais o User 15102004 1721153
Elcvrc_ordars o User 15102004 1721183
Elcrc products o User 15102004 1721183
S o User 15102004 1721183
SR storsingcart o User 15102004 1721183
Sl aproperis o Seen 13102004 1702

sscoboms o Seen Ossz0oIEnI2
Sl avscomments o Seen oswsz0oIEni2

sysdepercs o Seen oswsz0oIEni2
" o Seen oswsz0oIEni2
[ysfies o ostom 06082000 01129112

Figure 34
[image: image67.png]“f1 Data in Table ‘CMRC_Customers' in ‘Commerce on ‘(local)’

BEX]

 CustomerID [Fulliame [Emailaddress [Password[Admins [150Count]Strest [Houseto [pastiio_[Cit [Phonetio |
e James Thomas _ Jit@sw.com CBOSSED <ML> <NUL> SNULL> <NULL> ULL> <NLLL>
N adnin adnin@sw.con 19-82:85 1 PUTTEPITES NI <NUL> ULL> <L
ES commerceadin commerceadmin@sw.com DB-B6-05 1 PUTTEPITES UL <NUL> <UL <L
e Bl Gates bilgates@sw.com CBOSSED <HL> <huLL> NI <NUL> SNUL> <L
st Miro Maramito miro@emalcom NUL> 0 Denma Roskidevej 1224 4000 Roskide 33445566
52 ami Gabrisl ___miro@emal.com <HULL> 0 Denma_dagchym 3455 2344
Ami Gabrisl amirghabriai@hotmai.com <MUL> 0 Dk, 108ty 2200 KobenhavnN 27217346

Figure 35
APPENDIX A2: KIS Shop test 1.1

“Keycard.dk”

KIS Shop

Version 1.1
Revision History

	Date
	Version
	Description
	Author

	25/oct/04
	1.0
	KIS Shop component testing for developed functionality
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5. Overview

2.
 Product purpose

3. Function list

4. Areas of potential instability

4. Testing results

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides testing results of the prototype for the project “Keycard.dk”. This KIS Shop test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the KIS Shop component of the system.

1.2. Scope

This prototype test is associated with the Construction phase iteration IV of the project “Keycard.dk”.

1.3. Definitions, Acronyms and Abbreviations

none

1.4. References

Testing procedure

1.5. Overview

The KIS Shop test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the KIS Shop component is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. This section provides the lists of product passes and product failures.
2. Purpose of the product

The test of KIS Shop component is produced in order to test the customer data insertion to the database.

3. Function list

	function
	category
	Function description

	1. Accessing the web shop
	primary
	The customer should be able to access the web shop through browser

	2. accessing Item list
	primary
	The Customer should be able to access the Item list with possibility of getting details of each Item separately in a new page

	3. selecting the Item/s and adding it to the Shopping cart
	primary
	The Customer should be able to select an item and add to the order (shopping cart)

	5. Confirming the order
	primary
	The customer should be able to confirm the order, before registering the data in the web shop database

4. Areas of Potential Instability

	Areas of instability
	Reasoning and sources

	1. The browser cannot find the server
	The reasons could be connection error, server is down or time out. The user could refresh the browser, or try another time.

	2. The inserted data is not validated properly

	The user inserted wrong data, then validation event handler is activated and text message is displayed.

	3. The Confirmation is not correctly processed

	The reason could be access denied to write to the database or connection is not established.

5. Testing results

	Product failures
	Product notes

	none

	none

	Product passes
	Product notes

	1. Accessing web shop
	The web shop environment of the system is accessed

	4. Accessing the Customer registration page
	Input fields are visible for the customer, with validation check for customer entry data.

	5. Registering Customer in the system
	System registered customer in database. The data is visible by checking it in the MS SQL.

[image: image68.png]€] http:/flocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Flo Edt View Favortes Took Help

Qs -

[[B) @) Dsmcn Joraone: €0 (2

[e ——————

Communications
Deception
General
Munitions
Protection
Tools

Travel

Enter data

Full Name

Email

Contry

street HouseNo

PostNo city

PhoneNo

G

Figure 36
[image: image69.png]€] nttp:/llocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qeeck - BREKA) Search Favoritss 2] B

[T T —————

Communications Enter data
Deception

General Full Name
Per Jensen

Email
perensen@

Contry
Denmark

street HouseNo
Bakkesinget 6

PostNo city
40000 | Roskilde

PhoneNo
22334455

Figure 37
[image: image70.png]€] http:flocalhost/Commerce/Register.aspx - Microsoft Internet Explorer

Fie

Qs -

Edt vew

Favortes

Tools

ElE)

Help

) search

Favortes €9) | (3

[T —————

Communications
Deception
General
Munitions
Protection
Tools

Travel

Enter data

Full Name
Per Jensen

Email
perjensen@hotrmail com

Contry
Denmark

street
Bakkesinget

HouseNo

&3

PostNo
4000

city
Roskilde

PhoneNo
22334455

Figure 38
[image: image71.png]“%1 SQL Server Enterprise Manager

Fle Acion Vew Took Window Help

- @E sk XEB @ * N0 @B

“h Console RootWicrosoft SQL Servers\SQL Server Group\(local) (Windows NT)\atabases\Commerce\Tables

‘Console Root.
=) Mirosoft 50L Servers
e
=l (ocal) (windows NT)
= (1 Databases
5§ Commerce
2 Dizgrams
Tables
6 iews
Stored Procecirc
Users
Roles
Rules
=] pefauts

g, User Defined Dat
7, User Defined Fur

Tables 27 Items

T [Cam—rm— =
e 0 User 15102008 17212
ScRC Custoners o = 110208 1721182
R ordepetais o User 15102004 1721153
Elcvrc_ordars o User 15102004 1721183
Elcrc products o User 15102004 1721183
S o User 15102004 1721183
SR storsingcart o User 15102004 1721183
Sl aproperis o Seen 13102004 1702

sscoboms o Seen Ossz0oIEnI2
Sl avscomments o Seen oswsz0oIEni2

sysdepercs o Seen oswsz0oIEni2
" o Seen oswsz0oIEni2
[ysfies o ostom 06082000 01129112

Figure 39
[image: image72.png]“f1 Data in Table ‘CMRC_Customers' in ‘Commerce on ‘(local)’

BEX]

 CustomerID [Fulliame [Emailaddress [Password[Admins [150Count]Strest [Houseto [pastiio_[Cit [Phonetio |
e James Thomas _ Jit@sw.com CBOSSED <ML> <NUL> SNULL> <NULL> ULL> <NLLL>
N adnin adnin@sw.con 19-82:85 1 PUTTEPITES NI <NUL> ULL> <L
ES commerceadin commerceadmin@sw.com DB-B6-05 1 PUTTEPITES UL <NUL> <UL <L
e Bl Gates bilgates@sw.com CBOSSED <HL> <huLL> NI <NUL> SNUL> <L
st Miro Maramito miro@emalcom NUL> 0 Denma Roskidevej 1224 4000 Roskide 33445566
52 ami Gabrisl ___miro@emal.com <HULL> 0 Denma_dagchym 3455 2344
Ami Gabrisl amirghabriai@hotmai.com <MUL> 0 Dk, 108ty 2200 KobenhavnN 27217346

Figure 40
APPENDIX A3: Prototype test 2.0

“Keycard.dk”

Prototype test

Version 1.0
Revision History

	Date
	Version
	Description
	Author

	28/sep/04
	2.0
	Prototype integrity test
	

	
	
	
	

Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

 Overview

2. Purpose of the product

3. Integration testing objectives

4. Evaluation criteria

5. Integration testing environment

5.1 Technical parameters

5.2 Preparing the testing environment

6. Function list

7. Areas of instability

8. Testing results

9. Integration testing objectives reached

10. Measurement results to Evaluation criteria

1. Introduction

This document corresponds to the project “Keycard.dk”, which going to be developed during the 5th semester in Roskilde Handelskole in the period of August 25th and November 3rd. The document provides integrity testing results of the prototype for the project “Keycard.dk”. This prototype test includes Purpose, Scope, Definitions, acronyms and abbreviations, References and overview of the document.

1.1. Purpose

The purpose of this document is to supply the results of testing the prototype.

1.2. Scope

This prototype test is associated with the Transition phase of the project “Keycard.dk”.

1.3 Definitions, Acronyms and Abbreviations

none

1.4 References

Testing procedure

1.5 Overview

The prototype integration test is considering the following aspects:

Product purpose. According to the general testing procedure, the product purpose has to be described in the beginning of testing. In this case, the purpose of the prototype is going to be defined.

Function list. The list of the functions, which are going to be tested.

Areas of potential instability. The section provides possible areas of instability, which are going to be tested and indicated in the test failures.

Testing results. Testing results section provides the lists of product passes and product failures.
2. Purpose of the product

The KIS prototype takes care of incoming order, made by a customer; it gives an ability to control further execution of a particular order, with keeping track of all necessary information for “Told og Skat” and printing necessary labels and invoices for deliverable products.

3. Integration testing Objectives

The objectives of system integration testing are:

· Reason failures concerning the delivery of integrated KIS system components.

· Reason failures concerning integration of the developed system with other applications (C5 and Pc Pack applications).

· Report these failures so that they can be fixed in the next product release.

· Minimize the number of areas of instability that will prevent the effectiveness of the next system release.

4. Evaluation Criteria

· All system components have been integrated.

· The tests completely accomplished and the actual test results match the expected test results.

· The system passes the subset of the functional system tests, whereby these tests should examine the major incorporations between the software components and the external server systems.

5. Integration testing environment

5.1. Technical parameters

The test is going to be performed on the local machine with such technical parameters:

· Intel Celeron(R) 2.4GHz

· 512MB RAM

· 40 GB HDD

The following software elements are installed on the machine, were test is going to be performed:

· Microsoft Server 2003 Standard edition

· MS SQL Server 2000 Developer edition

· Pc Pack

· Navision C5 3.0

· ASP.net framework v1.1

5.2. Preparing the testing environment

1. Installing KIS Admin.

2. Installing KIS Shop

3. Installing KIS database

4. Preparing the KIS Shop for simulating Keycard web shop.

6. Function List

	function
	category
	Function description

	1. Initiating KIS Shop session by accessing the KIS Shop main page
	primary
	The KIS Shop has to be accessed by typing the following address in the Internet browser:

“localhost\KISShop”

	2. Accessing the product categories

	primary
	The KIS Shop has to represent the products, available in the Keycard shop.

	3. Adding the product to the shopping cart

	primary
	The KIS Shop has to maintain possibility to add the product to the shopping cart

	4. Using shopping cart
	Secondary
	In the shopping cart page it must be possible to manage the cart

	5. Redirect from shopping cart to personal information page
	primary
	When the Customer finalizes selecting the product to the shopping cart, the KIS has to redirect the Customer to the personal information insertion page

	6. Inserting the Customer personal information
	primary
	When inserting personal data in wrong format the system must not precede them but must ask the customer to correct them.

	7. Finalizing the Shopping session
	primary
	When the Customer checks out, the KIS has to finalize his session and insert required data to the KIS database

	8. The customer leaves the shop before checking out
	
	When the customer leaves the shop whit a not empty cart the entry of the cart in the database must be removed.

	9. Admin authorization
	primary
	The KIS has to authorize the Administrator of the system

	10. Links and buttons
	
	Every links and buttons must be working in the Admin

	11. Proceeding the order
	Primary
	The KIS has to generate import files for the C5 and PcPack when clicking proceed on the order:

· FIMP<xxx>.INH (Pc Pack)

· DebKart.kom (C5 Debitor kartotek)

· OrdKart.kom (C5 Order kartotek)

· OrdLinie.Kom (C5 Order lines)

	12. Importing the data to the Pc Pack
	Primary
	The file has to be imported automatically and the printer for printing of the label has to be called.

	13. Importing the data to C5
	Primary
	The C5 application has to be launched. The generated files have to be imported manually. The producing of the invoice also has to be invoked manually and the printer has to be called. The invoice has to be presented on the screen.

	14. Handling of incorrect file in PcPack
	
	The incorrect file must be moved from the “IN” folder to the “FAILED” folder

7. Areas of instability

	Areas of instability
	Reasoning and sources

	1. The transferring of data to C5 throw files
	There is a risk that the file is deleted by a human error

	2. The format of the files
	There is a risk that even the smallest change in the file will give an error or even worse that it import wrong data

8. Test results

	Product failures
	Product notes

	8. The customer leaves the shop before checking out
	The customer leaves the shop after putting some items in the card, there are no other visitors in the shop, so the cart table should be empty, picture 10 show’s that it is not the case

	Product passes
	Product notes

	1. Initiating KIS Shop session by accessing the KIS Shop main page
	The KIS Shop is loaded as intended

See picture 1

	2. Accessing the product categories
	The products and categories is presented at intended

See picture 2

	3. Adding the product to the shopping cart
	When pressing “Add To Chart” (seen in picture 2) it proceed to shopping chart (see picture 3) as intended

	4. Manage the shopping chart
	 When checking the remove box or changing the Quantity an pressing “Update Your Chopping Cart”, the shopping cart is updated

See picture 3

	5. Redirect from shopping cart to personal information page
	When pressing “Final Check Out” (see picture 3) it proceed to the personal information page (see picture 4)

	6. Inserting the Customer personal information
	When giving no data the system inform the customer as showing in picture 5.

When giving wrong data the system inform the customer whit text as showing in picture 6

When giving correct data (see picture 7) the system redirect to the final check out page (see picture 8) after “Submit” is preset

	7. Finalizing the Shopping session
	After the final submit the inserted data are to be fined in the database as showing in picture 9

	9. Admin authorization
	The login page gives access to the Admin part if the administrator types in a correct e-mail and password see picture 11 and the admin from the database in picture 9.

When entering wrong data, the KIS gives a “Login Faild…” massage to the administrator (se picture 12)

	10. Links and buttons
	The following links and buttons are working as desired:

· Login/[Submit]

· Header/[Logout]

· Header/[Profile]

· Menu/[Home]

· Menu/[Category]

· Add

· Delete

· Edit

· Update

· Cancel

· Menu/[Products]

· Add New Product

· Browse

· Submit

· Edit/Update Products

· Delete

· Edit

· Browse

· Update

· Cancel

· Menu/[Customers]

· Delete

· Edit

· Update

· Cancel

· View Orders

· Delete

· Edit

· Update

· Cancel

· Proceed

· Menu/[Admins]

· Add

· Delete

· Select

· Edit

· Update

· Select

· Cancel

	11. Proceeding the order
	When administrator clicks “Proceed” (see picture 13) the Files is generated in the right folders as showed in picture 14

	12. Importing the data to the Pc Pack
	When clicking “proceed” (see picture 13) the file is generated and PcPack obtains the file and print out the packet label

	13. Importing the data to C5
	The DebKart file is successfully imported (se picture 16)

The OrdKart file is successfully imported (se picture 17)

The OrdLinie file is successfully imported (se picture 18)

The Order is to be fiend in C5 an are ready to be printed (se picture 19)

The invoice is printed out throw C5 application whit success (se “picture” 20)

	14. Handling of incorrect file in PcPack
	When PcPack find an incorrect file it moves it to the “FAILED” folder and gives is a .bad file extension. While doing this it generates a error massage in the “Systemlog”

See picture 15

9. Integration testing Objectives reached

The objectives of system integration testing were reached:

· Reason failures concerning the delivery of integrated KIS system components. The failures were reasoned. These failures mostly correspond to KIS areas of instability.
· Reason failures concerning integration of the developed system with other applications (C5 and Pc Pack applications). During the integration testing, no failures concerning integration with other applications (C5 and Pc Pack) were indicated.
· Report these failures so that they can be fixed in the next product release. The failures are documented for indicating pre-release instabilities and incompatibilities.
· Minimize the number of areas of instability that will prevent the effectiveness of the next system release. The number of areas of were indicated, however, they were not minimized.
10. Measurement results to Evaluation criteria

· All system components have been integrated. The system has passed most significant integrity test functions. So, the system components are integrated.
· The tests completely accomplished and the actual test results match the expected test results. The test was performed in case to test the system integrity – The KIS Admin, KIS Shop, KIS database were integrated with other systems – C5 and Pc Pack. Besides the testing failures, the testing results indicate, that the system integrity is maintained.
Picture 1

[image: image73.jpg]8 B 6| Do Frroes @

Welcome to the ASP.NET C:

Le-Um

ommerce Starter Kit

Picture 2

[image: image74.jpg]0= 0.0 86|~ 0|8 s o BN
S0 s

Picture 3

[image: image75.jpg]O O B @G S drows @2 B - LI

Shopping Cait

[PO Sa—

Picture 4

[image: image76.jpg]O O @6 Do o @55 B - LM

Enter data

© i

Picture 5

[image: image77.jpg]Q-

8 @ 6| Do Fores @

Enter data

Picture 6

[image: image78.jpg]Qe O b @6 e e @

<
Enter data

Picture 7

[image: image79.jpg]Qe Ol @ b e o @

Se-Um

Enter data

© i

Picture 8

[image: image80.jpg]Q-

(DB Pt @ 3% 0 LB

Review and Submit Your Order

© s

Picture 9

[image: image81.jpg]o

Picture 10

[image: image82.jpg]

Picture 11

[image: image83.jpg]LA UGE Commer 18718 KJLA@ 500 M copeett.itee s e,

Qw0 WEG Pt @35 0 -LM

nstrsetionsiii

Sigitn

JEp—

- W=

Picture 12

[image: image84.jpg]Q- O H @G Lo drreom @ @3- 5 =)

(I

nstrsetionsiii

Sigitn
P

JEp—

- W=

Picture 13

[image: image85.jpg]Q- O HEG Pt @3- 8

AdeNeT e Srdnren i Ao

Custamar Ordsrs

-Um

Picture 14

[image: image86.jpg]O - O - | Pome Brees -

Picture 15

[image: image87.jpg][

o))

Picture 16

[image: image88.jpg]

Picture 17

[image: image89.jpg](5% S DE Ko ARE AT e s

Picture 18

[image: image90.jpg][
o
o
Cea

Comton)

Picture 19

[image: image91.jpg]

APPENDIX A4: User Manual (How to import file to C5)

This part of our document can be used as a user manual for importing file to C5 application. In the following pages we will demonstrate the process of work (step by step) importing the text files to C5 application.

Text file with extension .kom as it is demanded by C5 application. This file is the Coma Separate file where we write the data from the Web Shop. The file in our case is called testKey.kom.

Then we start executing the C5 application

[image: image92.png]|5 DAT - Keycard.dk ApS Microsoft® Navision C5 3.0, JBN Consult ApS.
C5 Redger Vemrkigier Opsestning |1 1 Lo Vinduer Hiech

D

T BEX)

o

et

i

= .

Drde Microsoft’ Navision C5°

ke s

P Lo

e R
e

Generelt - -

Then we select Udviklingsmenu within the Værktøjer in the menu bar.

[image: image93.png]|5 DAT - Keycard.dk ApS Microsoft® Navision C5 3.0, JBN Consult ApS.
5 Rediger | Vemmbigier| Opsestning |1 1 Lo Vinduer Hiech)

Development tity Culvrr
Hert navnefolter Culrz
Kor en gent bindoptagelse CtrkO
e anee | =JOE
Finans || Udskrfter (Spool) culvy
et || Nelden CuleT
Telfariste cule
Kiedtor || postsystem cultp
Lager Lommeregner culs
= Kalender csk
ascitabel Clea
Indkab || piptipos Akt
Popkt || visbilede civg
eHondel || Trace o handinger Culs1r
Trace DB aksFiL
L Visincheld of aktuelpost Al
Goneroh || st prossentationsvauta ClakeW
Dokumenttyring cule

Then we should select Manipulation from the prompt up menu

[image: image94.png]‘Ics DAT - Keycard.dk ApS Microsoft® Navision C5 3.0, JBN Consult ApS
C5 Redger Vemmkigier Opsestning |1 1 Lo Vinduer Hieh)

2

Macro edit [B=x]
Macro ncszet
Waripuletion
ascitabel
Furktioner
Kartoteker osoft Navision C5°
Listbileder
HhlNavne 0
Fornfarver e O
Trigger BN Consult ApS
70201543
Kor List — aviston:
Seril number: D0D1SSSEEDTFMLG

In the Manipulation window, we

[image: image95.png]Manipulation

=gl

=

Kartotek DebKart
Handing lmport Jnsert

Katoteke! DebKartindsholder 25,932 poster.

Database DAT
Keycard.k ApS

Filype Comma

Window
Tegntabel

1
Astil

Al foer
Sletfater

Rappart

Type Nawn
DB Las
DB Kerto
DB Nam
DB Adessel
Udk

Uder
Check defion
Sk defriton
Lo _dfeion

Genveie ¥

iR

In the handling drop down menu we should select Import, Insert from the list

[image: image96.png]Z] Manipulation

BEX]

X

Genveie ¥

Handing Import Insert v Kepcard dk ApS Window 1
Tegntabel ASCI Slet felter
Kartoteket Det Export 132 poster.
Import Insert P Rapport
e |82 1l
—— Check defntion
08 loeleTe S defmion

then we should press on Udfør and select Nej, when the pop up window appears and asks whether we wish to save or not.

[image: image97.png]Brsker du at gemme karslen 7

Kaotek Detat Database DAT Fitype Comna Ao foler
Handing [mport Inset Keycerd dk ApS Window [1
‘ Tegntabel __ASCll Sletfeler
Kartotsket DebKar indeholder 25 932 pote. r—]
Tie [Nawn il
o s .
| DB Kemo Check definion
DB Nawn =3 2
D8 Adessel | - Skiv definiion
Udk Les_definion

Nei

Genvele »

And then we should select the empty text file which we created in the first step of the process. The file in our case is called testKey.kom and saved in folder called C5Keyc300

[image: image98.png]Import til Debitorkartotek:

x|

orrm

(Ebranche
(omografik
MyFRecent (dokstyr
Dosuments (= dakumentation
(20dbe
(Srapport
(2] Slorst ko
2] csminikom
[eeskevion]

(SR H

My Docurents

Type: KOM File
Date Modfied: 14-10-2004 17:35
Size: 227 bytes

®

My Computer

File name: [testKey kom [v]

4]

MyNetwork | Fiesofype: [“kom (kom) o)

When we press Open button then the flowing window will appear and then we just select Fortsæt then the file is imported to C5 application.

[image: image99.png]Skriver.: DebKart
CE\CSKeyo3BBNLostKey. kon

Filype Comma

Window
Tegntabel

1
Astil

Al foer
Sletfer

Rappart

Uder
Check defion
Sk defriton
Lo _defeton

Genveie ¥

i

APPENDIX A5: codes for Elaboration iteration

using System;

using System.IO;

namespace prototype2

{

/// <summary>

/// Summary description for PcPackWriter.

/// </summary>

public class PcPackWriter

{

Order order;

string fileName = "";

string filePath = "C:/test_folder/";

public PcPackWriter(Order order)

{

this.order = order;

}

private void generateFilename()

{

System.DateTime dtm = System.DateTime.Now;

string dateTimeString = dtm.Year.ToString() +

dtm.Month.ToString() +

dtm.Day.ToString() +

dtm.Hour.ToString() +

dtm.Minute.ToString() +

dtm.Second.ToString() +

dtm.Millisecond.ToString();

fileName = "FIMP" + dateTimeString + ".INH";

fileName = filePath + fileName;

}

public void writeToPcPack()

{

generateFilename();

FileInfo fileInfo = new FileInfo(fileName);

StreamWriter streamWriter =fileInfo.CreateText();

streamWriter.WriteLine(

"\"" + order.OrderNumber + "\", "

+ "\"" + order.OrderState + "\", "

+ order.SenderId + ", "

+ "\"" + order.ProductCode + "\", "

+ "\"" + order.CustomerComment + "\", "

+ "\"" + order.OrderCreationDate + "\","

+ "\"" + order.SentFrom + "\","

+ "\"" + order.SentTo + "\","

+ "\"" + order.ReceiverCustomerNo + "\","

+ "\"" + order.ISOCountryCode + "\","

+ "\"" + order.Name +"\","

+ "\"" + order.Surname + "\","

+ "\"" + order.AttPerson + "\","

+ "\"" + order.Street + "\", "

+ "\"" +order.HouseNo + "\","

+ "\"" + order.PostBox + "\","

+ "\"" + order.PostNo + "\","

+ "\"" + order.City + "\","

+ "\"" + order.ProvinsStat + "\","

+ "\"" + order.MomsNo + "\","

+ "\"" + order.PhoneNo + "\","

+ "\"" + order.ContactPerson + "\","

+ "\"" + order.EMail + "\", "

+ order.PackageNumber + ", " //int

+ "\"" + order.BarCode + "\", " //str

+ "\"" + order.ItemAmmount + "\", " //str

+ "\"" + order.CountryId + "\", " //str

+ "\"" + order.ItemDescription + "\", " //str

+ "\"" + order.TaxInside + "\", " //str

+ order.TaxValue + ", " //int

+ "\"" + order.Currency + "\", " //str

+ order.PackageLength + ", " //int

+ order.PackageWidth + ", " //int

+ order.PackageHeight + ", " //int

+ order.NettoWeight + ", " //int

+ order.PackageVolume + ", " //int

+ "\"" + order.TaxTarif + "\", " //string

+ "\"" + order.TaxDescription + "\", " //string

+ order.PackageWeight + ", " //int

+ "\"" + order.Service + "\", " //string

+ order.ChangeTradeForm + ", " //int

+ order.Ensurance + ", " //int

+ order.Reference);

streamWriter.Write(streamWriter.NewLine);

streamWriter.Close();

}

}

}

using System;

using System.IO;

namespace prototype2

{

/// <summary>

/// Summary description for C5Writer.

/// </summary>

public class C5Writer

{

private string filePath = "C:/test_folder/";

private string fileName = "";

private string dataToFile = "";

private Order order;

Product product;

public C5Writer(Order order)

{

this.order = order;

}

private void generateFilename()

{

fileName = filePath + "c5" + "1234" + ".dat";

}

public void writeToC5()

{

generateFilename();

FileInfo fileInfo = new FileInfo(fileName);

StreamWriter streamWriter = fileInfo.CreateText();

dataToFile = "\"" + order.ReceiverCustomerNo + "\","

 + "\"" + order.ISOCountryCode + "\","

 + "\""+ order.Name +"\","

 + "\""+ order.Surname + "\","

 + "\""+ order.Street + "\","

 + "\"" + order.HouseNo + "\","

 + "\"" + order.PostBox + "\","

 + "\"" + order.PostNo + "\","

 + "\"" + order.City + "\","

 + "\"" + order.ProvinsStat + "\","

 + "\"" + order.PhoneNo + "\","

 + "\"" + order.EMail + "\",";

for (int i = 0; i<3; i++)

{

product = (Product) order.ProductArray[i];

dataToFile += "\"" + product.ProductId + "\","

 + "\"" + product.ProductName + "\","

 + "\"" + product.ProductAmount + "\","

 + "\"" + product.ProductPrice + "\",";

}

dataToFile += "\"" + order.CustomerComment + "\"";

streamWriter.WriteLine(dataToFile);

streamWriter.Write(streamWriter.NewLine);

streamWriter.Close();

}

public string returnFileData()

{

return dataToFile;

}

}

}

using System;

using System.Collections;

namespace prototype2

{

/// <summary>

/// Summary description for Order.

/// </summary>

public class Order

{

//----------------Shipment/customer info--------------------------

int orderNumber = 2; //AN(35) #

string orderState = ""; //AN(3)

int senderId = 1;

//NU #

string receiverCustomerNo = "Modtager02"; //AN(17) #

string productCode = "PPK";

//AN(4) # private pakke, .., ..

string orderCreationDate = ""; //DA

string iSOCountryCode = "DK"; //AN(2) #

string name = "Tom Kristensen";

//AN(35)

string surname = ""; //AN(35)

string attPerson = ""; //AN(35)

string street = "Frederiksgade 12"; //AN(35)

string houseNo = " 1. tv."; //AN(35)

string postBox = ""; //AN(35)

string postNo = "5000"; //AN(35)

string city = ""; //AN(35)

string provinsStat = ""; //AN(35)

string momsNo = ""; //AN(13)

string phoneNo = ""; //AN(20)

string contactPerson = "";

//AN(35)

string eMail = "";

//AN(254)

string customerComment = "";

//An(45
½+9*6)

string sentFrom = ""; //Ti

string sentTo = ""; //Ti

int packageNumber = 0; //NU #

string barCode = "";

//AN(35)

string itemAmmount = "";

 //AN(17)

string countryId = ""; //AN(2)

string itemDescription = "";

//AN(35)

string taxInside = ""; //NU

string taxValue = ""; //FL

string currency = ""; //AN(3)

string packageLength = ""; //FL

string packageHeight = "";

//FL

string packageWidth = "";

//FL

string packageWeight = "";

//FL

string nettoWeight = "";

//FL

string packageVolume = "";

//FL

string taxTarif = ""; //AN(15)

string taxDescription = ""; //FL

string service = "Z07Z25"; //AN(60)

string changeTradeForm = "145.75"; //FL

string ensurance = ""; //FL

string reference = "876456743"; //NU

//order number is generated automatically in c5

//transaction number

//...

//---------------------Payment information------------------------

string accountNumber = "";

//---------------------Product information------------------------

ArrayList productList;

//--------------------- Constructor ------------------------

public Order()

{

productList = new ArrayList();

productList.Add(new Product("1000","Smart Card", "3", "150"));

productList.Add(new Product("1100", "burner", "1", "120"));

productList.Add(new Product("1110", "Sison interface", "1", "400"));

}

public string SentFrom

{

get

{

return sentFrom;

}

set

{

sentFrom = value;

}

}

public string SentTo

{

get

{

return sentTo;

}

set

{

sentTo = value;

}

}

public int PackageNumber

{

get

{

return packageNumber;

}

set

{

packageNumber = value;

}

}

public string BarCode

{

get

{

return barCode;

}

set

{

barCode = value;

}

}

public string ItemAmmount

{

get

{

return itemAmmount;

}

set

{

itemAmmount = value;

}

}

public string CountryId

{

get

{

return countryId;

}

set

{

countryId = value;

}

}

public string ItemDescription

{

get

{

return itemDescription;

}

set

{

itemDescription = value;

}

}

public string TaxInside

{

get

{

return taxInside;

}

set

{

taxInside = value;

}

}

public string TaxValue

{

get

{

return taxValue;

}

set

{

taxValue = value;

}

}

public string Currency

{

get

{

return currency;

}

set

{

currency = value;

}

}

public string PackageWeight

{

get

{

return packageWeight;

}

set

{

packageWeight = value;

}

}

public string PackageLength

{

get

{

return packageLength;

}

set

{

packageLength = value;

}

}

public string PackageHeight

{

get

{

return packageHeight;

}

set

{

packageHeight = value;

}

}

public string PackageVolume

{

get

{

return packageVolume;

}

set

{

packageVolume = value;

}

}

public string PackageWidth

{

get

{

return packageWidth;

}

set

{

packageWidth = value;

}

}

public string NettoWeight

{

get

{

return nettoWeight;

}

set

{

nettoWeight = value;

}

}

public string TaxTarif

{

get

{

return taxTarif;

}

set

{

taxTarif = value;

}

}

public string Service

{

get

{

return service;

}

set

{

service = value;

}

}

public string TaxDescription

{

get

{

return taxDescription;

}

set

{

taxDescription = value;

}

}

public string ChangeTradeForm

{

get

{

return changeTradeForm;

}

set

{

changeTradeForm = value;

}

}

public string Ensurance

{

get

{

return ensurance;

}

set

{

ensurance = value;

}

}

public string Reference

{

get

{

return reference;

}

set

{

reference = value;

}

}

public string OrderCreationDate

{

get

{

return orderCreationDate;

}

set

{

orderCreationDate = value;

}

}

public int OrderNumber

{

get

{

return orderNumber;

}

set

{

orderNumber = value;

}

}

public string ProductCode

{

get

{

return productCode;

}

set

{

productCode = value;

}

}

public int SenderId

{

get

{

return senderId;

}

set

{

senderId = value;

}

}

public string OrderState

{

get

{

return orderState;

}

set

{

orderState = value;

}

}

public string ReceiverCustomerNo

{

get

{

return receiverCustomerNo;

}

set

{

receiverCustomerNo = value;

}

 }

public string ISOCountryCode

{

get

{

return iSOCountryCode;

}

set

{

iSOCountryCode = value;

}

}

public string Name

{

get

{

return name;

}

set

{

name = value;

}

}

public string Surname

{

get

{

return surname;

}

set

{

surname = value;

}

}

public string AttPerson

{

get

{

return attPerson;

}

set

{

attPerson = value;

}

}

public string Street

{

get

{

return street;

}

set

{

street = value;

}

}

public string HouseNo

{

get

{

return houseNo;

}

set

{

houseNo = value;

}

}

public string PostBox

{

get

{

return postBox;

}

set

{

postBox = value;

}

}

public string PostNo

{

get

{

return postNo;

}

set

{

postNo = value;

}

}

public string City

{

get

{

return city;

}

set

{

city = value;

}

}

public string ProvinsStat

{

get

{

return provinsStat;

}

set

{

provinsStat = value;

}

}

public string MomsNo

{

get

{

return momsNo;

}

set

{

momsNo = value;

}

}

public string ContactPerson

{

get

{

return contactPerson;

}

set

{

contactPerson = value;

}

}

public string PhoneNo

{

get

{

return phoneNo;

}

set

{

phoneNo = value;

}

}

public string EMail

{

get

{

return eMail;

}

set

{

eMail = value;

}

}

public string CustomerComment

{

get

{

return customerComment;

}

set

{

customerComment = value;

}

}

public ArrayList ProductArray

{

get

{

return productList;

}

}

}

}

using System;

namespace prototype2

{

/// <summary>

/// Summary description for OrderController.

/// </summary>

public class OrderController

{

 Order order;

PcPackWriter pcPackWriter;

 String orderText = "";

public OrderController(Order order)

{

this.order = order;

}

public string presentOrder()

{

 /*orderText = "Adress :\n"

 + order.Name + " " + order.Surname + "\n"

 + order.Street + " " + order.HouseNo + "\n"

 + order.City + " " + order.PostNo + "\n"

 + "Phone Number: " + order.PhoneNo + "\n"

 + "E-mail: " + order.EMail;*/

return orderText;

}

public void proceedOrder()

{

pcPackWriter = new PcPackWriter(order);

pcPackWriter.writeToPcPack();

}

}

}

using System;

namespace prototype2

{

/// <summary>

/// Summary description for PcPack.

/// </summary>

public class PcPack

{

string fileName = "";

string modtagerKundeNr = "";

string iSOlandekode = "";

string navn1 = "";

string navn2 = "";

string attPerson = "";

string gade = "";

string husNr = "";

string postBox = "";

string postNr = "";

string byNavn = "";

string provinsStat = "";

string momsNr = "";

string tlfNr = "";

string kontaktPerson = "";

string eMail = "";

public PcPack(string fileName, string modtagerKundeNr, string iSOlandekode, string navn1, string navn2, string attPerson, string gade, string husNr, string postBox, string postNr, string byNavn, string provinsStat, string momsNr, string tlfNr, string kontaktPerson, string eMail, string ProvinsStat)

{

this.fileName=fileName;

this.modtagerKundeNr=modtagerKundeNr;

this.iSOlandekode=iSOlandekode;

this.navn1=navn1;

this.navn2=navn2;

this.attPerson=attPerson;

this.gade=gade;

this.husNr=husNr;

this.postBox=postBox;

this.postNr=postNr;

this.byNavn=byNavn;

this.provinsStat=provinsStat;

this.momsNr=momsNr;

this.tlfNr=tlfNr;

this.kontaktPerson=kontaktPerson;

this.eMail=eMail;

this.provinsStat=provinsStat;

}

}

}

using System;

namespace prototype2

{

public class Product

{

private string productName = "";

private string productPrice = "";

private string productAmount = "";

private string productId = "";

public Product()

{

//

// TODO: Add constructor logic here

//

}

public Product(string productId, string productName, string productAmount, string productPrice)

{

this.productId = productId;

this.productName = productName;

this.productPrice = productPrice;

this.productAmount = productAmount;

}

public string ProductName

{

 get

 {

return productName;

 }

 set

 {

 productName = value;

 }

 }

public string ProductAmount

{

get

{

return productAmount;

}

set

{

productAmount = value;

}

}

public string ProductId

{

get

{

return productId;

}

set

{

productId = value;

}

}

public string ProductPrice

 {

get

{

return productPrice;

}

set

{

productPrice = value;

}

}

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace prototype2

{

/// <summary>

/// Summary description for Test_GUI_Interface.

/// </summary>

public class Test_GUI_Interface : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Label Label2;

protected System.Web.UI.WebControls.Label Label4;

protected System.Web.UI.WebControls.Label Label5;

protected System.Web.UI.WebControls.Label Label6;

protected System.Web.UI.WebControls.Label Label7;

protected System.Web.UI.WebControls.Label Label8;

protected System.Web.UI.WebControls.Label Label9;

protected System.Web.UI.WebControls.Label Label10;

protected System.Web.UI.WebControls.Label Label11;

protected System.Web.UI.WebControls.Label Label12;

protected System.Web.UI.WebControls.TextBox tbx_fileName;

protected System.Web.UI.WebControls.TextBox tbx_name;

protected System.Web.UI.WebControls.TextBox tbx_Surname;

protected System.Web.UI.WebControls.TextBox tbx_AttPerson;

protected System.Web.UI.WebControls.TextBox tbx_Street;

protected System.Web.UI.WebControls.TextBox tbx_ReceiverCustomerNo;

protected System.Web.UI.WebControls.TextBox tbx_ISOCountryCode;

protected System.Web.UI.WebControls.TextBox tbx_City;

protected System.Web.UI.WebControls.TextBox tbx_HouseNo;

protected System.Web.UI.WebControls.TextBox tbx_PostNo;

protected System.Web.UI.WebControls.TextBox tbx_PhoneNo;

protected System.Web.UI.WebControls.TextBox tbx_EMail;

protected System.Web.UI.WebControls.Button btn_proceed;

protected System.Web.UI.WebControls.Button btn_save;

protected System.Web.UI.WebControls.Button btn_delete;

protected System.Web.UI.WebControls.Label Label3;

protected System.Web.UI.WebControls.Label lbl_Name;

protected System.Web.UI.WebControls.Label lbl_presentOrderC5;

Order order;

private void Page_Load(object sender, System.EventArgs e)

{

if (!Page.IsPostBack)

{

order = new Order();

Session["order"] = order;

}

order = (Order)Session["order"];

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.btn_proceed.Click += new

System.EventHandler(this.btn_proceed_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void btn_proceed_Click(object sender, System.EventArgs e)

{

/*

order.ReceiverCustomerNo = tbx_ReceiverCustomerNo.Text;

order.ISOCountryCode = tbx_ISOCountryCode.Text;

order.Name = tbx_name.Text;

order.Surname = tbx_Surname.Text;

order.AttPerson = tbx_AttPerson.Text;

order.Street = tbx_Street.Text;

order.HouseNo = tbx_HouseNo.Text;

order.PostNo = tbx_PostNo.Text;

order.City = tbx_City.Text;

order.PhoneNo = tbx_PhoneNo.Text;

order.EMail = tbx_EMail.Text;

//ValidateOrder validate = new ValidateOrder(order);

//lbl_Name.Text = validate.validateName();

*/

OrderController controller = new OrderController(order);

controller.proceedOrder();

//lbl_presentOrderC5.Text = controller.presentOrder();

}

private void Button1_Click(object sender, System.EventArgs e)

{

}

}

}

<%@ Page language="c#" Codebehind="Test_GUI_Interface.aspx.cs" AutoEventWireup="false" Inherits="prototype2.Test_GUI_Interface" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title>Test_GUI_Interface</title>

<meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript" content="JavaScript">

<meta name="vs_targetSchema" content="http://schemas.microsoft.com/intellisense/ie5">

</HEAD>

<body MS_POSITIONING="GridLayout">

<form id="Form1" method="post" runat="server">

<asp:TextBox id="tbx_name" style="Z-INDEX: 101; LEFT: 88px; POSITION: absolute; TOP: 224px" runat="server"></asp:TextBox>

<asp:TextBox id="tbx_Surname" style="Z-INDEX: 102; LEFT: 248px; POSITION: absolute; TOP: 224px"

runat="server"></asp:TextBox>

<asp:Label id="lbl_Name" style="Z-INDEX: 103; LEFT: 88px; POSITION: absolute; TOP: 200px" runat="server">Name</asp:Label>

<asp:Label id="Label2" style="Z-INDEX: 104; LEFT: 248px; POSITION: absolute; TOP: 200px" runat="server">Surname</asp:Label>

<asp:TextBox id="tbx_AttPerson" style="Z-INDEX: 105; LEFT: 88px; POSITION: absolute; TOP: 280px"

runat="server"></asp:TextBox>

<asp:Label id="Label3" style="Z-INDEX: 106; LEFT: 88px; POSITION: absolute; TOP: 256px" runat="server">AttPerson</asp:Label>

<asp:Label id="Label4" style="Z-INDEX: 107; LEFT: 88px; POSITION: absolute; TOP: 312px" runat="server">Street</asp:Label>

<asp:Label id="Label5" style="Z-INDEX: 108; LEFT: 88px; POSITION: absolute; TOP: 424px" runat="server">PhoneNo</asp:Label>

<asp:Label id="Label6" style="Z-INDEX: 109; LEFT: 88px; POSITION: absolute; TOP: 368px" runat="server">PostNo</asp:Label>

<asp:Label id="Label7" style="Z-INDEX: 110; LEFT: 144px; POSITION: absolute; TOP: 368px" runat="server">City</asp:Label>

<asp:Label id="Label8" style="Z-INDEX: 111; LEFT: 88px; POSITION: absolute; TOP: 480px" runat="server">EMail</asp:Label>

<asp:Label id="Label9" style="Z-INDEX: 112; LEFT: 248px; POSITION: absolute; TOP: 312px" runat="server">HouseNo</asp:Label>

<asp:TextBox id="tbx_City" style="Z-INDEX: 113; LEFT: 144px; POSITION: absolute; TOP: 392px"

runat="server" Width="216px"></asp:TextBox>

<asp:TextBox id="tbx_Street" style="Z-INDEX: 114; LEFT: 88px; POSITION: absolute; TOP: 336px"

runat="server"></asp:TextBox>

<asp:TextBox id="tbx_HouseNo" style="Z-INDEX: 115; LEFT: 248px; POSITION: absolute; TOP: 336px"

runat="server" Width="64px"></asp:TextBox>

<asp:TextBox id="tbx_PostNo" style="Z-INDEX: 116; LEFT: 88px; POSITION: absolute; TOP: 392px"

runat="server" Width="48px"></asp:TextBox>

<asp:TextBox id="tbx_PhoneNo" style="Z-INDEX: 117; LEFT: 88px; POSITION: absolute; TOP: 448px"

runat="server"></asp:TextBox>

<asp:TextBox id="tbx_EMail" style="Z-INDEX: 118; LEFT: 88px; POSITION: absolute; TOP: 504px"

runat="server"></asp:TextBox>

<asp:Label id="Label10" style="Z-INDEX: 119; LEFT: 88px; POSITION: absolute; TOP: 72px" runat="server">ReceiverCustomerNo</asp:Label>

<asp:TextBox id="tbx_ReceiverCustomerNo" style="Z-INDEX: 120; LEFT: 88px; POSITION: absolute; TOP: 96px"

runat="server"></asp:TextBox>

<asp:Label id="Label11" style="Z-INDEX: 121; LEFT: 88px; POSITION: absolute; TOP: 0px" runat="server">fileName</asp:Label>

<asp:Label id="Label12" style="Z-INDEX: 122; LEFT: 88px; POSITION: absolute; TOP: 128px" runat="server">ISOCountryCode</asp:Label>

<asp:TextBox id="tbx_ISOCountryCode" style="Z-INDEX: 123; LEFT: 88px; POSITION: absolute; TOP: 152px"

runat="server"></asp:TextBox>

<asp:TextBox id="tbx_fileName" style="Z-INDEX: 124; LEFT: 88px; POSITION: absolute; TOP: 24px"

runat="server"></asp:TextBox>

<HR style="Z-INDEX: 125; LEFT: 8px; POSITION: absolute; TOP: 64px" width="100%" SIZE="1">

<HR style="Z-INDEX: 126; LEFT: 8px; POSITION: absolute; TOP: 552px" width="100%" SIZE="1">

<HR style="Z-INDEX: 127; LEFT: 8px; POSITION: absolute; TOP: 192px" width="100%" SIZE="1">

<asp:Button id="btn_proceed" style="Z-INDEX: 128; LEFT: 648px; POSITION: absolute; TOP: 568px"

runat="server" Text="proceed"></asp:Button>

<asp:Button id="btn_save" style="Z-INDEX: 129; LEFT: 560px; POSITION: absolute; TOP: 568px"

runat="server" Text="save"></asp:Button>

<asp:Button id="btn_delete" style="Z-INDEX: 130; LEFT: 488px; POSITION: absolute; TOP: 568px"

runat="server" Text="delete"></asp:Button>

</form>

</body>

</HTML>

APPENDIX A6: codes for Construction iteration I

using System;

using System.Collections;

namespace CommerceAdmin

{

/// <summary>

/// Summary description for Order.

/// </summary>

public class Order

{

//----------------Shipment/customer info--------------------------

int orderNumber = 2; //AN(35) #

string orderState = ""; //AN(3)

int senderId = 1;

//NU #

string receiverCustomerNo = "Modtager02"; //AN(17) #

string productCode = "PPK";
//AN(4) # private pakke, .., ..

string orderCreationDate = ""; //DA

string iSOCountryCode = "DK"; //AN(2) #

string name = "Tom Kristensen";

//AN(35)

string surname = ""; //AN(35)

string attPerson = ""; //AN(35)

string street = "Frederiksgade 12"; //AN(35)

string houseNo = " 1. tv."; //AN(35)

string postBox = ""; //AN(35)

string postNo = "5000"; //AN(35)

string city = ""; //AN(35)

string provinsStat = ""; //AN(35)

string momsNo = ""; //AN(13)

string phoneNo = ""; //AN(20)

string contactPerson = "";

//AN(35)

string eMail = "";

//AN(254)

string customerComment = "";

//An(45
½+9*6)

string sentFrom = ""; //Ti

string sentTo = ""; //Ti

int packageNumber = 0; //NU #

string barCode = "";

//AN(35)

string itemAmmount = "";

 //AN(17)

string countryId = ""; //AN(2)

string itemDescription = "";

//AN(35)

string taxInside = ""; //NU

string taxValue = ""; //FL

string currency = ""; //AN(3)

string packageLength = ""; //FL

string packageHeight = "";

//FL

string packageWidth = "";

//FL

string packageWeight = "";

//FL

string nettoWeight = "";

//FL

string packageVolume = "";

//FL

string taxTarif = ""; //AN(15)

string taxDescription = ""; //FL

string service = "Z07Z25"; //AN(60)

string changeTradeForm = "145.75"; //FL

string ensurance = ""; //FL

string reference = "876456743"; //NU

//---------------------Product information------------------------

ArrayList productList;

//--------------------- Constructor ------------------------

public Order()

{

productList = new ArrayList();

productList.Add(new Product("1000","Smart Card", "3", "150"));

productList.Add(new Product("1100", "burner", "1", "120"));

productList.Add(new Product("1110", "Sison interface", "1","400"));

}

public string SentFrom

{

get

{

return sentFrom;

}

set

{

sentFrom = value;

}

}

public string SentTo

{

get

{

return sentTo;

}

set

{

sentTo = value;

}

}

public int PackageNumber

{

get

{

return packageNumber;

}

set

{

packageNumber = value;

}

}

public string BarCode

{

get

{

return barCode;

}

set

{

barCode = value;

}

}

public string ItemAmmount

{

get

{

return itemAmmount;

}

set

{

itemAmmount = value;

}

}

public string CountryId

{

get

{

return countryId;

}

set

{

countryId = value;

}

}

public string ItemDescription

{

get

{

return itemDescription;

}

set

{

itemDescription = value;

}

}

public string TaxInside

{

get

{

return taxInside;

}

set

{

taxInside = value;

}

}

public string TaxValue

{

get

{

return taxValue;

}

set

{

taxValue = value;

}

}

public string Currency

{

get

{

return currency;

}

set

{

currency = value;

}

}

public string PackageWeight

{

get

{

return packageWeight;

}

set

{

packageWeight = value;

}

}

public string PackageLength

{

get

{

return packageLength;

}

set

{

packageLength = value;

}

}

public string PackageHeight

{

get

{

return packageHeight;

}

set

{

packageHeight = value;

}

}

public string PackageVolume

{

get

{

return packageVolume;

}

set

{

packageVolume = value;

}

}

public string PackageWidth

{

get

{

return packageWidth;

}

set

{

packageWidth = value;

}

}

public string NettoWeight

{

get

{

return nettoWeight;

}

set

{

nettoWeight = value;

}

}

public string TaxTarif

{

get

{

return taxTarif;

}

set

{

taxTarif = value;

}

}

public string Service

{

get

{

return service;

}

set

{

service = value;

}

}

public string TaxDescription

{

get

{

return taxDescription;

}

set

{

taxDescription = value;

}

}

public string ChangeTradeForm

{

get

{

return changeTradeForm;

}

set

{

changeTradeForm = value;

}

}

public string Ensurance

{

get

{

return ensurance;

}

set

{

ensurance = value;

}

}

public string Reference

{

get

{

return reference;

}

set

{

reference = value;

}

}

public string OrderCreationDate

{

get

{

return orderCreationDate;

}

set

{

orderCreationDate = value;

}

}

public int OrderNumber

{

get

{

return orderNumber;

}

set

{

orderNumber = value;

}

}

public string ProductCode

{

get

{

return productCode;

}

set

{

productCode = value;

}

}

public int SenderId

{

get

{

return senderId;

}

set

{

senderId = value;

}

}

public string OrderState

{

get

{

return orderState;

}

set

{

orderState = value;

}

}

public string ReceiverCustomerNo

{

get

{

return receiverCustomerNo;

}

set

{

receiverCustomerNo = value;

}

 }

public string ISOCountryCode

{

get

{

return iSOCountryCode;

}

set

{

iSOCountryCode = value;

}

}

public string Name

{

get

{

return name;

}

set

{

name = value;

}

}

public string Surname

{

get

{

return surname;

}

set

{

surname = value;

}

}

public string AttPerson

{

get

{

return attPerson;

}

set

{

attPerson = value;

}

}

public string Street

{

get

{

return street;

}

set

{

street = value;

}

}

public string HouseNo

{

get

{

return houseNo;

}

set

{

houseNo = value;

}

}

public string PostBox

{

get

{

return postBox;

}

set

{

postBox = value;

}

}

public string PostNo

{

get

{

return postNo;

}

set

{

postNo = value;

}

}

public string City

{

get

{

return city;

}

set

{

city = value;

}

}

public string ProvinsStat

{

get

{

return provinsStat;

}

set

{

provinsStat = value;

}

}

public string MomsNo

{

get

{

return momsNo;

}

set

{

momsNo = value;

}

}

public string ContactPerson

{

get

{

return contactPerson;

}

set

{

contactPerson = value;

}

}

public string PhoneNo

{

get

{

return phoneNo;

}

set

{

phoneNo = value;

}

}

public string EMail

{

get

{

return eMail;

}

set

{

eMail = value;

}

}

public string CustomerComment

{

get

{

return customerComment;

}

set

{

customerComment = value;

}

}

public ArrayList ProductArray

{

get

{

return productList;

}

}

}

}

using System;

namespace CommerceAdmin

{

/// <summary>

/// Summary description for OrderController.

/// </summary>

public class OrderController

{

 Order order;

PcPackWriter pcPackWriter;

public OrderController(Order order)

{

this.order = order;

}

public void proceedOrder()

{

pcPackWriter = new PcPackWriter(order);

pcPackWriter.writeToPcPack();

}

}

}

using System;

using System.IO;

namespace CommerceAdmin

{

/// <summary>

/// Summary description for PcPackWriter.

/// </summary>

public class PcPackWriter

{

Order order;

string fileName = "";

string filePath = @"C:\keysoft\PFS\EKSIMP\IN\";

//string filePath = "C:/test_folder/";

public PcPackWriter(Order order)

{

this.order = order;

}

private void generateFilename()

{

System.DateTime dtm = System.DateTime.Now;

string dateTimeString = dtm.Year.ToString() +

dtm.Month.ToString() +

dtm.Day.ToString() +

dtm.Hour.ToString() +

dtm.Minute.ToString() +

dtm.Second.ToString() +

dtm.Millisecond.ToString();

fileName = "FIMP" + dateTimeString + ".INH";

fileName = filePath + fileName;

}

public void writeToPcPack()

{

generateFilename();

FileInfo fileInfo = new FileInfo(fileName);

StreamWriter streamWriter =fileInfo.CreateText();

streamWriter.WriteLine(

"\"" + order.OrderNumber + "\", "

+ "\"" + order.OrderState + "\", "

+ order.SenderId + ", "

+ "\"" + order.ProductCode + "\", "

+ "\"" + order.CustomerComment + "\", "

+ "\"" + order.OrderCreationDate + "\","

+ "\"" + order.SentFrom + "\","

+ "\"" + order.SentTo + "\","

+ "\"" + order.ReceiverCustomerNo + "\","

+ "\"" + order.ISOCountryCode + "\","

+ "\"" + order.Name +"\","

+ "\"" + order.Surname + "\","

+ "\"" + order.AttPerson + "\","

+ "\"" + order.Street + "\", "

+ "\"" +order.HouseNo + "\","

+ "\"" + order.PostBox + "\","

+ "\"" + order.PostNo + "\","

+ "\"" + order.City + "\","

+ "\"" + order.ProvinsStat + "\","

+ "\"" + order.MomsNo + "\","

+ "\"" + order.PhoneNo + "\","

+ "\"" + order.ContactPerson + "\","

+ "\"" + order.EMail + "\", "

+ order.PackageNumber + ", " //int

+ "\"" + order.BarCode + "\", " //str

+ "\"" + order.ItemAmmount + "\", " //str

+ "\"" + order.CountryId + "\", " //str

+ "\"" + order.ItemDescription + "\", " //str

 + "\"" + order.TaxInside + "\", " //str

 + order.TaxValue + ", " //int

 + "\"" + order.Currency + "\", " //str

 + order.PackageLength + ", " //int

 + order.PackageWidth + ", " //int

 + order.PackageHeight + ", " //int

 + order.NettoWeight + ", " //int

 + order.PackageVolume + ", " //int

 + "\"" + order.TaxTarif + "\", " //string

 + "\"" + order.TaxDescription + "\", " //string

 + order.PackageWeight + ", " //int

 + "\"" + order.Service + "\", " //string

 + order.ChangeTradeForm + ", " //int

 + order.Ensurance + ", " //int

 + order.Reference);

streamWriter.Write(streamWriter.NewLine);

streamWriter.Close();

}

}

}

using System;

namespace CommerceAdmin

{

public class Product

{

private string productName = "";

private string productPrice = "";

private string productAmount = "";

 private string productId = "";

public Product()

{

//

// TODO: Add constructor logic here

//

}

public Product(string productId, string productName,

string productAmount, string productPrice)

{

this.productId = productId;

this.productName = productName;

this.productPrice = productPrice;

this.productAmount = productAmount;

}

public string ProductName

{

 get

 {

return productName;

 }

 set

 {

 productName = value;

 }

 }

public string ProductAmount

{

get

{

return productAmount;

}

set

{

productAmount = value;

}

}

public string ProductId

{

get

{

return productId;

}

set

{

productId = value;

}

}

public string ProductPrice

 {

get

{

return productPrice;

}

set

{

productPrice = value;

}

}

 }

}

#region Copyright http://www.artisticode.com

// Please donot remove

// Waheed Khan

// http://www.artisticode.com

// contact@artisticode.com

#endregion

using System;

using System.Data;

using System.Data.SqlClient;

using System.Text;

using System.Drawing;

using System.Web;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace CommerceAdmin

{

/// <summary>

///

Summary description for Orders.

/// </summary>

public class Orders : System.Web.UI.UserControl

{

protected System.Web.UI.WebControls.Label Message;

protected System.Web.UI.WebControls.Panel PanelErrorMessage;

protected System.Web.UI.WebControls.Label LabelCustomerID;

protected System.Web.UI.WebControls.Label LabelCustomerName;

protected System.Web.UI.WebControls.Label LabelCustomerEmail;

protected System.Web.UI.WebControls.PlaceHolder PHBreadCrumbs;

protected System.Web.UI.WebControls.Label lbl_control;

protected System.Web.UI.WebControls.DataGrid DataGrid1;

private void Page_Load(object sender, System.EventArgs e)

{

BreadCrumbs BC = Page.LoadControl("~/UserControls/BreadCrumbs.ascx") as

BreadCrumbs;

DataTable table = new DataTable();

table.Columns.Add("Name", typeof(string));

table.Columns.Add("Url", typeof(string));

table.Rows.Add(new string[] {"Home", "default.aspx?id=home"});

table.Rows.Add(new string[] {"Customers", "default.aspx?id=customers"});

table.Rows.Add(new string[] {"Orders", "default.aspx?id=orders&custid=" +

Request.Params["custid"].ToString() + ""});

if(Request.Params["custid"] != null && Request.Params["custid"] != string.Empty)

{

if (BC!=null)

{

((BreadCrumbs)BC).AddValues = table;

PHBreadCrumbs.Controls.Add(BC);

}

ViewState["CustomerID"] = Int32.Parse(Request.Params["custid"]);

BindData();

GetCustomer(ViewState["CustomerID"].ToString());

}

else

{

Message.Text = "Customer ID was not found!!!";

}

}

private void GetCustomer(string id)

{

string sql = "SELECT * FROM CMRC_Customers Where CustomerID = @ID And Admins =

 '0'";

SqlCommand cmd = new SqlCommand(sql, new

SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@ID", SqlDbType.VarChar).Value = id;

try

{

cmd.Connection.Open();

SqlDataReader myReader = cmd.ExecuteReader();

while (myReader.Read())

{

LabelCustomerID.Text = myReader["CustomerID"].ToString();

LabelCustomerName.Text = myReader["FullName"].ToString();

LabelCustomerEmail.Text = myReader["EmailAddress"].ToString();

}

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void BindDataToOrder(Order order, string orderid)

{

StringBuilder Query = new StringBuilder();

Query.Append("SELECT DISTINCT CMRC_Orders.OrderID, ");

Query.Append("CMRC_Customers.FullName, ");

Query.Append("CMRC_Customers.EmailAddress, ");

Query.Append("CMRC_Customers.ISOCountryCode, ");

Query.Append("CMRC_Customers.HouseNo, ");

Query.Append("CMRC_Customers.Street, ");

Query.Append("CMRC_Customers.PostNo, ");

Query.Append("CMRC_Customers.City, ");

Query.Append("CMRC_Customers.PhoneNo, ");

Query.Append("CMRC_Orders.OrderDate, ");

Query.Append("CMRC_Orders.ShipDate, ");

Query.Append("CMRC_Orders.status ");

Query.Append("FROM CMRC_Orders, CMRC_Customers, CMRC_OrderDetails ");

Query.Append("Where (CMRC_Orders.OrderID = CMRC_OrderDetails.OrderID) ");

 Query.Append("AND (CMRC_Orders.OrderID = CMRC_OrderDetails.OrderID) ");

 Query.Append("AND ((CMRC_Orders.OrderID = " + orderid + ") AND(CMRC_Customers.CustomerID = " + ViewState["CustomerID"].ToString() + ")) ");

try

{

SqlConnection myConnection = new SqlConnection(SiteGlobals.ConnectionString);

SqlCommand myCommand = new SqlCommand(Query.ToString(), myConnection);

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

DataSet Ds = new DataSet();

myAdapter.Fill(Ds);

 lbl_control.Text = "details: " + Ds.Tables[0].Rows[0]["FullName"];

if(Ds!=null)

{

DataView Dv = Ds.Tables[0].DefaultView;

Dv.Sort = "OrderDate" + " ASC"; // SortField ASC or DESC

DataTable orders = Ds.Tables[0];

order.OrderNumber = (int) Ds.Tables[0].Rows[0]["OrderID"];

order.Name = (Ds.Tables[0].Rows[0]["FullName"]).ToString();

order.EMail = (Ds.Tables[0].Rows[0]["EmailAddress"]).ToString();

order.ISOCountryCode = (Ds.Tables[0].Rows[0]["ISOCountryCode"]).ToString();

order.HouseNo = (Ds.Tables[0].Rows[0]["HouseNo"]).ToString();

order.Street = (Ds.Tables[0].Rows[0]["Street"]).ToString();

order.PostNo = (Ds.Tables[0].Rows[0]["PostNo"]).ToString();

order.City = (Ds.Tables[0].Rows[0]["City"]).ToString();

order.PhoneNo = (Ds.Tables[0].Rows[0]["PhoneNo"]).ToString();

order.OrderCreationDate = (Ds.Tables[0].Rows[0]["OrderDate"]).ToString();

PcPackWriter pr = new PcPackWriter(order);

pr.writeToPcPack();

}

else

{

lbl_control.Text = "dataset is empty!";

}

}

catch (Exception e)

{

 //Message.Text = "Error in Binding Grid " + e.ToString();

lbl_control.Text = "Error in Binding Grid " + e.ToString();

}

}

private void BindData()

{

StringBuilder Query = new StringBuilder();

Query.Append("SELECT CMRC_Orders.OrderID, ");

Query.Append("CAST(SUM(CMRC_OrderDetails.Quantity * CMRC_OrderDetails.UnitCost)

AS money) AS OrderTotal, ");

Query.Append("CMRC_Orders.OrderDate, CMRC_Orders.ShipDate, CMRC_Orders.status ");

Query.Append("FROM CMRC_Orders INNER JOIN CMRC_OrderDetails ");

Query.Append("ON CMRC_Orders.OrderID = CMRC_OrderDetails.OrderID ");

Query.Append("GROUP BY CMRC_Orders.CustomerID, CMRC_Orders.OrderID, ");

Query.Append("CMRC_Orders.OrderDate, CMRC_Orders.ShipDate, CMRC_Orders.status ");

Query.Append("HAVING (CMRC_Orders.CustomerID = '" +

ViewState["CustomerID"].ToString() + "')");

try

{

SqlConnection myConnection = new SqlConnection(SiteGlobals.ConnectionString);

SqlCommand myCommand = new SqlCommand(Query.ToString(), myConnection);

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

DataSet Ds = new DataSet();

myAdapter.Fill(Ds);

if(Ds!=null)

{

DataView Dv = Ds.Tables[0].DefaultView;

Dv.Sort = "OrderDate" + " ASC"; // SortField ASC or DESC

DataGrid1.DataSource = Dv;

DataGrid1.DataBind();

}

}

catch (Exception e)

{

Message.Text = "Error in Binding Grid " + e.ToString();

}

}

private void UpdateRecord(string orderid, string orderdate, string shipdate)

{

string sql = "UPDATE CMRC_Orders SET OrderDate = @OrderDate, ShipDate = @ShipDate

WHERE OrderID = @OrderID AND CustomerID = '" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new

SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.Int).Value = Int32.Parse(orderid);

cmd.Parameters.Add("@OrderDate", SqlDbType.NVarChar).Value = orderdate;

cmd.Parameters.Add("@ShipDate", SqlDbType.NVarChar).Value = shipdate;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void ProceedOrder(string orderid)

{

string sql = "UPDATE CMRC_Orders SET status = @status WHERE OrderID = @OrderID

AND CustomerID = '" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new

SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.Int).Value = Int32.Parse(orderid);

cmd.Parameters.Add("@status", SqlDbType.Int).Value = 1;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void DeleteRecord(string orderid)

{

string sql = "DELETE FROM CMRC_Orders WHERE OrderID = @OrderID AND CustomerID =

'" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new

SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.VarChar).Value = orderid;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

protected void Edit_Click(Object sender, DataGridCommandEventArgs e)

{

DataGrid1.EditItemIndex = e.Item.ItemIndex;

BindData();

EditMode(true);

Message.Text = "";

}

protected void Cancel_Click(Object sender, DataGridCommandEventArgs e)

{

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "";

}

protected void Update_Click(Object sender, DataGridCommandEventArgs e)

{

string orderid = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

string orderdate = ((TextBox) e.Item.FindControl("TextBoxOrderDate")).Text;

string shipdate = ((TextBox) e.Item.FindControl("TextBoxShipDate")).Text;

UpdateRecord(orderid,orderdate,shipdate);

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "";

}

protected void DataGrid1_DeleteCommand(object source, DataGridCommandEventArgs e)

{

string deleteKey;

if(DataGrid1.EditItemIndex==-1)

{

deleteKey = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

DeleteRecord(deleteKey);

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "Record was deleted!!!....";

}

else

{

Message.Text = "Can't delete until editing is done!";

}

}

protected void DataGrid1_ItemCreated(object sender, DataGridItemEventArgs e)

{

if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==

ListItemType.AlternatingItem)

{

// Delete Link is at Cell 0

LinkButton button = (LinkButton) e.Item.Cells[0].Controls[0];

button.Attributes.Add("onclick", "return confirm (\"Really? Delete? \");");

e.Item.Attributes.Add("onmouseover", "this.style.fontWeight=

'normal';this.style.color='red';this.style.cursor='hand'");

e.Item.Attributes.Add("onmouseout", "this.style.fontWeight='normal';this.style.color='';this.style.cursor='default'");

}

}

protected void EditMode(bool OnOff)

{

for(int i = 7; i < DataGrid1.Columns.Count; i++)

{

DataGrid1.Columns[i].Visible = (!OnOff);

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

///

Required method for Designer support - do not modify

///

the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.DataGrid1.ItemCommand += new

System.Web.UI.WebControls.DataGridCommandEventHandler(this.Proceed_Click);

this.DataGrid1.UpdateCommand += new

System.Web.UI.WebControls.DataGridCommandEventHandler(this.Proceed_Click);

this.DataGrid1.SelectedIndexChanged += new

System.EventHandler(this.DataGrid1_SelectedIndexChanged);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

protected void Proceed_Click(object sender, DataGridCommandEventArgs e)

{

string orderid = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

ProceedOrder(orderid);

Order order = new Order();

BindDataToOrder(order, orderid);

BindData();

//EditMode(true);

Message.Text = "";

}

private void DataGrid1_SelectedIndexChanged(object sender, System.EventArgs e)

{

}

}

}

SQL script

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'Commerce')

DROP DATABASE [Commerce]

GO

CREATE DATABASE [Commerce]

GO

exec sp_dboption N'Commerce', N'autoclose', N'false'

GO

exec sp_dboption N'Commerce', N'bulkcopy', N'true'

GO

exec sp_dboption N'Commerce', N'trunc. log', N'true'

GO

exec sp_dboption N'Commerce', N'torn page detection', N'false'

GO

exec sp_dboption N'Commerce', N'read only', N'false'

GO

exec sp_dboption N'Commerce', N'dbo use', N'false'

GO

exec sp_dboption N'Commerce', N'single', N'false'

GO

exec sp_dboption N'Commerce', N'autoshrink', N'true'

GO

exec sp_dboption N'Commerce', N'ANSI null default', N'false'

GO

exec sp_dboption N'Commerce', N'recursive triggers', N'false'

GO

exec sp_dboption N'Commerce', N'ANSI nulls', N'false'

GO

exec sp_dboption N'Commerce', N'concat null yields null', N'false'

GO

exec sp_dboption N'Commerce', N'cursor close on commit', N'false'

GO

exec sp_dboption N'Commerce', N'default to local cursor', N'false'

GO

exec sp_dboption N'Commerce', N'quoted identifier', N'false'

GO

exec sp_dboption N'Commerce', N'ANSI warnings', N'false'

GO

exec sp_dboption N'Commerce', N'auto create statistics', N'true'

GO

exec sp_dboption N'Commerce', N'auto update statistics', N'true'

GO

if(((@@microsoftversion / power(2, 24) = 8) and (@@microsoftversion & 0xffff >= 724)) or ((@@microsoftversion / power(2, 24) = 7) and (@@microsoftversion & 0xffff >= 1082)))

exec sp_dboption N'Commerce', N'db chaining', N'false'

GO

use [Commerce]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_Products_Categories]') and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[CMRC_Products] DROP CONSTRAINT FK_Products_Categories

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_CMRC_Orders_CMRC_Customers]') and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[CMRC_Orders] DROP CONSTRAINT FK_CMRC_Orders_CMRC_Customers

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_CMRC_OrderDetails_CMRC_Orders]') and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[CMRC_OrderDetails] DROP CONSTRAINT FK_CMRC_OrderDetails_CMRC_Orders

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_ShoppingCart_Products]') and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[CMRC_ShoppingCart] DROP CONSTRAINT FK_ShoppingCart_Products

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_CustomerAdd]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_CustomerAdd]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_CustomerDetail]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_CustomerDetail]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_OrdersAdd]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_OrdersAdd]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_OrdersDetail]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_OrdersDetail]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_OrdersList]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_OrdersList]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ProductCategoryList]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ProductCategoryList]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ProductDetail]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ProductDetail]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ProductSearch]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ProductSearch]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ProductsByCategory]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ProductsByCategory]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartAddItem]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartAddItem]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartEmpty]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartEmpty]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartItemCount]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartItemCount]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartList]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartList]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartMigrate]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartMigrate]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartRemoveAbandoned]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartRemoveAbandoned]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartRemoveItem]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartRemoveItem]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartTotal]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartTotal]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCartUpdate]') and OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[CMRC_ShoppingCartUpdate]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_Categories]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_Categories]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_Customers]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_Customers]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_OrderDetails]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_OrderDetails]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_Orders]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_Orders]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_Products]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_Products]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[CMRC_ShoppingCart]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[CMRC_ShoppingCart]

GO

CREATE TABLE [dbo].[CMRC_Categories] (

[CategoryID] [int] IDENTITY (1, 1) NOT NULL ,

[CategoryName] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[CMRC_Customers] (

[CustomerID] [int] IDENTITY (1, 1) NOT NULL ,

[FullName] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[EmailAddress] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[Password] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[Admins] [int] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[CMRC_OrderDetails] (

[OrderID] [int] NOT NULL ,

[ProductID] [int] NOT NULL ,

[Quantity] [int] NOT NULL ,

[UnitCost] [money] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[CMRC_Orders] (

[OrderID] [int] IDENTITY (1, 1) NOT NULL ,

[CustomerID] [int] NOT NULL ,

[OrderDate] [datetime] NOT NULL ,

[ShipDate] [datetime] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[CMRC_Products] (

[ProductID] [int] IDENTITY (1, 1) NOT NULL ,

[CategoryID] [int] NOT NULL ,

[ModelNumber] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[ModelName] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[ProductImage] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[UnitCost] [money] NOT NULL ,

[Description] [nvarchar] (3800) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[CMRC_ShoppingCart] (

[RecordID] [int] IDENTITY (1, 1) NOT NULL ,

[CartID] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[Quantity] [int] NOT NULL ,

[ProductID] [int] NOT NULL ,

[DateCreated] [datetime] NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_Categories] ADD

CONSTRAINT [PK_CMRC_Categories] PRIMARY KEY NONCLUSTERED

(

[CategoryID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_Customers] ADD

CONSTRAINT [DF_CMRC_Customers_Admins] DEFAULT (0) FOR [Admins],

CONSTRAINT [PK_CMRC_Customers] PRIMARY KEY NONCLUSTERED

(

[CustomerID]

) ON [PRIMARY] ,

CONSTRAINT [IX_Customers] UNIQUE NONCLUSTERED

(

[EmailAddress]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_OrderDetails] ADD

CONSTRAINT [PK_CMRC_OrderDetails] PRIMARY KEY NONCLUSTERED

(

[OrderID],

[ProductID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_Orders] ADD

CONSTRAINT [DF_Orders_OrderDate] DEFAULT (getdate()) FOR [OrderDate],

CONSTRAINT [DF_Orders_ShipDate] DEFAULT (getdate()) FOR [ShipDate],

CONSTRAINT [PK_CMRC_Orders] PRIMARY KEY NONCLUSTERED

(

[OrderID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_Products] ADD

CONSTRAINT [PK_CMRC_Products] PRIMARY KEY NONCLUSTERED

(

[ProductID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_ShoppingCart] ADD

CONSTRAINT [DF_ShoppingCart_Quantity] DEFAULT (1) FOR [Quantity],

CONSTRAINT [DF_ShoppingCart_DateCreated] DEFAULT (getdate()) FOR [DateCreated],

CONSTRAINT [PK_CMRC_ShoppingCart] PRIMARY KEY NONCLUSTERED

(

[RecordID]

) ON [PRIMARY]

GO

 CREATE INDEX [IX_ShoppingCart] ON [dbo].[CMRC_ShoppingCart]([CartID], [ProductID]) ON [PRIMARY]

GO

ALTER TABLE [dbo].[CMRC_OrderDetails] ADD

CONSTRAINT [FK_CMRC_OrderDetails_CMRC_Orders] FOREIGN KEY

(

[OrderID]

) REFERENCES [dbo].[CMRC_Orders] (

[OrderID]

) ON DELETE CASCADE ON UPDATE CASCADE NOT FOR REPLICATION

GO

ALTER TABLE [dbo].[CMRC_Orders] ADD

CONSTRAINT [FK_CMRC_Orders_CMRC_Customers] FOREIGN KEY

(

[CustomerID]

) REFERENCES [dbo].[CMRC_Customers] (

[CustomerID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[CMRC_Products] ADD

CONSTRAINT [FK_Products_Categories] FOREIGN KEY

(

[CategoryID]

) REFERENCES [dbo].[CMRC_Categories] (

[CategoryID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[CMRC_ShoppingCart] ADD

CONSTRAINT [FK_ShoppingCart_Products] FOREIGN KEY

(

[ProductID]

) REFERENCES [dbo].[CMRC_Products] (

[ProductID]

) ON DELETE CASCADE ON UPDATE CASCADE

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS OFF

GO

CREATE Procedure CMRC_CustomerAdd

(

 @FullName nvarchar(50),

 @Email nvarchar(50),

 @Password nvarchar(50),

 @CustomerID int OUTPUT

)

AS

INSERT INTO CMRC_Customers

(

 FullName,

 EmailAddress,

 Password

)

VALUES

(

 @FullName,

 @Email,

 @Password

)

SELECT

 @CustomerID = @@Identity

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_CustomerDetail

(

 @CustomerID int,

 @FullName nvarchar(50) OUTPUT,

 @Email nvarchar(50) OUTPUT,

 @Password nvarchar(50) OUTPUT

)

AS

SELECT

 @FullName = FullName,

 @Email = EmailAddress,

 @Password = Password

FROM

 CMRC_Customers

WHERE

 CustomerID = @CustomerID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_OrdersAdd

(

 @CustomerID int,

 @CartID nvarchar(50),

 @OrderDate datetime,

 @ShipDate datetime,

 @OrderID int OUTPUT

)

AS

BEGIN TRAN AddOrder

/* Create the Order header */

INSERT INTO CMRC_Orders

(

 CustomerID,

 OrderDate,

 ShipDate

)

VALUES

(

 @CustomerID,

 @OrderDate,

 @ShipDate

)

SELECT

 @OrderID = @@Identity

/* Copy items from given shopping cart to OrdersDetail table for given OrderID*/

INSERT INTO CMRC_OrderDetails

(

 OrderID,

 ProductID,

 Quantity,

 UnitCost

)

SELECT

 @OrderID,

 CMRC_ShoppingCart.ProductID,

 Quantity,

 CMRC_Products.UnitCost

FROM

 CMRC_ShoppingCart

 INNER JOIN CMRC_Products ON CMRC_ShoppingCart.ProductID = CMRC_Products.ProductID

WHERE

 CartID = @CartID

/* Removal of items from user's shopping cart will happen on the business layer*/

EXEC CMRC_ShoppingCartEmpty @CartID

COMMIT TRAN AddOrder

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_OrdersDetail

(

 @OrderID int,

 @CustomerID int,

 @OrderDate datetime OUTPUT,

 @ShipDate datetime OUTPUT,

 @OrderTotal money OUTPUT

)

AS

/* Return the order dates from the Orders

 Also verifies the order exists for this customer. */

SELECT

 @OrderDate = OrderDate,

 @ShipDate = ShipDate

FROM

 CMRC_Orders

WHERE

 OrderID = @OrderID

 AND

 CustomerID = @CustomerID

IF @@Rowcount = 1

BEGIN

/* First, return the OrderTotal out param */

SELECT

 @OrderTotal = Cast(SUM(CMRC_OrderDetails.Quantity * CMRC_OrderDetails.UnitCost) as money)

FROM

 CMRC_OrderDetails

WHERE

 OrderID= @OrderID

/* Then, return the recordset of info */

SELECT

 CMRC_Products.ProductID,

 CMRC_Products.ModelName,

 CMRC_Products.ModelNumber,

 CMRC_OrderDetails.UnitCost,

 CMRC_OrderDetails.Quantity,

 (CMRC_OrderDetails.Quantity * CMRC_OrderDetails.UnitCost) as ExtendedAmount

FROM

 CMRC_OrderDetails

 INNER JOIN CMRC_Products ON CMRC_OrderDetails.ProductID = CMRC_Products.ProductID

WHERE

 OrderID = @OrderID

END

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_OrdersList

(

 @CustomerID int

)

As

SELECT

 CMRC_Orders.OrderID,

 Cast(sum(CMRC_OrderDetails.Quantity*CMRC_OrderDetails.UnitCost) as money) as OrderTotal,

 CMRC_Orders.OrderDate,

 CMRC_Orders.ShipDate

FROM

 CMRC_Orders

 INNER JOIN CMRC_OrderDetails ON CMRC_Orders.OrderID = CMRC_OrderDetails.OrderID

GROUP BY

 CustomerID,

 CMRC_Orders.OrderID,

 CMRC_Orders.OrderDate,

 CMRC_Orders.ShipDate

HAVING

 CMRC_Orders.CustomerID = @CustomerID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ProductCategoryList

AS

SELECT

 CategoryID,

 CategoryName

FROM

 CMRC_Categories

ORDER BY

 CategoryName ASC

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ProductDetail

(

 @ProductID int,

 @ModelNumber nvarchar(50) OUTPUT,

 @ModelName nvarchar(50) OUTPUT,

 @ProductImage nvarchar(50) OUTPUT,

 @UnitCost money OUTPUT,

 @Description nvarchar(4000) OUTPUT

)

AS

SELECT

 @ProductID = ProductID,

 @ModelNumber = ModelNumber,

 @ModelName = ModelName,

 @ProductImage = ProductImage,

 @UnitCost = UnitCost,

 @Description = Description

FROM

 CMRC_Products

WHERE

 ProductID = @ProductID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ProductSearch

(

 @Search nvarchar(255)

)

AS

SELECT

 ProductID,

 ModelName,

 ModelNumber,

 UnitCost,

 ProductImage

FROM

 CMRC_Products

WHERE

 ModelNumber LIKE '%' + @Search + '%'

 OR

 ModelName LIKE '%' + @Search + '%'

 OR

 Description LIKE '%' + @Search + '%'

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ProductsByCategory

(

 @CategoryID int

)

AS

SELECT

 ProductID,

 ModelName,

 UnitCost,

 ProductImage

FROM

 CMRC_Products

WHERE

 CategoryID = @CategoryID

ORDER BY

 ModelName,

 ModelNumber

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartAddItem

(

 @CartID nvarchar(50),

 @ProductID int,

 @Quantity int

)

As

DECLARE @CountItems int

SELECT

 @CountItems = Count(ProductID)

FROM

 CMRC_ShoppingCart

WHERE

 ProductID = @ProductID

 AND

 CartID = @CartID

IF @CountItems > 0 /* There are items - update the current quantity */

 UPDATE

 CMRC_ShoppingCart

 SET

 Quantity = (@Quantity + CMRC_ShoppingCart.Quantity)

 WHERE

 ProductID = @ProductID

 AND

 CartID = @CartID

ELSE /* New entry for this Cart. Add a new record */

 INSERT INTO CMRC_ShoppingCart

 (

 CartID,

 Quantity,

 ProductID

)

 VALUES

 (

 @CartID,

 @Quantity,

 @ProductID

)

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartEmpty

(

 @CartID nvarchar(50)

)

AS

DELETE FROM CMRC_ShoppingCart

WHERE

 CartID = @CartID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartItemCount

(

 @CartID nvarchar(50),

 @ItemCount int OUTPUT

)

AS

SELECT

 @ItemCount = COUNT(ProductID)

FROM

 CMRC_ShoppingCart

WHERE

 CartID = @CartID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartList

(

 @CartID nvarchar(50)

)

AS

SELECT

 CMRC_Products.ProductID,

 CMRC_Products.ModelName,

 CMRC_Products.ModelNumber,

 CMRC_ShoppingCart.Quantity,

 CMRC_Products.UnitCost,

 Cast((CMRC_Products.UnitCost * CMRC_ShoppingCart.Quantity) as money) as ExtendedAmount

FROM

 CMRC_Products,

 CMRC_ShoppingCart

WHERE

 CMRC_Products.ProductID = CMRC_ShoppingCart.ProductID

 AND

 CMRC_ShoppingCart.CartID = @CartID

ORDER BY

 CMRC_Products.ModelName,

 CMRC_Products.ModelNumber

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartMigrate

(

 @OriginalCartId nvarchar(50),

 @NewCartId nvarchar(50)

)

AS

UPDATE

 CMRC_ShoppingCart

SET

 CartID = @NewCartId

WHERE

 CartID = @OriginalCartId

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartRemoveAbandoned

AS

DELETE FROM CMRC_ShoppingCart

WHERE

 DATEDIFF(dd, DateCreated, GetDate()) > 1

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartRemoveItem

(

 @CartID nvarchar(50),

 @ProductID int

)

AS

DELETE FROM CMRC_ShoppingCart

WHERE

 CartID = @CartID

 AND

 ProductID = @ProductID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartTotal

(

 @CartID nvarchar(50),

 @TotalCost money OUTPUT

)

AS

SELECT

 @TotalCost = SUM(CMRC_Products.UnitCost * CMRC_ShoppingCart.Quantity)

FROM

 CMRC_ShoppingCart,

 CMRC_Products

WHERE

 CMRC_ShoppingCart.CartID = @CartID

 AND

 CMRC_Products.ProductID = CMRC_ShoppingCart.ProductID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

CREATE Procedure CMRC_ShoppingCartUpdate

(

 @CartID nvarchar(50),

 @ProductID int,

 @Quantity int

)

AS

UPDATE CMRC_ShoppingCart

SET

 Quantity = @Quantity

WHERE

 CartID = @CartID

 AND

 ProductID = @ProductID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

-- point to proper DB

use [Commerce]

GO

set nocount on

GO

delete from [dbo].[CMRC_ShoppingCart]

delete from [dbo].[CMRC_OrderDetails]

delete from [dbo].[CMRC_Products]

delete from [dbo].[CMRC_Orders]

delete from [dbo].[CMRC_Customers]

delete from [dbo].[CMRC_Categories]

GO

SET IDENTITY_INSERT [dbo].[CMRC_Categories] ON

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (14, N'Communications')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (15, N'Deception')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (16, N'Travel')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (17, N'Protection')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (18, N'Munitions')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (19, N'Tools')

Insert into [dbo].[CMRC_Categories] ([CategoryID], [CategoryName]) Values (20, N'General')

SET IDENTITY_INSERT [dbo].[CMRC_Categories] OFF

GO

/* UserID: admin@sw.com

Password: Admin

*/

/* UserID: commerceadmin@sw.com

Password: commerceadmin
*/

/* UserID: jmt@sw.com

Password: test

*/

/* UserID: billgates@sw.com

Password: test

*/

SET IDENTITY_INSERT [dbo].[CMRC_Customers] ON

Insert into [dbo].[CMRC_Customers] ([CustomerID], [FullName], [EmailAddress], [Password], [Admins]) Values (25, N'James Thomas', N'jmt@sw.com', N'C8-05-9E-2E-C7-41-9F-59-0E-79-D7-F1-B7-74-BF-E6', 0)

Insert into [dbo].[CMRC_Customers] ([CustomerID], [FullName], [EmailAddress], [Password], [Admins]) Values (34, N'admin', N'admin@sw.com', N'19-A2-85-41-44-B6-3A-8F-76-17-A6-F2-25-01-9B-12', 1)

Insert into [dbo].[CMRC_Customers] ([CustomerID], [FullName], [EmailAddress], [Password], [Admins]) Values (35, N'commerceadmin', N'commerceadmin@sw.com', N'DB-B6-D5-CD-5A-08-79-B2-5C-17-43-97-A1-5E-92-C3', 1)

Insert into [dbo].[CMRC_Customers] ([CustomerID], [FullName], [EmailAddress], [Password], [Admins]) Values (23, N'Bill Gates', N'billgates@sw.com', N'C8-05-9E-2E-C7-41-9F-59-0E-79-D7-F1-B7-74-BF-E6', 0)

SET IDENTITY_INSERT [dbo].[CMRC_Customers] OFF

GO

SET IDENTITY_INSERT [dbo].[CMRC_Orders] ON

Insert into [dbo].[CMRC_Orders] ([OrderID], [CustomerID], [OrderDate], [ShipDate]) Values (118, 25, '20040126 21:11:24:360', '20040128 21:11:24:360')

Insert into [dbo].[CMRC_Orders] ([OrderID], [CustomerID], [OrderDate], [ShipDate]) Values (119, 25, '20040126 21:11:37:940', '20040128 21:11:37:940')

Insert into [dbo].[CMRC_Orders] ([OrderID], [CustomerID], [OrderDate], [ShipDate]) Values (115, 25, '20040126 21:09:55:113', '20040128 21:09:55:113')

Insert into [dbo].[CMRC_Orders] ([OrderID], [CustomerID], [OrderDate], [ShipDate]) Values (116, 25, '20040126 21:10:15:593', '20040127 21:10:15:593')

Insert into [dbo].[CMRC_Orders] ([OrderID], [CustomerID], [OrderDate], [ShipDate]) Values (117, 25, '20040126 21:10:35:220', '20040127 21:10:35:220')

SET IDENTITY_INSERT [dbo].[CMRC_Orders] OFF

GO

SET IDENTITY_INSERT [dbo].[CMRC_Products] ON

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (355, 16, N'RU007', N'Rain Racer 2000', N'image.gif', 1499.99, N'Looks like an ordinary bumbershoot, but don''t be fooled! Simply place Rain Racer''s tip on the ground and press the release latch. Within seconds, this ordinary rain umbrella converts into a two-wheeled gas-powered mini-scooter. Goes from 0 to 60 in 7.5 seconds - even in a driving rain! Comes in black, blue, and candy-apple red.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (356, 20, N'STKY1', N'Edible Tape', N'image.gif', 3.99, N'The latest in personal survival gear, the STKY1 looks like a roll of ordinary office tape, but can save your life in an emergency. Just remove the tape roll and place in a kettle of boiling water with mixed vegetables and a ham shank. In just 90 minutes you have a great tasking soup that really sticks to your ribs! Herbs and spices not included.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (357, 16, N'P38', N'Escape Vehicle (Air)', N'image.gif', 2.99, N'In a jam, need a quick escape? Just whip out a sheet of our patented P38 paper and, with a few quick folds, it converts into a lighter-than-air escape vehicle! Especially effective on windy days - no fuel required. Comes in several sizes including letter, legal, A10, and B52.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (358, 19, N'NOZ119', N'Extracting Tool', N'image.gif', 199, N'High-tech miniaturized extracting tool. Excellent for extricating foreign objects from your person. Good for picking up really tiny stuff, too! Cleverly disguised as a pair of tweezers.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (359, 16, N'PT109', N'Escape Vehicle (Water)', N'image.gif', 1299.99, N'Camouflaged as stylish wing tips, these ''shoes'' get you out of a jam on the high seas instantly. Exposed to water, the pair transforms into speedy miniature inflatable rafts. Complete with 76 HP outboard motor, these hip heels will whisk you to safety even in the roughest of seas. Warning: Not recommended for beachwear.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (360, 14, N'RED1', N'Communications Device', N'image.gif', 49.99, N'Subversively stay in touch with this miniaturized wireless communications device. Speak into the pointy end and listen with the other end! Voice-activated dialing makes calling for backup a breeze. Excellent for undercover work at schools, rest homes, and most corporate headquarters. Comes in assorted colors.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (362, 14, N'LK4TLNT', N'Persuasive Pencil', N'image.gif', 1.99, N'Persuade anyone to see your point of view! Captivate your friends and enemies alike! Draw the crime-scene or map out the chain of events. All you need is several years of training or copious amounts of natural talent. You''re halfway there with the Persuasive Pencil. Purchase this item with the Retro Pocket Protector Rocket Pack for optimum disguise.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (363, 18, N'NTMBS1', N'Multi-Purpose Rubber Band', N'image.gif', 1.99, N'One of our most popular items! A band of rubber that stretches 20 times the original size. Uses include silent one-to-one communication across a crowded room, holding together a pack of Persuasive Pencils, and powering lightweight aircraft. Beware, stretching past 20 feet results in a painful snap and a rubber strip.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (364, 19, N'NE1RPR', N'Universal Repair System', N'image.gif', 4.99, N'Few people appreciate the awesome repair possibilities contained in a single roll of duct tape. In fact, some houses in the Midwest are made entirely out of the miracle material contained in every roll! Can be safely used to repair cars, computers, people, dams, and a host of other items.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (365, 19, N'BRTLGT1', N'Effective Flashlight', N'image.gif', 9.99, N'The most powerful darkness-removal device offered to creatures of this world. Rather than amplifying existing/secondary light, this handy product actually REMOVES darkness allowing you to see with your own eyes. Must-have for nighttime operations. An affordable alternative to the Night Vision Goggles.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (367, 18, N'INCPPRCLP', N'The Incredible Versatile Paperclip', N'image.gif', 1.49, N'This 0. 01 oz piece of metal is the most versatile item in any respectable spy''s toolbox and will come in handy in all sorts of situations. Serves as a wily lock pick, aerodynamic projectile (used in conjunction with Multi-Purpose Rubber Band), or escape-proof finger cuffs. Best of all, small size and pliability means it fits anywhere undetected. Order several today!')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (368, 16, N'DNTRPR', N'Toaster Boat', N'image.gif', 19999.98, N'Turn breakfast into a high-speed chase! In addition to toasting bagels and breakfast pastries, this inconspicuous toaster turns into a speedboat at the touch of a button. Boasting top speeds of 60 knots and an ultra-quiet motor, this valuable item will get you where you need to be ... fast! Best of all, Toaster Boat is easily repaired using a Versatile Paperclip or a standard butter knife. Manufacturer''s Warning: Do not submerge electrical items.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (370, 17, N'TGFDA', N'Multi-Purpose Towelette', N'image.gif', 12.99, N'Don''t leave home without your monogrammed towelette! Made from lightweight, quick-dry fabric, this piece of equipment has more uses in a spy''s day than a Swiss Army knife. The perfect all-around tool while undercover in the locker room: serves as towel, shield, disguise, sled, defensive weapon, whip and emergency food source. Handy bail gear for the Toaster Boat. Monogram included with purchase price.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (371, 18, N'WOWPEN', N'Mighty Mighty Pen', N'image.gif', 129.99, N'Some spies claim this item is more powerful than a sword. After examining the titanium frame, built-in blowtorch, and Nerf dart-launcher, we tend to agree!')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (372, 20, N'ICNCU', N'Perfect-Vision Glasses', N'image.gif', 129.99, N'Avoid painful and potentially devastating laser eye surgery and contact lenses. Cheaper and more effective than a visit to the optometrist, these Perfect-Vision Glasses simply slide over nose and eyes and hook on ears. Suddenly you have 20/20 vision! Glasses also function as HUD (Heads Up Display) for most European sports cars manufactured after 1992.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (373, 17, N'LKARCKT', N'Pocket Protector Rocket Pack', N'image.gif', 1.99, N'Any debonair spy knows that this accoutrement is coming back in style. Flawlessly protects the pockets of your short-sleeved oxford from unsightly ink and pencil marks. But there''s more! Strap it on your back and it doubles as a rocket pack. Provides enough turbo-thrust for a 250-pound spy or a passel of small children. Maximum travel radius: 3000 miles.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (374, 15, N'DNTGCGHT', N'Counterfeit Creation Wallet', N'image.gif', 999.99, N'Don''t be caught penniless in Prague without this hot item! Instantly creates replicas of most common currencies! Simply place rocks and water in the wallet, close, open up again, and remove your legal tender!')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (375, 16, N'WRLD00', N'Global Navigational System', N'image.gif', 29.99, N'No spy should be without one of these premium devices. Determine your exact location with a quick flick of the finger. Calculate destination points by spinning, closing your eyes, and stopping it with your index finger.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (376, 15, N'CITSME9', N'Cloaking Device', N'image.gif', 9999.99, N'Worried about detection on your covert mission? Confuse mission-threatening forces with this cloaking device. Powerful new features include string-activated pre-programmed phrases such as "Danger! Danger!", "Reach for the sky!", and other anti-enemy expressions. Hyper-reactive karate chop action deters even the most persistent villain.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (377, 15, N'BME007', N'Identity Confusion Device', N'image.gif', 6.99, N'Never leave on an undercover mission without our Identity Confusion Device! If a threatening person approaches, deploy the device and point toward the oncoming individual. The subject will fail to recognize you and let you pass unnoticed. Also works well on dogs.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (379, 17, N'SHADE01', N'Ultra Violet Attack Defender', N'image.gif', 89.99, N'Be safe and suave. A spy wearing this trendy article of clothing is safe from ultraviolet ray-gun attacks. Worn correctly, the Defender deflects rays from ultraviolet weapons back to the instigator. As a bonus, also offers protection against harmful solar ultraviolet rays, equivalent to SPF 50.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (378, 17, N'SQUKY1', N'Guard Dog Pacifier', N'image.gif', 14.99, N'Pesky guard dogs become a spy''s best friend with the Guard Dog Pacifier. Even the most ferocious dogs suddenly act like cuddly kittens when they see this prop. Simply hold the device in front of any threatening dogs, shaking it mildly. For tougher canines, a quick squeeze emits an irresistible squeak that never fails to place the dog under your control.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (382, 20, N'CHEW99', N'Survival Bar', N'image.gif', 6.99, N'Survive for up to four days in confinement with this handy item. Disguised as a common eraser, it''s really a high-calorie food bar. Stranded in hostile territory without hope of nourishment? Simply break off a small piece of the eraser and chew vigorously for at least twenty minutes. Developed by the same folks who created freeze-dried ice cream, powdered drink mix, and glow-in-the-dark shoelaces.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (402, 20, N'C00LCMB1', N'Telescoping Comb', N'image.gif', 399.99, N'Use the Telescoping Comb to track down anyone, anywhere! Deceptively simple, this is no normal comb. Flip the hidden switch and two telescoping lenses project forward creating a surprisingly powerful set of binoculars (50X). Night-vision add-on is available for midnight hour operations.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (384, 19, N'FF007', N'Eavesdrop Detector', N'image.gif', 99.99, N'Worried that counteragents have placed listening devices in your home or office? No problem! Use our bug-sweeping wiener to check your surroundings for unwanted surveillance devices. Just wave the frankfurter around the room ... when bugs are detected, this "foot-long" beeps! Comes complete with bun, relish, mustard, and headphones for privacy.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (385, 16, N'LNGWADN', N'Escape Cord', N'image.gif', 13.99, N'Any agent assigned to mountain terrain should carry this ordinary-looking extension cord ... except that it''s really a rappelling rope! Pull quickly on each end to convert the electrical cord into a rope capable of safely supporting up to two agents. Comes in various sizes including Mt McKinley, Everest, and Kilimanjaro. WARNING: To prevent serious injury, be sure to disconnect from wall socket before use.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (386, 17, N'1MOR4ME', N'Cocktail Party Pal', N'image.gif', 69.99, N'Do your assignments have you flitting from one high society party to the next? Worried about keeping your wits about you as you mingle witih the champagne-and-caviar crowd? No matter how many drinks you''re offered, you can safely operate even the most complicated heavy machinery as long as you use our model 1MOR4ME alcohol-neutralizing coaster. Simply place the beverage glass on the patented circle to eliminate any trace of alcohol in the drink.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (387, 20, N'SQRTME1', N'Remote Foliage Feeder', N'image.gif', 9.99, N'Even spies need to care for their office plants. With this handy remote watering device, you can water your flowers as a spy should, from the comfort of your chair. Water your plants from up to 50 feet away. Comes with an optional aiming system that can be mounted to the top for improved accuracy.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (400, 15, N'THNKDKE1', N'Hologram Cufflinks', N'image.gif', 799.99, N'Just point, and a turn of the wrist will project a hologram of you up to 100 yards away. Sneaking past guards will be child''s play when you''ve sent them on a wild goose chase. Note: Hologram adds ten pounds to your appearance.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (401, 14, N'TCKLR1', N'Fake Moustache Translator', N'image.gif', 599.99, N'Fake Moustache Translator attaches between nose and mouth to double as a language translator and identity concealer. Sophisticated electronics translate your voice into the desired language. Wriggle your nose to toggle between Spanish, English, French, and Arabic. Excellent on diplomatic missions.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (404, 14, N'JWLTRANS6', N'Interpreter Earrings', N'image.gif', 459.99, N'The simple elegance of our stylish monosex earrings accents any wardrobe, but their clean lines mask the sophisticated technology within. Twist the lower half to engage a translator function that intercepts spoken words in any language and converts them to the wearer''s native tongue. Warning: do not use in conjunction with our Fake Moustache Translator product, as the resulting feedback loop makes any language sound like Pig Latin.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (406, 19, N'GRTWTCH9', N'Multi-Purpose Watch', N'image.gif', 399.99, N'In the tradition of famous spy movies, the Multi Purpose Watch comes with every convenience! Installed with lighter, TV, camera, schedule-organizing software, MP3 player, water purifier, spotlight, and tire pump. Special feature: Displays current date and time. Kitchen sink add-on will be available in the fall of 2001.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (388, 20, N'ICUCLRLY00', N'Contact Lenses', N'image.GIF', 59.99, N'Traditional binoculars and night goggles can be bulky, especially for assignments in confined areas. The problem is solved with these patent-pending contact lenses, which give excellent visibility up to 100 miles. New feature: now with a night vision feature that permits you to see in complete darkness! Contacts now come in a variety of fashionable colors for coordinating with your favorite ensembles.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (389, 20, N'OPNURMIND', N'Telekinesis Spoon', N'image.gif', 2.99, N'Learn to move things with your mind! Broaden your mental powers using this training device to hone telekinesis skills. Simply look at the device, concentrate, and repeat "There is no spoon" over and over.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (390, 19, N'ULOST007', N'Rubber Stamp Beacon', N'image.gif', 129.99, N'With the Rubber Stamp Beacon, you''ll never get lost on your missions again. As you proceed through complicated terrain, stamp a stationary object with this device. Once an object has been stamped, the stamp''s patented ink will emit a signal that can be detected up to 153.2 miles away by the receiver embedded in the device''s case. WARNING: Do not expose ink to water.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (391, 17, N'BSUR2DUC', N'Bullet Proof Facial Tissue', N'image.gif', 79.99, N'Being a spy can be dangerous work. Our patented Bulletproof Facial Tissue gives a spy confidence that any bullets in the vicinity risk-free. Unlike traditional bulletproof devices, these lightweight tissues have amazingly high tensile strength. To protect the upper body, simply place a tissue in your shirt pocket. To protect the lower body, place a tissue in your pants pocket. If you do not have any pockets, be sure to check out our Bulletproof Tape. 100 tissues per box. WARNING: Bullet must not be moving for device to successfully stop penetration.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (393, 20, N'NOBOOBOO4U', N'Speed Bandages', N'image.GIF', 3.99, N'Even spies make mistakes. Barbed wire and guard dogs pose a threat of injury for the active spy. Use our special bandages on cuts and bruises to rapidly heal the injury. Depending on the severity of the wound, the bandages can take between 10 to 30 minutes to completely heal the injury.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (394, 15, N'BHONST93', N'Correction Fluid', N'image.gif', 1.99, N'Disguised as typewriter correction fluid, this scientific truth serum forces subjects to correct anything not perfectly true. Simply place a drop of the special correction fluid on the tip of the subject''s nose. Within seconds, the suspect will automatically correct every lie. Effects from Correction Fluid last approximately 30 minutes per drop. WARNING: Discontinue use if skin appears irritated.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (396, 19, N'BPRECISE00', N'Dilemma Resolution Device', N'image.gif', 11.99, N'Facing a brick wall? Stopped short at a long, sheer cliff wall? Carry our handy lightweight calculator for just these emergencies. Quickly enter in your dilemma and the calculator spews out the best solutions to the problem. Manufacturer Warning: Use at own risk. Suggestions may lead to adverse outcomes.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (397, 14, N'LSRPTR1', N'Nonexplosive Cigar', N'image.gif', 29.99, N'Contrary to popular spy lore, not all cigars owned by spies explode! Best used during mission briefings, our Nonexplosive Cigar is really a cleverly-disguised, top-of-the-line, precision laser pointer. Make your next presentation a hit.')

Insert into [dbo].[CMRC_Products] ([ProductID], [CategoryID], [ModelNumber], [ModelName], [ProductImage], [UnitCost], [Description]) Values (399, 20, N'QLT2112', N'Document Transportation System', N'image.gif', 299.99, N'Keep your stolen Top Secret documents in a place they''ll never think to look! This patent leather briefcase has multiple pockets to keep documents organized. Top quality craftsmanship to last a lifetime.')

SET IDENTITY_INSERT [dbo].[CMRC_Products] OFF

GO

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 355, 1, 1499.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 357, 1, 2.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 359, 1, 1299.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 368, 1, 19999.98)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 375, 1, 29.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (118, 385, 1, 13.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (119, 374, 1, 999.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (119, 376, 1, 9999.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (119, 377, 1, 6.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (119, 394, 1, 1.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (119, 400, 1, 799.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (115, 355, 1, 1499.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (115, 362, 1, 1.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (115, 367, 1, 1.49)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (115, 377, 1, 6.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (115, 401, 1, 599.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 359, 1, 1299.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 360, 1, 49.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 362, 1, 1.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 363, 1, 1.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 397, 1, 29.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 400, 1, 799.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 401, 1, 599.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (116, 404, 1, 459.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (117, 362, 1, 1.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (117, 364, 1, 4.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (117, 374, 1, 999.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (117, 390, 1, 129.99)

Insert into [dbo].[CMRC_OrderDetails] ([OrderID], [ProductID], [Quantity], [UnitCost]) Values (117, 406, 1, 399.99)

GO

SET IDENTITY_INSERT [dbo].[CMRC_ShoppingCart] ON

Insert into [dbo].[CMRC_ShoppingCart] ([RecordID], [CartID], [Quantity], [ProductID], [DateCreated]) Values (8, N'f33930e9-d9e5-4ac2-8bfb-05c742a0234c', 1, 385, '20040111 13:42:00:840')

SET IDENTITY_INSERT [dbo].[CMRC_ShoppingCart] OFF

GO

ALTER TABLE CMRC_Customers ADD ISOCountryCode nvarchar(5);

GO

ALTER TABLE CMRC_Customers ADD Street nvarchar(50);

GO

ALTER TABLE CMRC_Customers ADD HouseNo nvarchar(50);

GO

ALTER TABLE CMRC_Customers ADD PostNo nvarchar(50);

GO

ALTER TABLE CMRC_Customers ADD City nvarchar(50);

GO

ALTER TABLE CMRC_Customers ADD PhoneNo nvarchar(50);

go

ALTER TABLE CMRC_Orders ADD SenderId nvarchar(10);

GO

ALTER TABLE CMRC_Orders ADD ProductCode nvarchar(50);

GO

ALTER TABLE CMRC_Orders ADD PackageNumber nvarchar(50);

GO

ALTER TABLE CMRC_Orders ADD Payment nvarchar(50);

GO

ALTER TABLE CMRC_Orders ADD Status nvarchar(50);

GO

ALTER TABLE [dbo].[CMRC_Customers] DROP

CONSTRAINT [IX_Customers]

GO

/* -- */

begin tran

UPDATE CMRC_Customers set ISOCountryCode = 'DK'

COMMIT tran

go

/* -- */

begin tran

UPDATE CMRC_Orders set Payment = 'Card'

COMMIT tran

go

/* -- */

begin tran

DROP Procedure CMRC_CustomerAdd;

commit tran

go

/* -- */

CREATE Procedure CMRC_CustomerAdd

(

 @FullName nvarchar(50),

 @Email nvarchar(50),

 @ISOCountryCode nvarchar(5),

 @Street nvarchar(50),

 @HouseNo nvarchar(50),

 @PostNo nvarchar(50),

 @City nvarchar(50),

 @PhoneNo nvarchar(50),

 @CustomerID int OUTPUT

)

AS

INSERT INTO CMRC_Customers

(

 FullName,

 EmailAddress,

 ISOCountryCode,

 Street,

 HouseNo,

 PostNo,

 City,

 PhoneNo

)

VALUES

(

 @FullName,

 @Email,

 @ISOCountryCode,

 @Street,

 @HouseNo,

 @PostNo,

 @City,

 @PhoneNo

)

SELECT

 @CustomerID = @@Identity

GO

/* -- */

begin tran

CREATE TABLE CMRC_Country

(

Land nvarchar(20),

ISOCountryCode nvarchar(5) CONSTRAINT PK_CMRC_Country PRIMARY KEY

)

COMMIT tran

GO

/* --- */

begin tran

Insert into CMRC_Country (Land, ISOCountryCode) Values ('Danmark', 'DK')

Insert into CMRC_Country (Land, ISOCountryCode) Values ('Litauen', 'LT')

commit tran

go

/* --- */

begin tran

CREATE TABLE CMRC_Payment

(

PaymentType nvarchar(50) CONSTRAINT PK_CMRC_Payment PRIMARY KEY,

PcPackValue nvarchar(20),

C5Value nvarchar(20)

)

commit tran

GO

/* --- */

begin tran

Insert into CMRC_Payment (PaymentType, PcPackValue, C5Value) Values ('COD', 'Z07', 'PO')

Insert into CMRC_Payment (PaymentType, PcPackValue, C5Value) Values ('Post_Opkrevning', 'Z45', 'DK')

commit tran

go

/* --- */

CREATE Procedure CMRC_CountryList

AS

SELECT

 Land,

 ISOCountryCode

FROM

 CMRC_Country

ORDER BY

 Land ASC

GO

/* --- */

CREATE Procedure CMRC_PaymentList

AS

SELECT

 PaymentType

FROM

 CMRC_Payment

ORDER BY

 PaymentType ASC

GO

/* --- */

begin tran

DROP Procedure CMRC_OrdersAdd;

commit tran

go

/* --- */

CREATE Procedure CMRC_OrdersAdd

(

 @CustomerID int,

 @CartID nvarchar(50),

 @OrderDate datetime,

 @ShipDate datetime,

 @OrderID int OUTPUT,

 @Payment nvarchar(50)

)

AS

BEGIN TRAN AddOrder

/* Create the Order header */

INSERT INTO CMRC_Orders

(

 CustomerID,

 OrderDate,

 ShipDate,

 Payment

)

VALUES

(

 @CustomerID,

 @OrderDate,

 @ShipDate,

 @Payment

)

SELECT

 @OrderID = @@Identity

/* Copy items from given shopping cart to OrdersDetail table for given OrderID*/

INSERT INTO CMRC_OrderDetails

(

 OrderID,

 ProductID,

 Quantity,

 UnitCost

)

SELECT

 @OrderID,

 CMRC_ShoppingCart.ProductID,

 Quantity,

 CMRC_Products.UnitCost

FROM

 CMRC_ShoppingCart

 INNER JOIN CMRC_Products ON CMRC_ShoppingCart.ProductID = CMRC_Products.ProductID

WHERE

 CartID = @CartID

/* Removal of items from user's shopping cart will happen on the business layer*/

EXEC CMRC_ShoppingCartEmpty @CartID

COMMIT TRAN AddOrder

GO

/* --- */

begin tran

ALTER TABLE CMRC_Customers ADD

CONSTRAINT FK_CMRC_Customers_CMRC_Country FOREIGN KEY

(

ISOCountryCode

) REFERENCES CMRC_Country (

ISOCountryCode

) ON DELETE CASCADE ON UPDATE CASCADE NOT FOR REPLICATION

commit tran

GO

/* --- */

begin tran

ALTER TABLE CMRC_Orders ADD

CONSTRAINT FK_CMRC_Orders_CMRC_Payment FOREIGN KEY

(

Payment

) REFERENCES CMRC_Payment (

PaymentType

) ON DELETE CASCADE ON UPDATE CASCADE NOT FOR REPLICATION

commit tran

GO

/* --- */

APPENDIX A7: codes for Construction iteration II

public class C5Writer

using System;

using System.IO;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// C5Writer Class

//

// This class is responsible for writing comma separated files to C5

//

//***

public class C5Writer

{

public C5Writer()

{

}

//***

//

// writeToOrdKart(OrdKart ordKart) Method

//

// This method generates a fileString

// and adding the line throw

// WriteFileAddLine(fileString, "DebKart.kom");

//

//***

public void writeToDebKart(DebKart debKart)

{

string fileString;

fileString =
debKart.Laas +","

+ "\"" + debKart.Konto + "\","

+ "\"" + debKart.Navn + "\","

+ "\"" + debKart.Adresse1 + "\","

+ "\"" + debKart.Adresse2 + "\","

+ "\"" + debKart.PostBy + "\","

+ "\"" + debKart.Land + "\","

+ "\"" + debKart.Attention + "\","

+ "\"" + debKart.Konto + "\","//debKart.Telefon + "\","

+ "\"" + debKart.Telefax + "\","

+ "\"" + debKart.Fakturakonto + "\","

+ "\"" + debKart.Gruppe + "\","

+ debKart.FastRabat + ","

+ debKart.Godkendt + ","

+ "\"" + debKart.Prisgruppe + "\","

+ "\"" + debKart.Rabatgruppe + "\","

+ "\"" + debKart.Kasserabat + "\","

+ "\"" + debKart.Billede + "\","

+ "\"" + debKart.Valuta + "\","

+ debKart.Sprog + ","

+ "\"" + debKart.Betaling + "\","

+ "\"" + debKart.Levering + "\","

+ debKart.Spaerret + ","

+ "\"" + debKart.Saelger + "\","

+ "\"" + debKart.Moms + "\","

+ debKart.SLETStatistik + ","

+ "\"" + debKart.Gironummer + "\","

+ "\"" + debKart.Momsnummer + "\","

+ "\"" + debKart.Rente + "\","

+ "\"" + debKart.Afdeling + "\","

+ debKart.Rykkerkode + ","

+ debKart.Engangskunde + ","

+ debKart.Beholdning + ","

+ "\"" + debKart.EDIadresse + "\","

+ debKart.Saldo + ","

+ debKart.Saldo30 + ","

+ debKart.Saldo60 + ","

+ debKart.Saldo90 + ","

+ debKart.Saldo120 + ","

+ debKart.SaldoOver120 + ","

+ debKart.Forfalden + ","

+ "\"" + debKart.Beregnet + "\","

+ debKart.SaldoMax + ","

+ debKart.SaldoDKK + ","

+ "\"" + debKart.Sogenavn + "\","

+ debKart.SLETTransport + ","

+ debKart.Kontant + ","

+ "\"" + debKart.IndbetalMaade + "\","

+ "\"" + debKart.OrdreGruppe + "\","

+ "\"" + debKart.ProjektGruppe + "\","

+ "\"" + debKart.HandelsKode + "\","

+ "\"" + debKart.TransKode + "\","

+ "\"" + debKart.Email + "\","

+ "\"" + debKart.URL + "\","

+ "\"" + debKart.Mobil + "\"";

WriteFileAddLine(fileString, "DebKart.kom");

}

//***

//

// writeToOrdKart(OrdKart ordKart) Method

//

// This method generates a fileString

// and adding the line throw

// WriteFileAddLine(fileString, "OrdKart.kom");

//

//***

public void writeToOrdKart(OrdKart ordKart)

{

string fileString;

fileString = ordKart.Laas + ","//[Laas] [int]

+ "\"" + ordKart.Nummer + "\","//[Nummer] [varchar]

+ "\"" + ordKart.Sogenavn + "\","//[Sogenavn] [varchar]

+ "\"" + ordKart.Oprettet + "\","//[Oprettet] [smalldatetime]

+ "\"" + ordKart.Leveres + "\","//[Leveres] [smalldatetime]

+ "\"" + ordKart.Konto + "\","//[Konto] [varchar]

+ "\"" + ordKart.Navn + "\","//[Navn] [varchar]

+ "\"" + ordKart.Adresse1 + "\","//[Adresse1] [varchar]

+ "\"" + ordKart.Adresse2 + "\","//[Adresse2] [varchar]

+ "\"" + ordKart.PostBy + "\","//[PostBy] [varchar]

+ "\"" + ordKart.Land + "\","//[Land] [varchar]

+ "\"" + ordKart.Attention + "\","//[Attention] [varchar]

+ "\"" + ordKart.Telefon + "\","//[Telefon] [varchar]

+ "\"" + ordKart.Telefax + "\","//[Telefax] [varchar]

+ "\"" + ordKart.Fakturakonto + "\","//[Fakturakonto] [varchar]

+ "\"" + ordKart.Gruppe + "\","//[Gruppe] [varchar]

+ "\"" + ordKart.FastRabat + "\","//[FastRabat] [numeric]

+ "\"" + ordKart.Prisgruppe + "\","//[Prisgruppe] [varchar]

+ "\"" + ordKart.Rabatgruppe + "\","//[Rabatgruppe] [varchar]

+ "\"" + ordKart.Kasserabat + "\","//[Kasserabat] [varchar]

+ "\"" + ordKart.Valuta + "\","//[Valuta] [varchar]

+ ordKart.Sprog + ","//[Sprog] [tinyint]

+ "\"" + ordKart.Betaling + "\","//[Betaling] [varchar]

+ "\"" + ordKart.Levering + "\","//[Levering] [varchar]

+ "\"" + ordKart.Spaerret + "\","//[Spaerret] [tinyint]

+ "\"" + ordKart.Saelger + "\","//[Saelger] [varchar]

+ "\"" + ordKart.Moms + "\","//[Moms] [varchar]

+ ordKart.Beholdning + ","//[Beholdning] [tinyint]

+ "\"" + ordKart.Afdeling + "\","//[Afdeling] [varchar]

+ "\"" + ordKart.Gironummer + "\","//[Gironummer] [varchar]

+ "\"" + ordKart.Momsnummer + "\","//[Momsnummer] [varchar]

+ "\"" + ordKart.Billede + "\","//[Billede] [varchar]

+ "\"" + ordKart.Levering1 + "\","//[Levering1] [varchar]

+ "\"" + ordKart.Levering2 + "\","//[Levering2] [varchar]

+ "\"" + ordKart.Levering3 + "\","//[Levering3] [varchar]

+ "\"" + ordKart.Levering4 + "\","//[Levering4] [varchar]

+ "\"" + ordKart.LevLand + "\","//[LevLand] [varchar]

+ "\"" + ordKart.DeresRef + "\","//[DeresRef] [varchar]

+ "\"" + ordKart.VorRef + "\","//[VorRef] [varchar]

+ "\"" + ordKart.Ordre + "\","//[Ordre] [varchar]

+ ordKart.Momsberegnes + ","//[Momsberegnes] [numeric]

+ ordKart.Momsberegnet + ","//[Momsberegnet] [numeric]

+ ordKart.Rabat + ","//[Rabat] [numeric]

+ ordKart.AfgiftFM + ","//[AfgiftFM] [numeric]

+ ordKart.GebyrFM + ","//[GebyrFM] [numeric]

+ ordKart.Afrunding + ","//[Afrunding] [numeric]

+ ordKart.Momsbelob + ","//[Momsbelob] [numeric]

+ ordKart.AfgiftEM + ","//[AfgiftEM] [numeric]

+ ordKart.GebyrEM + ","//[GebyrEM] [numeric]

+ ordKart.Fakturatotal + ","//[Fakturatotal] [numeric]

+ ordKart.Liniemoms + ","//[Liniemoms] [numeric]

+ ordKart.Transaktion + ","//[Transaktion] [int]

+ ordKart.SLETStatistik + ","//[SLETStatistik] [tinyint]

+ ordKart.SLETTransport + ","//[SLETTransport] [tinyint]

+ ordKart.Godkendt + ","//[Godkendt] [tinyint]

+ "\"" + ordKart.LagerStatus + "\","//[LagerStatus] [tinyint]

+ "\"" + ordKart.FakturaFolgeseddel + "\","//[FakturaFolgeseddel] [varchar]

+ "\"" + ordKart.FakturaFolgeseddelDato + "\","//[FakturaFolgeseddelDato]

+ ordKart.Kontant + ","//[Kontant] [tinyint]

+ ordKart.Listekode + ","//[Listekode] [tinyint]

+ ordKart.Linierabat + ","//[Linierabat] [numeric]

+ ordKart.Varebelob + ","//[Varebelob] [numeric]

+ ordKart.Momsgrundlag + ","//[Momsgrundlag] [numeric]

+ "\"" + ordKart.HandelsKode + "\","//[HandelsKode] [varchar]

+ "\"" + ordKart.TransKode + "\","//[TransKode] [varchar]

+ "\"" + ordKart.ENummer + "\","//[eNummer] [varchar]

+ "\"" + ordKart.Email + "\","//[Email] [varchar]

+ "\"" + ordKart.LevEmail + "\","//[LevEmail] [varchar]

+ "\"" + ordKart.BetalingsId + "\"";//[BetalingsId] [varchar]

WriteFileAddLine(fileString, "OrdKart.kom");

}

//***

//

// writeToOrdLinies(ArrayList ordLinieList) Method

//

// This method generates a fileString-line for eache reacord in

// the ArrayList an adding the line to the file throw

// WriteFileAddLine(fileString, "OrdLinie.kom");

//

//***

public void writeToOrdLinies(ArrayList ordLinieList)

{

for (int i=0; i<ordLinieList.Count; i++)

{

OrdLinie ordLinie = (OrdLinie)ordLinieList[i];

string fileString;

fileString = "\"" + ordLinie.Nummer + "\","//[Nummer] [varchar]

+ (i+1) + ","//[Linienr] [numeric]

+ "\"" + ordLinie.Varenummer + "\","//[Varenummer] [varchar]

+ "\"" + ordLinie.Lokation + "\","//[Lokation] [varchar]

+ ordLinie.Antal + ","//[Antal] [numeric]

+ ordLinie.Pris + ","//[Pris] [numeric]

+ "\"" + ordLinie.Rabat + "\","//[Rabat] [numeric]

+ "\"" + ordLinie.Belob + "\","//[Belob] [numeric]

+ "\"" + ordLinie.Tekst + "\","//[Tekst] [varchar]

+ "\"" + ordLinie.Enhed + "\","//[Enhed] [varchar]

+ "\"" + ordLinie.Moms + "\","//[Moms] [varchar]

+ ordLinie.LeverNu + ","//[LeverNu] [numeric]

+ "\"" + ordLinie.Oprette + "\","//[Oprettet] [smalldatetime]

//+ "\"" + ordLinie.Levering + "\","//[Levering] [smalldatetime]

+ "\"" + ordLinie.Bekraeftet + "\","//[Bekraeftet] [smalldatetime]

+ "\"" + ordLinie.Konto + "\","//[Konto] [varchar]

+ "\"" + ordLinie.Serienummer + "\","//[Serienummer] [varchar]

+ ordLinie.Leveret + ","//[Leveret] [numeric]

+ ordLinie.Faktureret + ","//[Faktureret] [numeric]

+ ordLinie.LeveretDKK + ","//[LeveretDKK] [numeric]

+ ordLinie.Transaktion + ","//[Transaktion] [int]

+ ordLinie.Kostpris + ","//[Kostpris] [numeric]

+ ordLinie.SLETStatistik + ","//[SLETStatistik] [tinyint]

+ "\"" + ordLinie.SLETAfgift + "\","//[SLETAfgift] [varchar]

+ "\"" + ordLinie.LinieStatus + "\","//[LinieStatus] [tinyint]

+ "\"" + ordLinie.LagerStatus + "\","//[LagerStatus] [tinyint]

+ "\"" + ordLinie.Medarbejder + "\","//[Medarbejder] [varchar]

+ ordLinie.SamleRefId + ","//[SamleRefId] [int]

+ "\"" + ordLinie.OrdreRef + "\","//[OrdreRef] [varchar]

+ "\"" + ordLinie.HandelsKode + "\","//[HandelsKode] [varchar]

+ ordLinie.AntalFysisk + ","//[AntalFysisk] [numeric]

+ ordLinie.FjernListeKode + ","//[FjernListeKode] [tinyint]

+ "\"" + ordLinie.Prisenhed;//[Prisenhed] [numeric]

WriteFileAddLine(fileString, "OrdLinie.kom");

}

}

//***

//

// WriteFileAddLine(string fileString, string fileName) Method

//

// This method takes a fileString and a fileName and adder the

// fileString to the file whit the fileName if it exist or create

// the file whit the fileName and add the fileString if it not exist

//

//***

private void WriteFileAddLine(string fileString, string fileName)

{

FileInfo fileInfo = new FileInfo("C://C5Keyc300//IMPORT//"+fileName);

if (!fileInfo.Exists)

{

using (StreamWriter streamWriter = fileInfo.CreateText())

{

streamWriter.WriteLine(fileString);

}

}

if (fileInfo.Exists)

{

using (StreamWriter streamWriter = fileInfo.AppendText())

{

streamWriter.WriteLine(fileString);

}

}

}

}

}

public class ModelController
using System;

using System.Data;

using System.Text;

using System.Data.SqlClient;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// OrderController Class

//

// Responsible for creating and filling in the right data in the model objects

// and hold this object for later use

//

//***

public class ModelController

{

GeneralDataHolder generalDataHolder;

OrdLinies ordLinies;

ArrayList ordLinieList;

DebKart debKart;

OrdKart ordKart;

PcPackOrder pcPackOrder;

string orderid;

public ModelController(string orderid)

{

this.orderid = orderid;

generalDataHolder = new GeneralDataHolder();

ordLinies = new OrdLinies(generalDataHolder, orderid);

ordLinieList = ordLinies.fillDataSet();

debKart = new DebKart(generalDataHolder);

ordKart = new OrdKart(generalDataHolder);

pcPackOrder = new PcPackOrder(generalDataHolder);

fillModel();

}

//***

//

// fillModel() Method

//

// This method fills in data from the KIS database to the medel objects

//

//***

private string fillModel()

{

string error = "No error";

StringBuilder Query = new StringBuilder();

Query.Append(" SELECT DISTINCT CMRC_Orders.OrderID, ");

Query.Append(" CMRC_Customers.FullName, ");

Query.Append(" CMRC_Customers.EmailAddress, ");

Query.Append(" CMRC_Customers.Street, ");

Query.Append(" CMRC_Customers.HouseNo, ");

Query.Append(" CMRC_Customers.PostNo, ");

Query.Append(" CMRC_Customers.City, ");

Query.Append(" CMRC_Customers.PhoneNo, ");

Query.Append(" CMRC_Country.Land, ");

Query.Append(" CMRC_Country.ISOCountryCode, ");

Query.Append(" CMRC_Payment.PcPackValue, ");

Query.Append(" CMRC_Payment.C5Value ");

Query.Append(" FROM CMRC_Orders, CMRC_Customers, CMRC_Country, CMRC_Payment ");

Query.Append(" Where (CMRC_Orders.CustomerID = CMRC_Customers.CustomerID) ");

Query.Append(" AND (CMRC_Country.ISOCountryCode =

CMRC_Customers.ISOCountryCode) ");

Query.Append(" AND (CMRC_Payment.PaymentType = CMRC_Orders.Payment) ");

Query.Append(" AND (CMRC_Orders.OrderID = " + orderid + ") ");

try

{

SqlConnection myConnection = new

SqlConnection(SiteGlobals.ConnectionString);

SqlCommand myCommand = new SqlCommand(Query.ToString(), myConnection);

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

DataSet Ds = new DataSet();

myAdapter.Fill(Ds);

if(Ds!=null)

{

DataView Dv = Ds.Tables[0].DefaultView;

DataTable orders = Ds.Tables[0];

generalDataHolder.Nummer = (Ds.Tables[0].Rows[0]["OrderID"].ToString());

generalDataHolder.Navn = (Ds.Tables[0].Rows[0]["FullName"]).ToString();

generalDataHolder.Email =

(Ds.Tables[0].Rows[0]["EmailAddress"]).ToString();

generalDataHolder.Land = (Ds.Tables[0].Rows[0]["Land"]).ToString();

generalDataHolder.Adresse1 = (Ds.Tables[0].Rows[0]["Street"]).ToString+

 (Ds.Tables[0].Rows[0]["HouseNo"]).ToString();

generalDataHolder.PostBy = (Ds.Tables[0].Rows[0]["PostNo"]).ToString() +

(Ds.Tables[0].Rows[0]["City"]).ToString();

generalDataHolder.Konto = (Ds.Tables[0].Rows[0]["PhoneNo"]).ToString();

generalDataHolder.Betaling =

(Ds.Tables[0].Rows[0]["C5Value"]).ToString();

pcPackOrder.ISOCountryCode =

(Ds.Tables[0].Rows[0]["ISOCountryCode"]).ToString();

pcPackOrder.HouseNo = (Ds.Tables[0].Rows[0]["HouseNo"]).ToString();

pcPackOrder.Street = (Ds.Tables[0].Rows[0]["Street"]).ToString();

pcPackOrder.PostNo = (Ds.Tables[0].Rows[0]["PostNo"]).ToString();

pcPackOrder.City = (Ds.Tables[0].Rows[0]["City"]).ToString();

}

else

{

error = "dataset is empty!";

}

}

catch (Exception ee)

{

error = Query+" "+ee.ToString();

}

return error;

}

public GeneralDataHolder GetC5_Deb_Ord_OrdLinie

{

set{generalDataHolder = value;}

get {return generalDataHolder;}

}

public OrdLinies GetOrdLinies

{

set{ordLinies = value;}

get {return ordLinies;}

}

public ArrayList GetOrdLinieList

{

set{ordLinieList = value;}

get{return ordLinieList;}

}

public PcPackOrder GetPcPackOrder

{

set{pcPackOrder = value;}

get {return pcPackOrder;}

}

public DebKart GetDebKart

{

set{debKart = value;}

get {return debKart;}

}

public OrdKart GetOrdKart

{

set{ordKart = value;}

get {return ordKart;}

}

}

}

public class OrderController
using System;

using System.Data;

using System.Text;

using System.Data.SqlClient;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// OrderController Class

//

// This class is responsible for running the

// process of what goes on when

// Proceed_Click is called in Orders.ascx.cs

//

//***

public class OrderController

{

ModelController modelController;

GeneralDataHolder generalDataHolder;

DebKart debKart;

OrdKart ordKart;

PcPackOrder pcPackOrder;

ArrayList ordLinieList;

C5Writer c5Writer;

PcPackWriter pcPackWriter;

string orderid;

public OrderController(string orderid)

{

this.orderid = orderid;

modelController = new ModelController(orderid);

generalDataHolder = modelController.GetC5_Deb_Ord_OrdLinie;

debKart = modelController.GetDebKart;

ordKart = modelController.GetOrdKart;

pcPackOrder = modelController.GetPcPackOrder;

ordLinieList = modelController.GetOrdLinieList;

c5Writer = new C5Writer();

pcPackWriter = new PcPackWriter();

proceedDebKart();

proceedPcPackOrder();

proceedOrdKart();

proceedOrdLinies();

}

private void proceedPcPackOrder()

{

pcPackWriter.writeToPcPack(pcPackOrder);

}

private void proceedDebKart()

{

c5Writer.writeToDebKart(debKart);

}

private void proceedOrdKart()

{

c5Writer.writeToOrdKart(ordKart);

}

private void proceedOrdLinies()

{

c5Writer.writeToOrdLinies(ordLinieList);

}

}

}

public class PcPackWriter
using System;

using System.IO;

namespace CommerceAdmin

{

//***

//

// CommerceAdmin Class

//

// This class is responsible for writing comma separated

// files to PcPack

//

//***

public class PcPackWriter

{

string fileName = "";

string filePath = @"C:\PFS\EKSIMP\IN\";

public PcPackWriter()

{

}

//***

//

// generateFilename() Method

//

// This method is generation a file name consisting og the exact

// time to ensure a unique file name

// For example FIMP2004103014428187.INH

//

//***

private void generateFilename()

{

System.DateTime dtm = System.DateTime.Now;

string dateTimeString = dtm.Year.ToString() +

dtm.Month.ToString() +

dtm.Day.ToString() +

dtm.Hour.ToString() +

dtm.Minute.ToString() +

dtm.Second.ToString() +

dtm.Millisecond.ToString();

fileName = "FIMP" + dateTimeString + ".INH";

fileName = filePath + fileName;

}

//***

//

// writeToPcPack(PcPackOrder pcPackOrder) Method

//

// This method is generation the context of the file

//

//***

public void writeToPcPack(PcPackOrder pcPackOrder)

{

generateFilename();

FileInfo fileInfo = new FileInfo(fileName);

StreamWriter streamWriter =fileInfo.CreateText();

streamWriter.WriteLine(

"\"" + pcPackOrder.Nummer + "\", "

+ "\"" + pcPackOrder.OrderState + "\", "

+ pcPackOrder.SenderId + ", "

 + "\"" + pcPackOrder.ProductCode + "\", "

+ "\"" + pcPackOrder.CustomerComment + "\", "

+ "\"" + pcPackOrder.OrderCreationDate + "\", "

+ "\"" + pcPackOrder.SentFrom + "\", "

+ "\"" + pcPackOrder.SentTo + "\", "

+ "\"" + pcPackOrder.ReceiverCustomerNo + "\", "

+ "\"" + pcPackOrder.ISOCountryCode + "\", "

+ "\"" + pcPackOrder.Name +"\", "

+ "\"" + pcPackOrder.Surname + "\", "

+ "\"" + pcPackOrder.AttPerson + "\", "

+ "\"" + pcPackOrder.Street + "\", "

+ "\"" + pcPackOrder.HouseNo + "\", "

+ "\"" + pcPackOrder.PostBox + "\", "

+ "\"" + pcPackOrder.PostNo + "\", "

+ "\"" + pcPackOrder.City + "\", "

+ "\"" + pcPackOrder.ProvinsStat + "\", "

+ "\"" + pcPackOrder.MomsNo + "\", "

+ "\"" + pcPackOrder.Telefon + "\", "

+ "\"" + pcPackOrder.ContactPerson + "\", "

+ "\"" + pcPackOrder.Email + "\", "

+ pcPackOrder.PackageNumber + ", " //int

+ "\"" + pcPackOrder.BarCode + "\", " //str

+ "\"" + pcPackOrder.ItemAmmount + "\", " //str

+ "\"" + pcPackOrder.Land + "\", " //str

+ "\"" + pcPackOrder.ItemDescription + "\", " //str

+ "\"" + pcPackOrder.TaxInside + "\"," //str

+ pcPackOrder.TaxValue + ", " //int

+ "\"" + pcPackOrder.Currency + "\"," //str

+ pcPackOrder.PackageLength + "," //int

+ pcPackOrder.PackageWidth + "," //int

+ pcPackOrder.PackageHeight + "," //int

+ pcPackOrder.NettoWeight + "," //int

+ pcPackOrder.PackageVolume + ", " //int

+ "\"" + pcPackOrder.TaxTarif + "\", " //string

+ "\"" + pcPackOrder.TaxDescription + "\"," //string

+ pcPackOrder.PackageWeight + ", " //int

+ "\"" + pcPackOrder.Service + "\"," //string

+ pcPackOrder.ChangeTradeForm + "," //int

+ pcPackOrder.Ensurance + "," //int

+ pcPackOrder.Reference);

streamWriter.Write(streamWriter.NewLine);

streamWriter.Close();

}

}

}

public class GeneralDataHolder

using System;

namespace CommerceAdmin

{

//***

//

// GeneralDataHolder Class

//

// This class is for holding general data

//

//***

public class GeneralDataHolder

{

private string navn = "";//

private string adresse1 = "";//

private string adresse2 = "";//

private string postBy = "";//

private string land = "";//

private string attention = "";//

private string telefon = "";//

private string telefax = "";//

private string fakturakonto = "";//

private string gruppe = "DKK";//

private string fastRabat = "0";//

private string godkendt = "1";//

private string prisgruppe = "DKK";//

private string rabatgruppe = "";//

private string kasserabat = "";//

private string billede = "";//

private string valuta = "DKK";//

private string sprog = "0";//

private string betaling = "";//

private string levering = "";//

private string spaerret = "0";//

private string saelger = "KIS";//

private string gironummer = "";//

private string momsnummer = "";//

private string afdeling = "";//

private string beholdning = "0";//

private string sogenavn = "";//

private string kontant = "0";//

private string transKode = "";//

private string email = "";//

private string sLETTransport = "0";//

private string changeTradeForm = "0";

/*---------DebKart + OrdKart + OrdLinie ------------*/

private string moms = "U25";

private string konto = "55555555";//

private string sLETStatistik = "0";

private string handelsKode = "almhande";

/*---- OrdKart + OrdLinie ------------------*/

private string nummer; //
Varchar(10)

private string transaktion; //
Int

private string lagerStatus; //
Tinyint

/*---*/

public GeneralDataHolder()

{

}

public string SLETTransport

{

get{return sLETTransport;}

set{sLETTransport = value;}

}

public string ChangeTradeForm

{

set{changeTradeForm = value;}

get {return changeTradeForm;}

}

public string Moms

{

set{moms = value;}

get {return moms;}

}

public string Konto

{

set{konto = value;}

get {return konto;}

}

public string SLETStatistik

{

set{sLETStatistik = value;}

get {return sLETStatistik;}

}

public string HandelsKode

{

set{handelsKode = value;}

get {return handelsKode;}

}

public string Navn

{

set{ navn = value;}

get {return navn;}

}

public string Adresse1

{

set{adresse1 = value;}

get {return adresse1;}

}

public string Adresse2

{

set{ adresse2 = value;}

get {return adresse2;}

}

public string PostBy

{

set{ postBy = value;}

get {return postBy;}

}

public string Land

{

set{ land = value;}

get {return land;}

}

public string Attention

{

set{ attention = value;}

get {return attention;}

}

public string Telefon

{

set{ telefon = value;}

get {return telefon;}

}

public string Telefax

{

set{ telefax = value;}

get {return telefax;}

}

public string Fakturakonto

{

set{ fakturakonto = value;}

get {return fakturakonto;}

}

public string Afdeling

{

set{afdeling = value;}

get {return afdeling;}

}

public string Beholdning

{

set{beholdning = value;}

get {return beholdning;}

}

public string Sogenavn

{

set{sogenavn = value;}

get {return sogenavn;}

}

public string Kontant

{

set{kontant = value;}

get {return kontant;}

}

public string TransKode

{

set{transKode = value;}

get {return transKode ;}

}

public string Email

{

set{email = value;}

get {return email;}

}

public string Nummer

{

set{nummer = value;}

get {return nummer;}

}

public string Transaktion

{

set{transaktion = value;}

get {return transaktion;}

}

public string LagerStatus

{

set{lagerStatus = value;}

get {return lagerStatus;}

}

public string Momsnummer

{

set{momsnummer = value;}

get {return momsnummer;}

}

public string Gironummer

{

set{ gironummer = value;}

get {return gironummer;}

}

public string Saelger

{

set{ saelger = value;}

get {return saelger ;}

}

public string Spaerret

{

set{ spaerret = value;}

get {return spaerret;}

}

public string Levering

{

set{ levering = value;}

get {return levering;}

}

public string Betaling

{

set{betaling = value;}

get {return betaling;}

}

public string Sprog

{

set{ sprog = value;}

get {return sprog;}

}

public string Valuta

{

set{ valuta = value;}

get {return valuta;}

}

public string Billede

{

set{ billede = value;}

get {return billede;}

}

public string Kasserabat

{

set{ kasserabat = value;}

get {return kasserabat;}

}

public string Rabatgruppe

{

set{ rabatgruppe = value;}

get {return rabatgruppe;}

}

public string Prisgruppe

{

set{prisgruppe = value;}

get {return prisgruppe;}

}

public string Godkendt

{

set{godkendt = value;}

get {return godkendt;}

}

public string FastRabat

{

set{ fastRabat = value;}

get {return fastRabat;}

}

public string Gruppe

{

set{gruppe = value;}

get {return gruppe;}

}

}

}

public class OrdKart
using System;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// OrdKart Class

//

// This class is for holding OrdKart data

//

//***

public class OrdKart

{

GeneralDataHolder generalDataHolder;

private string laas = "0";//

private string oprettet = "";//

private string leveres = "";//

private string levering1 = "";//

private string levering2 = "";//

private string levering3 = "";//

private string levering4 = "";//

private string levLand = "";//

private string deresRef = "";//

private string vorRef = "";//

private string ordre = "";//

private string momsberegnes = "";//

private string momsberegnet = "";//

private string rabat = "";//

private string afgiftFM = "";//

private string gebyrFM = "";//

private string afrunding = "";//

private string momsbelob = "";//

private string afgiftEM = "";//

private string gebyrEM = "";//

private string fakturatotal = "";//

private string liniemoms = "";//

private string fakturaFolgeseddel = "";//

private string fakturaFolgeseddelDato = "";//

private string listekode = "";//

private string linierabat = "";//

private string varebelob = "";//

private string momsgrundlag = "";//

private string eNummer = "";//

private string levEmail = "";//

private string betalingsId = "";//

public OrdKart(GeneralDataHolder generalDataHolder)

{

this.generalDataHolder = generalDataHolder;

}

public string Nummer

{

get{return generalDataHolder.Nummer;}

}

public string Sogenavn

{

get{return generalDataHolder.Sogenavn;}

}

public string Konto

{

get{return generalDataHolder.Konto;}

}

public string Navn

{

get{return generalDataHolder.Navn;}

}

public string Adresse1

{

get{return generalDataHolder.Adresse1;}

}

public string Adresse2

{

get{return generalDataHolder.Adresse2;}

}

public string PostBy

{

get{return generalDataHolder.PostBy;}

}

public string Land

{

get{return generalDataHolder.Land;}

}

public string Attention

{

get{return generalDataHolder.Attention;}

}

public string Telefon

{

get{return generalDataHolder.Telefon;}

}

public string Telefax

{

get{return generalDataHolder.Telefax;}

}

public string Fakturakonto

{

get{return generalDataHolder.Fakturakonto;}

}

public string Gruppe

{

get{return generalDataHolder.Gruppe;}

}

public string FastRabat

{

get{return generalDataHolder.FastRabat;}

}

public string Prisgruppe

{

get{return generalDataHolder.Prisgruppe;}

}

public string Rabatgruppe

{

get{return generalDataHolder.Rabatgruppe;}

}

public string Kasserabat

{

get{return generalDataHolder.Kasserabat;}

}

public string Valuta

{

get{return generalDataHolder.Valuta;}

}

public string Sprog

{

get{return generalDataHolder.Sprog;}

}

public string Betaling

{

get{return generalDataHolder.Betaling;}

}

public string Levering

{

get{return generalDataHolder.Levering;}

}

public string Spaerret

{

get{return generalDataHolder.Spaerret;}

}

public string Saelger

{

get{return generalDataHolder.Saelger;}

}

public string Moms

{

get{return generalDataHolder.Moms;}

}

public string Beholdning

{

get{return generalDataHolder.Beholdning;}

}

public string Afdeling

{

get{return generalDataHolder.Afdeling;}

}

public string Gironummer

{

get{return generalDataHolder.Gironummer;}

}

public string Momsnummer

{

get{return generalDataHolder.Momsnummer;}

}

public string Billede

{

get{return generalDataHolder.Billede;}

}

public string Transaktion

{

get{return generalDataHolder.Transaktion;}

}

public string SLETStatistik

{

get{return generalDataHolder.SLETStatistik;}

}

public string SLETTransport

{

get{return generalDataHolder.SLETTransport;}

}

public string Godkendt

{

get{return generalDataHolder.Godkendt;}

}

public string LagerStatus

{

get{return generalDataHolder.LagerStatus;}

}

public string Kontant

{

get{return generalDataHolder.Kontant;}

}

public string HandelsKode

{

get{return generalDataHolder.HandelsKode;}

}

public string TransKode

{

get{return generalDataHolder.TransKode;}

}

public string Email

{

get{return generalDataHolder.Email;}

}

public string Laas

{

get{return laas;}

set{laas = value;}

}

public string Oprettet

{

get{return oprettet;}

set{oprettet = value;}

}

public string Leveres

{

get{return leveres;}

set{leveres = value;}

}

public string Levering1

{

get{return levering1;}

set{levering1 = value;}

}

public string Levering2

{

get{return levering2;}

set{levering2 = value;}

}

public string Levering3

{

get{return levering3;}

set{levering3 = value;}

}

public string Levering4

{

get{return levering4;}

set{levering1 = value;}

}

public string LevLand

{

get{return levLand;}

set{levLand = value;}

}

public string DeresRef

{

get{return deresRef;}

set{deresRef = value;}

}

public string VorRef

{

get{return vorRef;}

set{vorRef = value;}

}

public string Ordre

{

get{return ordre;}

set{ordre = value;}

}

public string Momsberegnes

{

get{return momsberegnes;}

set{momsberegnes = value;}

}

public string Momsberegnet

{

get{return momsberegnet;}

set{momsberegnet = value;}

}

public string Rabat

{

get{return rabat;}

set{rabat = value;}

}

public string AfgiftFM

{

get{return afgiftFM;}

set{afgiftFM = value;}

}

public string GebyrFM

{

get{return gebyrFM;}

set{gebyrFM = value;}

}

public string Afrunding

{

get{return afrunding;}

set{afrunding = value;}

}

public string Momsbelob

{

get{return momsbelob;}

set{momsbelob = value;}

}

public string AfgiftEM

{

get{return afgiftEM;}

set{afgiftEM = value;}

}

public string GebyrEM

{

get{return gebyrEM;}

set{gebyrEM = value;}

}

public string Fakturatotal

{

get{return fakturatotal;}

set{fakturatotal = value;}

}

public string Liniemoms

{

get{return liniemoms;}

set{liniemoms = value;}

}

public string FakturaFolgeseddel

{

get{return fakturaFolgeseddel;}

set{fakturaFolgeseddel = value;}

}

public string FakturaFolgeseddelDato

{

get{return fakturaFolgeseddelDato;}

set{fakturaFolgeseddelDato = value;}

}

public string Listekode

{

get{return listekode;}

set{listekode = value;}

}

public string Linierabat

{

get{return linierabat;}

set{linierabat = value;}

}

public string Varebelob

{

get{return varebelob;}

set{varebelob = value;}

}

public string Momsgrundlag

{

get{return momsgrundlag;}

set{momsgrundlag = value;}

}

public string ENummer

{

get{return eNummer;}

set{eNummer = value;}

}

public string LevEmail

{

get{return levEmail;}

set{levEmail = value;}

}

public string BetalingsId

{

get{return betalingsId;}

set{betalingsId = value;}

}

}

}

public class DebKart
using System;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// DebKart Class

//

// This class is for holding DebKart data

//

//***

public class DebKart

{

GeneralDataHolder generalDataHolder;

private string laas = "0";//

private string rente = "";//

private string rykkerkode = "5";//

private string engangskunde = "0";//

private string eDIadresse = "";//

private string saldo = "0";//

private string saldo30 = "0";//

private string saldo60 = "0";//

private string saldo90 = "0";//

private string saldo120 = "0";//

private string saldoOver120 = "0";//

private string forfalden = "0";//

private string beregnet = "";//

private string saldoMax = "0";//

private string saldoDKK = "0";//

private string indbetalMaade = "";//

private string ordreGruppe = "";//

private string projektGruppe = "";//

private string uRL = "";//

private string mobil = "";//

public DebKart(GeneralDataHolder generalDataHolder)

{

this.generalDataHolder = generalDataHolder;

}

public string Laas

{

get{return laas;}

set{laas = value;}

}

public string Rente

{

get{return rente;}

set{rente = value;}

}

public string Rykkerkode

{

get{return rykkerkode;}

set{rykkerkode = value;}

}

public string Engangskunde

{

get{return engangskunde;}

set{engangskunde = value;}

}

public string EDIadresse

{

get{return eDIadresse;}

set{eDIadresse = value;}

}

public string Saldo

{

get{return saldo;}

set{saldo = value;}

}

public string Saldo30

{

get{return saldo30;}

set{saldo30 = value;}

}

public string Saldo60

{

get{return saldo60;}

set{saldo60 = value;}

}

public string Saldo90

{

get{return saldo90;}

set{saldo90 = value;}

}

public string Saldo120

{

get{return saldo120;}

set{saldo120 = value;}

}

public string SaldoOver120

{

get{return saldoOver120;}

set{saldoOver120 = value;}

}

public string Forfalden

{

get{return forfalden;}

set{forfalden = value;}

}

public string Beregnet

{

get{return beregnet;}

set{beregnet = value;}

}

public string SaldoMax

{

get{return saldoMax;}

set{saldoMax = value;}

}

public string SaldoDKK

{

get{return saldoDKK;}

set{saldoDKK = value;}

}

public string IndbetalMaade

{

get{return indbetalMaade;}

set{indbetalMaade = value;}

}

public string OrdreGruppe

{

get{return ordreGruppe;}

set{ordreGruppe = value;}

}

public string ProjektGruppe

{

get{return projektGruppe;}

set{projektGruppe = value;}

}

public string URL

{

get{return uRL;}

set{uRL = value;}

}

public string Mobil

{

get{return mobil;}

set{mobil = value;}

}

public string Konto

{

get{return generalDataHolder.Konto;}

}

public string Navn

{

get{return generalDataHolder.Navn;}

}

public string Adresse1

{

get{return generalDataHolder.Adresse1;}

}

public string Adresse2

{

get{return generalDataHolder.Adresse2;}

}

public string PostBy

{

get{return generalDataHolder.PostBy;}

}

public string Land

{

get{return generalDataHolder.Land;}

}

public string Attention

{

get{return generalDataHolder.Attention;}

}

public string Telefon

{

get{return generalDataHolder.Telefon;}

}

public string Telefax

{

get{return generalDataHolder.Telefax;}

}

public string Fakturakonto

{

get{return generalDataHolder.Fakturakonto;}

}

public string Gruppe

{

get{return generalDataHolder.Gruppe;}

}

public string FastRabat

{

get{return generalDataHolder.FastRabat;}

}

public string Godkendt

{

get{return generalDataHolder.Godkendt;}

}

public string Prisgruppe

{

get{return generalDataHolder.Prisgruppe;}

}

public string Rabatgruppe

{

get{return generalDataHolder.Rabatgruppe;}

}

public string Kasserabat

{

get{return generalDataHolder.Kasserabat;}

}

public string Billede

{

get{return generalDataHolder.Billede;}

}

public string Valuta

{

get{return generalDataHolder.Valuta;}

}

public string Sprog

{

get{return generalDataHolder.Sprog;}

}

public string Betaling

{

get{return generalDataHolder.Betaling;}

}

public string Levering

{

get{return generalDataHolder.Levering;}

}

public string Spaerret

{

get{return generalDataHolder.Spaerret;}

}

public string Saelger

{

get{return generalDataHolder.Saelger;}

}

public string Moms

{

get{return generalDataHolder.Moms;}

}

public string SLETStatistik

{

get{return generalDataHolder.SLETStatistik;}

}

public string Gironummer

{

get{return generalDataHolder.Gironummer;}

}

public string Momsnummer

{

get{return generalDataHolder.Momsnummer;}

}

public string Afdeling

{

get{return generalDataHolder.Afdeling;}

}

public string Beholdning

{

get{return generalDataHolder.Beholdning;}

}

public string Sogenavn

{

get{return generalDataHolder.Sogenavn;}

}

public string SLETTransport

{

get{return generalDataHolder.SLETTransport;}

}

public string Kontant

{

get{return generalDataHolder.Kontant;}

}

public string HandelsKode

{

get{return generalDataHolder.HandelsKode;}

}

public string TransKode

{

get{return generalDataHolder.TransKode;}

}

public string Email

{

get{return generalDataHolder.Email;}

}

}

}

public class PcPackOrder
using System;

using System.Collections;

namespace CommerceAdmin

{

//***

//

// PcPackOrder Class

//

// This class is for holding PcPackOrder data

//

//***

public class PcPackOrder

{

//----------------Shipment/customer info--------------------------

GeneralDataHolder generalDataHolder;

int orderNumber = 2; //AN(35) #

string orderState = ""; //AN(3)

int senderId = 1;

//NU #

string productCode = "PPK";

//AN(4) # private pakke,

string orderCreationDate = ""; //DA

string iSOCountryCode = "DK"; //AN(2) #

string surname = ""; //AN(35)

string attPerson = ""; //AN(35)

string street = "Frederiksgade 12"; //AN(35)

string houseNo = " 1. tv."; //AN(35)

string postBox = ""; //AN(35)

string postNo = "5000"; //AN(35)

string city = ""; //AN(35)

string provinsStat = ""; //AN(35)

string momsNo = ""; //AN(13)

string phoneNo = ""; //AN(20)

string contactPerson = "";

//AN(35)

string eMail = "";

//AN(254)

string customerComment = "";

//An(45
½+9*6)

string sentFrom = ""; //Ti

string sentTo = ""; //Ti

int packageNumber = 0; //NU #

string barCode = "";

//AN(35)

string itemAmmount = "";

 //AN(17)

string countryId = ""; //AN(2)

string itemDescription = "";

//AN(35)

string taxInside = ""; //NU

string taxValue = ""; //FL

string currency = ""; //AN(3)

string packageLength = ""; //FL

string packageHeight = "";

//FL

string packageWidth = "";

//FL

string packageWeight = "";

//FL

string nettoWeight = "";

//FL

string packageVolume = "";

//FL

string taxTarif = ""; //AN(15)

string taxDescription = ""; //FL

string service = "Z07"; //AN(60)

string ensurance = ""; //FL

string reference = "876456743"; //NU

//--------------------- Constructor ------------------------

public PcPackOrder(GeneralDataHolder generalDataHolder)

{

this.generalDataHolder = generalDataHolder;

}

public string Nummer

{

get{return generalDataHolder.Nummer;}

}

public string Email

{

get{return generalDataHolder.Email;}

}

public string Land

{

get{return generalDataHolder.Land;}

}

public string Telefon

{

get{return generalDataHolder.Telefon;}

}

public string SentFrom

{

get{return sentFrom;}

set{sentFrom = value;}

}

public string SentTo

{

get{return sentTo;}

set{sentTo = value;}

}

public int PackageNumber

{

get{return packageNumber;}

set{packageNumber = value;}

}

public string BarCode

{

get{return barCode;}

set{barCode = value;}

}

public string ItemAmmount

{

get{return itemAmmount;}

set{itemAmmount = value;}

}

public string CountryId

{

get{return countryId;}

set{countryId = value;}

}

public string ItemDescription

{

get{return itemDescription;}

set{itemDescription = value;}

}

public string TaxInside

{

get{return taxInside;}

set{taxInside = value;}

}

public string TaxValue

{

get{return taxValue;}

set{taxValue = value;}

}

public string Currency

{

get{return currency;}

set{currency = value;}

}

public string PackageWeight

{

get{return packageWeight;}

set{packageWeight = value;}

}

public string PackageLength

{

get{return packageLength;}

set{packageLength = value;}

}

public string PackageHeight

{

get{return packageHeight;}

set{packageHeight = value;}

}

public string PackageVolume

{

get{return packageVolume;}

set{packageVolume = value;}

}

public string PackageWidth

{

get{return packageWidth;}

set{packageWidth = value;}

}

public string NettoWeight

{

get{return nettoWeight;}

set{nettoWeight = value;}

}

public string TaxTarif

{

get{return taxTarif;}

set{taxTarif = value;}

}

public string Service

{

get{return service;}

set{service = value;}

}

public string TaxDescription

{

get{return taxDescription;}

set{taxDescription = value;}

}

public string ChangeTradeForm

{

get{return generalDataHolder.ChangeTradeForm;}

}

public string Ensurance

{

get{return ensurance;}

set{ensurance = value;}

}

public string Reference

{

get{return reference;}

set{reference = value;}

}

public string OrderCreationDate

{

get{return orderCreationDate;}

set{orderCreationDate = value;}

}

public int OrderNumber

{

get{return orderNumber;}

set{orderNumber = value;}

}

public string ProductCode

{

get{return productCode;}

set{productCode = value;}

}

public int SenderId

{

get{return senderId;}

set{senderId = value;}

}

public string OrderState

{

get{return orderState;}

set{orderState = value;}

}

public string ReceiverCustomerNo

{

get{return generalDataHolder.Konto;}

}

public string ISOCountryCode

{

get{return iSOCountryCode;}

set{iSOCountryCode = value;}

}

public string Name

{

get{return generalDataHolder.Navn;}

}

public string Surname

{

get{return surname;}

set{surname = value;}

}

public string AttPerson

{

get{return attPerson;}

set{attPerson = value;}

}

public string Street

{

get{return street;}

set{street = value;}

}

public string HouseNo

{

get{return houseNo;}

set{houseNo = value;}

}

public string PostBox

{

get{return postBox;}

set{postBox = value;}

}

public string PostNo

{

get{return postNo;}

set{postNo = value;}

}

public string City

{

get{return city;}

set{city = value;}

}

public string ProvinsStat

{

get{return provinsStat;}

set{provinsStat = value;}

}

public string MomsNo

{

get{return momsNo;}

set{momsNo = value;}

}

public string ContactPerson

{

get{return contactPerson;}

set{contactPerson = value;}

}

public string PhoneNo

{

get{return phoneNo;}

set{phoneNo = value;}

}

public string EMail

{

get{return eMail;}

set{eMail = value;}

}

public string CustomerComment

{

get{return customerComment;}

set{customerComment = value;}

}

}

}

public class OrdLinies

using System;

using System.Collections;

using System.Data.SqlClient;

using System.Text;

using System.Data;

namespace CommerceAdmin

{

//***

//

// OrdLinie Class

//

// This class is for creating a ArrayList consistion

// of OrdLinie objects set whit right data

//

//***

public class OrdLinies

{

OrdLinie ordLinie;

GeneralDataHolder generalDataHolder;

string orderid;

public OrdLinies(GeneralDataHolder generalDataHolder,

 string orderid)

{

this.generalDataHolder = generalDataHolder;

this.orderid = orderid;

}

public ArrayList fillOrdLinies()

{

StringBuilder query = new StringBuilder();

query.Append(" SELECT CMRC_OrderDetails.OrderID, ");

query.Append(" CMRC_Products.ModelNumber, ");

query.Append(" CMRC_Products.ModelName, ");

query.Append(" CMRC_OrderDetails.Quantity, ");

query.Append(" CMRC_OrderDetails.UnitCost ");

query.Append(" FROM CMRC_OrderDetails, CMRC_Products ");

query.Append(" WHERE CMRC_OrderDetails.ProductID =

CMRC_Products.ProductID ");

query.Append(" AND CMRC_OrderDetails.OrderID =

 " + orderid + " ");

SqlConnection myConnection = new

SqlConnection(SiteGlobals.ConnectionString);

SqlCommand myCommand = new

 SqlCommand(query.ToString(), myConnection);

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

DataSet ds = new DataSet();

myAdapter.Fill(ds);

ArrayList ordLinieList = new ArrayList();

if(ds!=null)

{

DataView dv = ds.Tables[0].DefaultView;

int tempInt = 0;

int forTempInt = 0;

for(int i=0; i<dv.Count; i++)

{

ordLinie = new OrdLinie(generalDataHolder);

DataTable orders = ds.Tables[0];

ordLinie.Varenummer =

(ds.Tables[0].Rows[i]["ModelNumber"]).ToString();

ordLinie.Tekst =

 (ds.Tables[0].Rows[i]["ModelName"]).ToString();

ordLinie.Antal =

 (ds.Tables[0].Rows[i]["Quantity"]).ToString();

double medMoms = double.Parse((ds.Tables[0].

Rows[i]["UnitCost"]).ToString());

ordLinie.Pris = ""+(int)((medMoms/5)*4);

ordLinie.Belob = ""+Int32.Parse(ordLinie.Pris)*

Int32.Parse(ordLinie.Antal);

forTempInt = Int32.Parse(ordLinie.Belob);

tempInt = tempInt+forTempInt;

ordLinieList.Add(ordLinie);

}

generalDataHolder.ChangeTradeForm = ""+(tempInt*1.25);

}

return ordLinieList;

}

}

}

public class OrdLinie

using System;

namespace CommerceAdmin

{

//***

//

// OrdLinie Class

//

// This class is for holding OrdLinie data

//

//***

public class OrdLinie

{

GeneralDataHolder generalDataHolder;

private string linienr = ""; //

private string varenummer = "";//

private string lokation = "";//

private string antal = "";//

private string pris = "";//

private string rabat = "";//

private string belob = "";//

private string tekst = "";//

private string enhed = "";//

private string leverNu = "";//

private string oprette = "";

private string bekraeftet = "";

private string serienummer = "";

private string leveret = "";

private string faktureret = "";

private string leveretDKK = "";

private string kostpris = "";

private string sLETAfgift = "";

private string linieStatus = "";

private string medarbejder = "";//From

private string samleRefId = "";

private string ordreRef = "";

private string antalFysisk = "";

private string fjernListeKode = "";

private string prisenhed = "";

public OrdLinie(GeneralDataHolder generalDataHolder)

{

this.generalDataHolder = generalDataHolder;

}

public string Nummer

{get{return generalDataHolder.Nummer;}}

public string Moms

{get{return generalDataHolder.Moms;}}

public string Konto

{get{return generalDataHolder.Moms;}}

public string Transaktion

{get{return generalDataHolder.Transaktion;}}

public string SLETStatistik

{get{return generalDataHolder.SLETStatistik;}}

public string LagerStatus

{get{return generalDataHolder.LagerStatus;}}

public string HandelsKode

{get{return generalDataHolder.HandelsKode;}}

public string Linienr

{

get

{

return linienr;

}

set

{

linienr = value;

}

}

public string Varenummer

{

get

{

return varenummer;

}

set

{

varenummer = value;

}

}

public string Lokation

{

get

{

return lokation;

}

set

{

lokation = value;

}

}

public string Antal

{

get

{

return antal;

}

set

{

antal = value;

}

}

public string Pris

{

get

{

return pris;

}

set

{

pris = value;

}

}

public string Rabat

{

get

{

return rabat;

}

set

{

rabat = value;

}

}

public string Belob

{

get

{

return belob;

}

set

{

belob = value;

}

}

public string Tekst

{

get

{

return tekst;

}

set

{

tekst = value;

}

}

public string Enhed

{

get

{

return enhed;

}

set

{

enhed = value;

}

}

public string LeverNu

{

get

{

return leverNu;

}

set

{

leverNu = value;

}

}

public string Oprette

{

get

{

return oprette;

}

set

{

oprette = value;

}

}

public string Bekraeftet

{

get

{

return bekraeftet;

}

set

{

bekraeftet = value;

}

}

public string Serienummer

{

get

{

return serienummer;

}

set

{

serienummer = value;

}

}

public string Leveret

{

get

{

return leveret;

}

set

{

leveret = value;

}

}

public string Faktureret

{

get

{

return faktureret;

}

set

{

faktureret = value;

}

}

public string LeveretDKK

{

get

{

return leveretDKK;

}

set

{

leveretDKK = value;

}

}

public string Kostpris

{

get

{

return kostpris;

}

set

{

kostpris = value;

}

}

public string SLETAfgift

{

get

{

return sLETAfgift;

}

set

{

sLETAfgift = value;

}

}

public string LinieStatus

{

get

{

return linieStatus;

}

set

{

LinieStatus = value;

}

}

public string Medarbejder

{

get

{

return medarbejder;

}

set

{

medarbejder = value;

}

}

public string SamleRefId

{

get

{

return samleRefId;

}

set

{

samleRefId = value;

}

}

public string OrdreRef

{

get

{

return ordreRef;

}

set

{

ordreRef = value;

}

}

public string AntalFysisk

{

get

{

return antalFysisk;

}

set

{

antalFysisk = value;

}

}

public string FjernListeKode

{

get

{

return fjernListeKode;

}

set

{

fjernListeKode = value;

}

}

public string Prisenhed

{

get

{

return prisenhed;

}

set

{

prisenhed = value;

}

}

}

}

APPENDIX A8: codes for Construction iteration III

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNET.StarterKit.Commerce {

 public class Register : System.Web.UI.Page {

 protected System.Web.UI.WebControls.TextBox Name;

 protected System.Web.UI.WebControls.TextBox Email;

 protected System.Web.UI.WebControls.TextBox Password;

 protected System.Web.UI.WebControls.TextBox ConfirmPassword;

 protected System.Web.UI.WebControls.Label MyError;

protected System.Web.UI.WebControls.TextBox ISOCountryCode;

protected System.Web.UI.WebControls.TextBox Street;

protected System.Web.UI.WebControls.TextBox HouseNo;

protected System.Web.UI.WebControls.TextBox PostNo;

protected System.Web.UI.WebControls.TextBox City;

protected System.Web.UI.WebControls.TextBox PhoneNo;

protected System.Web.UI.WebControls.Label Label1;

 protected System.Web.UI.WebControls.ImageButton RegisterBtn;

 public Register() {

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The RegisterBtn_Click event handler is used on this page to

 // add a new user into the Commerce Starter Kit Customers database.

 //

 // The event handler then migrates any items stored in the user's

 // temporary (non-persistent) shopping cart to their

 // permanent customer account, adds a cookie to the client

 // (so that we can personalize the home page's welcome

 // message), and then redirects the browser back to the

 // originating page.

 //

 //***

 private void RegisterBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e) {

 // Only attempt a login if all form fields on the page are valid

 if (Page.IsValid == true) {

 // Store off old temporary shopping cart ID

 ASPNET.StarterKit.Commerce.ShoppingCartDB shoppingCart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 String tempCartId = shoppingCart.GetShoppingCartId();

 // Add New Customer to CustomerDB database

 ASPNET.StarterKit.Commerce.CustomersDB accountSystem = new

ASPNET.StarterKit.Commerce.CustomersDB();

 String customerId = accountSystem.AddCustomer(
Name.Text,

Email.Text,

ASPNET.StarterKit.Commerce.Components.Security.Encrypt(Password.Text),

ISOCountryCode.Text,

Street.Text,

HouseNo.Text,

PostNo.Text,

City.Text,

PhoneNo.Text);

 if (customerId != "") {

 // Set the user's authentication name to the customerId

 FormsAuthentication.SetAuthCookie(customerId, false);

 // Migrate any existing shopping cart items into the permanent shopping cart

 shoppingCart.MigrateCart(tempCartId, customerId);

 // Store the user's fullname in a cookie for personalization purposes

 Response.Cookies["ASPNETCommerce_FullName"].Value = Server.HtmlEncode(Name.Text);

 // Redirect browser

 Response.Redirect("CheckOut.aspx");

 }

 else {

 MyError.Text = "Registration failed
<img align=left height=1 width=92

src=images/1x1.gif>";

 }

 }

 }

 private void Page_Load(object sender, System.EventArgs e) {

 // Put user code to initialize the page here

 }

 private void Page_Init(object sender, EventArgs e) {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

#region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

this.RegisterBtn.Click += new System.Web.UI.ImageClickEventHandler(this.RegisterBtn_Click);

this.Street.TextChanged += new System.EventHandler(this.Street_TextChanged);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void Street_TextChanged(object sender, System.EventArgs e)

{

}

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNET.StarterKit.Commerce {

 public class CheckOut : System.Web.UI.Page {

 protected System.Web.UI.WebControls.Label Header;

 protected System.Web.UI.WebControls.Label Message;

 protected System.Web.UI.WebControls.DataGrid MyDataGrid;

 protected System.Web.UI.WebControls.Label TotalLbl;

 protected System.Web.UI.WebControls.ImageButton SubmitBtn;

 public CheckOut() {

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The Page_Load event on this page is used to load the

 // ShoppingCart DataGrid *the first time* the page is

 // accessed.

 //

 // Note that subsequent postbacks to the page *do not*

 // reload the Datagrid. Instead, we rely on the control's

 // built-in viewstate management to rebuild the control

 // on the server.

 //

 //***

 private void Page_Load(object sender, System.EventArgs e) {

 if (Page.IsPostBack == false) {

 // Calculate end-user's shopping cart ID

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 String cartId = cart.GetShoppingCartId();

 // Populate datagrid with shopping cart data

 MyDataGrid.DataSource = cart.GetItems(cartId);

 MyDataGrid.DataBind();

 // Update total price label

 TotalLbl.Text = String.Format("{0:c}", cart.GetTotal(cartId));

 }

 }

 //***

 //

 // The SubmitBtn_Click event handle is used to order the

 // items within the current shopping cart. It then

 // displays the orderid and order status to the screen

 // (hiding the "SubmitBtn" button to ensure that the

 // user can't click it twice).

 //

 //***

 private void SubmitBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e) {

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 // Calculate end-user's shopping cart ID

 String cartId = cart.GetShoppingCartId();

 // Calculate end-user's customerID

 String customerId = User.Identity.Name;

 if ((cartId != null) && (customerId != null)) {

 // Place the order

 ASPNET.StarterKit.Commerce.OrdersDB ordersDatabase = new

ASPNET.StarterKit.Commerce.OrdersDB();

 int orderId = ordersDatabase.PlaceOrder(customerId, cartId);

 //Update labels to reflect the fact that the order has taken place

 Header.Text="Check Out Complete!";

 Message.Text = "Your Order Number Is: " + orderId;

 SubmitBtn.Visible = false;

 }

 }

 private void Page_Init(object sender, EventArgs e) {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

#region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

this.SubmitBtn.Click += new System.Web.UI.ImageClickEventHandler(this.SubmitBtn_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

 }

}

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

namespace ASPNET.StarterKit.Commerce {

 //***

 //

 // CustomerDetails Class

 //

 // A simple data class that encapsulates details about

 // a particular customer inside the Commerce Starter Kit Customer

 // database.

 //

 //***

 public class CustomerDetails {

 public String FullName;

 public String Email;

 public String Password;

 }

 //***

 //

 // CustomersDB Class

 //

 // Business/Data Logic Class that encapsulates all data

 // logic necessary to add/login/query customers within

 // the Commerce Starter Kit Customer database.

 //

 //***

 public class CustomersDB {

 //***

 //

 // CustomersDB.GetCustomerDetails() Method

 //

 // The GetCustomerDetails method returns a CustomerDetails

 // struct that contains information about a specific

 // customer (name, email, password, etc).

 //

 //***

 public CustomerDetails GetCustomerDetails(String customerID)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_CustomerDetail", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Value = Int32.Parse(customerID);

 myCommand.Parameters.Add(parameterCustomerID);

 SqlParameter parameterFullName = new SqlParameter("@FullName", SqlDbType.NVarChar,

50);

 parameterFullName.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterFullName);

 SqlParameter parameterEmail = new SqlParameter("@Email", SqlDbType.NVarChar, 50);

 parameterEmail.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterEmail);

 SqlParameter parameterPassword = new SqlParameter("@Password", SqlDbType.NVarChar,

50);

 parameterPassword.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterPassword);

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Create CustomerDetails Struct

 CustomerDetails myCustomerDetails = new CustomerDetails();

 // Populate Struct using Output Params from SPROC

 myCustomerDetails.FullName = (string)parameterFullName.Value;

 myCustomerDetails.Password = (string)parameterPassword.Value;

 myCustomerDetails.Email = (string)parameterEmail.Value;

 return myCustomerDetails;

 }

 //***

 //

 // CustomersDB.AddCustomer() Method

 //

 // The AddCustomer method inserts a new customer record

 // into the customers database. A unique "CustomerId"

 // key is then returned from the method. This can be

 // used later to place orders, track shopping carts,

 // etc within the ecommerce system.

 //

 // Other relevant sources:

 // + CustomerAdd Stored Procedure

 //

 //***

 public String AddCustomer(
string FullName,

string EmailAddress,

string Password,

string ISOCountryCode,

string Street,

string HouseNo,

string PostNo,

string City,

string PhoneNo)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_CustomerAdd", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterFullName = new SqlParameter("@FullName", SqlDbType.NVarChar,

50);

 parameterFullName.Value = FullName;

 myCommand.Parameters.Add(parameterFullName);

 SqlParameter parameterEmailAddress = new SqlParameter("@Email", SqlDbType.NVarChar,

50);

 parameterEmailAddress.Value = EmailAddress;

 myCommand.Parameters.Add(parameterEmailAddress);

SqlParameter parameterPassword = new SqlParameter("@Password", SqlDbType.NVarChar, 50);

parameterPassword.Value = Password;

myCommand.Parameters.Add(parameterPassword);

 SqlParameter parameterISOCountryCode = new SqlParameter("@ISOCountryCode",

SqlDbType.NVarChar, 50);

 parameterISOCountryCode.Value = ISOCountryCode;

 myCommand.Parameters.Add(parameterISOCountryCode);

SqlParameter parameterStreet = new SqlParameter("@Street", SqlDbType.NVarChar, 50);

parameterStreet.Value = Street;

myCommand.Parameters.Add(parameterStreet);

SqlParameter parameterHouseNo = new SqlParameter("@HouseNo", SqlDbType.NVarChar, 50);

parameterHouseNo.Value = HouseNo;

myCommand.Parameters.Add(parameterHouseNo);

SqlParameter parameterPostNo = new SqlParameter("@PostNo", SqlDbType.NVarChar, 50);

parameterPostNo.Value = PostNo;

myCommand.Parameters.Add(parameterPostNo);

SqlParameter parameterCity = new SqlParameter("@City", SqlDbType.NVarChar, 50);

parameterCity.Value = City;

myCommand.Parameters.Add(parameterCity);

SqlParameter parameterPhoneNo = new SqlParameter("@PhoneNo", SqlDbType.NVarChar, 50);

parameterPhoneNo.Value = PhoneNo;

myCommand.Parameters.Add(parameterPhoneNo);

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterCustomerID);

 try {

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Calculate the CustomerID using Output Param from SPROC

 int customerId = (int)parameterCustomerID.Value;

 return customerId.ToString();

 }

 catch {

 return String.Empty;

 }

 }

 //***

 //

 // CustomersDB.Login() Method

 //

 // The Login method validates a email/password pair

 // against credentials stored in the customers database.

 // If the email/password pair is valid, the method returns

 // the "CustomerId" number of the customer. Otherwise

 // it will throw an exception.

 //

 // Other relevant sources:

 //

 //***

 public String Login(string email, string password)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_CustomerLogin", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterEmail = new SqlParameter("@Email", SqlDbType.NVarChar, 50);

 parameterEmail.Value = email;

 myCommand.Parameters.Add(parameterEmail);

 SqlParameter parameterPassword = new SqlParameter("@Password", SqlDbType.NVarChar,

50);

 parameterPassword.Value = password;

 myCommand.Parameters.Add(parameterPassword);

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterCustomerID);

 // Open the connection and execute the Command

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 int customerId = (int)(parameterCustomerID.Value);

 if (customerId == 0) {

 return null;

 }

 else {

 return customerId.ToString();

 }

 }

 }

}

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

namespace ASPNET.StarterKit.Commerce {

 //***

 //

 // OrderDetails Class

 //

 // A simple data class that encapsulates details about

 // a particular order inside the Commerce Starter Kit Orders

 // database.

 //

 //***

 public class OrderDetails {

 public DateTime OrderDate;

 public DateTime ShipDate;

 public decimal OrderTotal;

 public DataSet OrderItems;

 }

 //***

 //

 // OrderHistoryDB Class

 //

 // Business/Data Logic Class that encapsulates all data

 // logic necessary to query past orders within the

 // Commerce Starter Kit Orders database.

 //

 //***

 public class OrdersDB {

 //***

 //

 // CustomerDB.GetCustomerOrders() Method

 //

 // The GetCustomerOrders method returns a struct containing

 // a forward-only, read-only DataReader. This displays a list of all

 // past orders placed by a specified customer.

 // The SQLDataReaderResult struct also returns the SQL connection,

 // which must be explicitly closed after the data from the DataReader

 // is bound into the controls.

 //

 // Other relevant sources:

 // + OrdersList Stored Procedure

 //

 //***

 public SqlDataReader GetCustomerOrders(String customerID)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_OrdersList", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCustomerid = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerid.Value = Int32.Parse(customerID);

 myCommand.Parameters.Add(parameterCustomerid);

 // Execute the command

 myConnection.Open();

 SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

 // Return the datareader result

 return result;

 }

 //***

 //

 // OrdersDB.GetOrderDetails() Method

 //

 // The GetOrderDetails method returns an OrderDetails

 // struct containing information about the specified

 // order.

 //

 // Other relevant sources:

 // + OrdersDetail Stored Procedure

 //

 //***

 public OrderDetails GetOrderDetails(int orderID, string customerID)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlDataAdapter myCommand = new SqlDataAdapter("CMRC_OrdersDetail", myConnection);

 // Mark the Command as a SPROC

 myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterOrderID = new SqlParameter("@OrderID", SqlDbType.Int, 4);

 parameterOrderID.Value = orderID;

 myCommand.SelectCommand.Parameters.Add(parameterOrderID);

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Value = Int32.Parse(customerID);

 myCommand.SelectCommand.Parameters.Add(parameterCustomerID);

 SqlParameter parameterOrderDate = new SqlParameter("@OrderDate", SqlDbType.DateTime,

8);

 parameterOrderDate.Direction = ParameterDirection.Output;

 myCommand.SelectCommand.Parameters.Add(parameterOrderDate);

 SqlParameter parameterShipDate = new SqlParameter("@ShipDate", SqlDbType.DateTime,

8);

 parameterShipDate.Direction = ParameterDirection.Output;

 myCommand.SelectCommand.Parameters.Add(parameterShipDate);

 SqlParameter parameterOrderTotal = new SqlParameter("@OrderTotal", SqlDbType.Money,

8);

 parameterOrderTotal.Direction = ParameterDirection.Output;

 myCommand.SelectCommand.Parameters.Add(parameterOrderTotal);

 // Create and Fill the DataSet

 DataSet myDataSet = new DataSet();

 myCommand.Fill(myDataSet, "OrderItems");

 // ship date is null if order doesn't exist, or belongs to a different user

 if (parameterShipDate.Value != DBNull.Value) {

 // Create and Populate OrderDetails Struct using

 // Output Params from the SPROC, as well as the

 // populated dataset from the SqlDataAdapter

 OrderDetails myOrderDetails = new OrderDetails();

 myOrderDetails.OrderDate = (DateTime)parameterOrderDate.Value;

 myOrderDetails.ShipDate = (DateTime)parameterShipDate.Value;

 myOrderDetails.OrderTotal = (decimal)parameterOrderTotal.Value;

 myOrderDetails.OrderItems = myDataSet;

 // Return the DataSet

 return myOrderDetails;

 }

 else

 return null;

 }

 //***

 //

 // OrdersDB.CalculateShippingDate() Method

 //

 // The CalculateShippingDate method would be where you would

 // place all of the code necessary to calculate the shipping

 // ETA. For now, we are just making up a random date.

 //

 //***

 public DateTime CalculateShippingDate(String customerID, string cartID) {

 Random x = new Random();

 double myrandom = (double)x.Next(0,3);

 return DateTime.Now.AddDays(myrandom);

 }

 //***

 //

 // OrdersDB.PlaceOrder() Method

 //

 // The PlaceOrder method places an order within the

 // Commerce Starter Kit Orders Database and then clears out the current

 // items within the shopping cart.

 //

 // Other relevant sources:

 // + OrdersAdd Stored Procedure

 //

 //***

 public int PlaceOrder(string customerID, string cartID)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new

SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_OrdersAdd", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Value = Int32.Parse(customerID);

 myCommand.Parameters.Add(parameterCustomerID);

 SqlParameter parameterCartID = new SqlParameter("@CartID", SqlDbType.NVarChar, 50);

 parameterCartID.Value = cartID;

 myCommand.Parameters.Add(parameterCartID);

 SqlParameter parameterShipDate = new SqlParameter("@ShipDate", SqlDbType.DateTime,

8);

 parameterShipDate.Value = CalculateShippingDate(customerID, cartID);

 myCommand.Parameters.Add(parameterShipDate);

 SqlParameter parameterOrderDate = new SqlParameter("@OrderDate", SqlDbType.DateTime,

8);

 parameterOrderDate.Value = DateTime.Now;

 myCommand.Parameters.Add(parameterOrderDate);

 SqlParameter parameterOrderID = new SqlParameter("@OrderID", SqlDbType.Int, 4);

 parameterOrderID.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterOrderID);

 // Open the connection and execute the Command

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Return the OrderID

 return (int)parameterOrderID.Value;

 }

 }

}

using System;

using System.Security.Cryptography;

using System.Text;

using System.Text.RegularExpressions;

namespace ASPNET.StarterKit.Commerce.Components

{

/// <summary>

/// Summary description for Security.

/// </summary>

public class Security

{

//***

//

// Security.Encrypt() Method

//

// The Encrypt method encrypts a clean string into a hashed string

//

//***

public static string Encrypt(string cleanString)

{

Byte[] clearBytes = new UnicodeEncoding().GetBytes(cleanString);

Byte[] hashedBytes = ((HashAlgorithm)

CryptoConfig.CreateFromName("MD5")).ComputeHash(clearBytes);

return BitConverter.ToString(hashedBytes);

}

}

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNET.StarterKit.Commerce {

 public class Login : System.Web.UI.Page {

 protected System.Web.UI.WebControls.Label Message;

 protected System.Web.UI.WebControls.TextBox email;

 protected System.Web.UI.WebControls.RequiredFieldValidator emailRequired;

 protected System.Web.UI.WebControls.RegularExpressionValidator emailValid;

 protected System.Web.UI.WebControls.TextBox password;

 protected System.Web.UI.WebControls.RequiredFieldValidator passwordRequired;

 protected System.Web.UI.WebControls.CheckBox RememberLogin;

 protected System.Web.UI.WebControls.ImageButton LoginBtn;

 public Login() {

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The LoginBtn_Click event is used on this page to

 // authenticate a customer's supplied username/password

 // credentials against a database.

 //

 // If the supplied username/password are valid, then

 // the event handler adds a cookie to the client

 // (so that we can personalize the home page's welcome

 // message), migrates any items stored in the user's

 // temporary (non-persistent) shopping cart to their

 // permanent customer account, and then redirects the browser

 // back to the originating page.

 //

 //***

 private void LoginBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e) {

 // Only attempt a login if all form fields on the page are valid

 if (Page.IsValid == true) {

 // Save old ShoppingCartID

 ASPNET.StarterKit.Commerce.ShoppingCartDB shoppingCart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 String tempCartID = shoppingCart.GetShoppingCartId();

 // Attempt to Validate User Credentials using CustomersDB

 ASPNET.StarterKit.Commerce.CustomersDB accountSystem = new

ASPNET.StarterKit.Commerce.CustomersDB();

 String customerId = accountSystem.Login(email.Text,

ASPNET.StarterKit.Commerce.Components.Security.Encrypt(password.Text));

 if (customerId != null) {

 // Migrate any existing shopping cart items into the permanent shopping cart

 shoppingCart.MigrateCart(tempCartID, customerId);

 // Lookup the customer's full account details

 ASPNET.StarterKit.Commerce.CustomerDetails customerDetails =

accountSystem.GetCustomerDetails(customerId);

 // Store the user's fullname in a cookie for personalization purposes

 Response.Cookies["ASPNETCommerce_FullName"].Value = customerDetails.FullName;

 // Make the cookie persistent only if the user selects "persistent" login

checkbox

 if (RememberLogin.Checked == true) {

 Response.Cookies["ASPNETCommerce_FullName"].Expires =

DateTime.Now.AddMonths(1);

 }

 // Redirect browser back to originating page

 FormsAuthentication.RedirectFromLoginPage(customerId, RememberLogin.Checked);

 }

 else {

 Message.Text = "Login Failed!";

 }

 }

 }

 private void Page_Load(object sender, System.EventArgs e) {

 // Put user code to initialize the page here

 }

 private void Page_Init(object sender, EventArgs e) {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

#region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

 this.LoginBtn.Click += new System.Web.UI.ImageClickEventHandler(this.LoginBtn_Click);

 this.Load += new System.EventHandler(this.Page_Load);

 }

#endregion

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNET.StarterKit.Commerce {

 public class ShoppingCart : System.Web.UI.Page {

 protected System.Web.UI.WebControls.Label MyError;

 protected System.Web.UI.WebControls.DataGrid MyList;

 protected System.Web.UI.WebControls.Label lblTotal;

 protected System.Web.UI.WebControls.ImageButton UpdateBtn;

 protected System.Web.UI.WebControls.ImageButton CheckoutBtn;

 protected System.Web.UI.WebControls.Panel DetailsPanel;

 public ShoppingCart() {

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The Page_Load event on this page is used to load the

 // ShoppingCart DataGrid *the first time* the page is

 // accessed.

 //

 // Note that subsequent postbacks to the page *do not*

 // reload the Datagrid. Instead, we rely on the control's

 // built-in viewstate management to rebuild the control

 // on the server.

 //

 //***

 private void Page_Load(object sender, System.EventArgs e) {

 // Populate the shopping cart the first time the page is accessed.

 if (Page.IsPostBack == false) {

 PopulateShoppingCartList();

 }

 }

 //***

 //

 // The UpdateBtn_Click event is raised when a user clicks

 // the "update" button on the client. The event handler

 // updates all items in the cart back to the database,

 // and then repopulates the datagrid with the current

 // cart contents.

 //

 //***

 private void UpdateBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e) {

 // Update the Shopping Cart and then Repopulate the List

 UpdateShoppingCartDatabase();

 PopulateShoppingCartList();

 }

 //***

 //

 // The CheckoutBtn_Click event is raised when a user clicks

 // the "checkout" button on the client. The event handler

 // updates all items in the cart back to the database,

 // and then redirects the user to the checkout.aspx page

 //

 //***

 private void CheckoutBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e) {

 // Update Shopping Cart

 UpdateShoppingCartDatabase();

 // If cart is not empty, proceed on to checkout page

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 // Calculate shopping cart ID

 String cartId = cart.GetShoppingCartId();

 // If the cart isn't empty, navigate to checkout page

 if (cart.GetItemCount(cartId) !=0) {

 Response.Redirect("Register.aspx");

 }

 else {

 MyError.Text = "You can't proceed to the Check Out page with an empty cart.";

 }

 }

 //***

 //

 // The PopulateShoppingCartList helper method is used to

 // dynamically populate a GridControl with the contents of

 // the current user's shopping cart.

 //

 //***

 void PopulateShoppingCartList() {

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 // Obtain current user's shopping cart ID

 String cartId = cart.GetShoppingCartId();

 // If no items, hide details and display message

 if (cart.GetItemCount(cartId) == 0) {

 DetailsPanel.Visible = false;

 MyError.Text = "There are currently no items in your shopping cart.";

 }

 else {

 // Databind Gridcontrol with Shopping Cart Items

 MyList.DataSource = cart.GetItems(cartId);

 MyList.DataBind();

 //Update Total Price Label

 lblTotal.Text = String.Format("{0:c}", cart.GetTotal(cartId));

 }

 }

 //***

 //

 // The UpdateShoppingCartDatabase helper method is used to

 // update a user's items within the shopping cart database

 // using client input from the GridControl.

 //

 //***

 void UpdateShoppingCartDatabase() {

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new

ASPNET.StarterKit.Commerce.ShoppingCartDB();

 // Obtain current user's shopping cart ID

 String cartId = cart.GetShoppingCartId();

 // Iterate through all rows within shopping cart list

 for (int i=0; i < MyList.Items.Count; i++) {

 // Obtain references to row's controls

 TextBox quantityTxt = (TextBox) MyList.Items[i].FindControl("Quantity");

 CheckBox remove = (CheckBox) MyList.Items[i].FindControl("Remove");

 // Wrap in try/catch block to catch errors in the event that someone types in

 // an invalid value for quantity

 int quantity;

 try {

 quantity = Int32.Parse(quantityTxt.Text);

 // If the quantity field is changed or delete is checked

 if (quantity != (int)MyList.DataKeys[i] || remove.Checked == true) {

 Label lblProductID = (Label) MyList.Items[i].FindControl("ProductID");

 if (quantity == 0 || remove.Checked == true) {

 cart.RemoveItem(cartId, Int32.Parse(lblProductID.Text));

 }

 else {

 cart.UpdateItem(cartId, Int32.Parse(lblProductID.Text),quantity);

 }

 }

 }

 catch {

 MyError.Text = "There has been a problem with one or more of your inputs.";

 }

 }

 }

 private void Page_Init(object sender, EventArgs e) {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

 #region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

 this.UpdateBtn.Click += new

System.Web.UI.ImageClickEventHandler(this.UpdateBtn_Click);

 this.CheckoutBtn.Click += new

System.Web.UI.ImageClickEventHandler(this.CheckoutBtn_Click);

 this.Load += new System.EventHandler(this.Page_Load);

 }

 #endregion

 }

}

Stored procedures

/* -- */

CREATE Procedure CMRC_CountryList

AS

SELECT

 Land,

 ISOCountryCode

FROM

 CMRC_Country

ORDER BY

 Land ASC

GO

/* -- */

CREATE Procedure CMRC_CustomerAdd

(

 @FullName nvarchar(50),

 @Email nvarchar(50),

 @ISOCountryCode nvarchar(5),

 @Street nvarchar(50),

 @HouseNo nvarchar(50),

 @PostNo nvarchar(50),

 @City nvarchar(50),

 @PhoneNo nvarchar(50),

 @CustomerID int OUTPUT

)

AS

INSERT INTO CMRC_Customers

(

 FullName,

 EmailAddress,

 ISOCountryCode,

 Street,

 HouseNo,

 PostNo,

 City,

 PhoneNo

)

VALUES

(

 @FullName,

 @Email,

 @ISOCountryCode,

 @Street,

 @HouseNo,

 @PostNo,

 @City,

 @PhoneNo

)

SELECT

 @CustomerID = @@Identity

GO

/* -- */

APPENDIX A9: codes for Construction iteration IV

public class Orders : System.Web.UI.UserControl

#region Copyright http://www.artisticode.com

// Please donot remove

// Waheed Khan

// http://www.artisticode.com

// contact@artisticode.com

#endregion

using System;

using System.Data;

using System.Data.SqlClient;

using System.Text;

using System.Drawing;

using System.Web;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.IO;

namespace CommerceAdmin

{

//***

//

// Orders User Control

// Orders.ascx.cs

//

// This user control is where the Porceed order is clicked

//

//***

public class Orders : System.Web.UI.UserControl

{

protected System.Web.UI.WebControls.Label Message;

protected System.Web.UI.WebControls.Panel PanelErrorMessage;

protected System.Web.UI.WebControls.Label LabelCustomerID;

protected System.Web.UI.WebControls.Label LabelCustomerName;

protected System.Web.UI.WebControls.Label LabelCustomerEmail;

protected System.Web.UI.WebControls.PlaceHolder PHBreadCrumbs;

protected System.Web.UI.WebControls.Label lbl_control;

protected System.Web.UI.WebControls.DataGrid DataGrid1;

private void Page_Load(object sender, System.EventArgs e)

{

BreadCrumbs BC = Page.LoadControl

("~/UserControls/BreadCrumbs.ascx") as BreadCrumbs;

DataTable table = new DataTable();

table.Columns.Add("Name", typeof(string));

table.Columns.Add("Url", typeof(string));

table.Rows.Add(new string[] {"Home", "default.aspx?id=home"});

table.Rows.Add(new string[] {"Customers",

 "default.aspx?id=customers"});

table.Rows.Add(new string[] {"Orders",

 "default.aspx?id=orders&custid=" +

Request.Params["custid"].ToString() + ""});

if(Request.Params["custid"] !=

null && Request.Params["custid"] != string.Empty)

{

if (BC!=null)

{

((BreadCrumbs)BC).AddValues = table;

PHBreadCrumbs.Controls.Add(BC);

}

ViewState["CustomerID"] =

 Int32.Parse(Request.Params["custid"]);

BindData();

GetCustomer(ViewState["CustomerID"].ToString());

}

else

{

Message.Text = "Customer ID was not found!!!";

}

}

private void GetCustomer(string id)

{

string sql = "SELECT * FROM CMRC_Customers

Where CustomerID = @ID And Admins = '0'";

SqlCommand cmd = new SqlCommand(sql, new

 SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@ID", SqlDbType.VarChar).Value = id;

try

{

cmd.Connection.Open();

SqlDataReader myReader = cmd.ExecuteReader();

while (myReader.Read())

{

LabelCustomerID.Text = myReader["CustomerID"].ToString();

LabelCustomerName.Text = myReader["FullName"].ToString();

LabelCustomerEmail.Text =

 myReader["EmailAddress"].ToString();

}

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void BindData()

{

StringBuilder Query = new StringBuilder();

Query.Append("SELECT CMRC_Orders.OrderID, ");

Query.Append("CAST(SUM(CMRC_OrderDetails.Quantity *

 CMRC_OrderDetails.UnitCost) AS money) AS OrderTotal, ");

Query.Append("CMRC_Orders.OrderDate, CMRC_Orders.ShipDate,

 CMRC_Orders.status ");

Query.Append("FROM CMRC_Orders INNER JOIN CMRC_OrderDetails ");

Query.Append("ON CMRC_Orders.OrderID =

CMRC_OrderDetails.OrderID ");

Query.Append("GROUP BY CMRC_Orders.CustomerID,

 CMRC_Orders.OrderID, ");

Query.Append("CMRC_Orders.OrderDate, CMRC_Orders.ShipDate,

 CMRC_Orders.status ");

Query.Append("HAVING (CMRC_Orders.CustomerID = '" +

 ViewState["CustomerID"].ToString() + "')");

try

{

SqlConnection myConnection = new

 SqlConnection(SiteGlobals.ConnectionString);

SqlCommand myCommand = new SqlCommand(Query.ToString(),

 myConnection);

SqlDataAdapter myAdapter = new SqlDataAdapter();

myAdapter.SelectCommand = myCommand;

DataSet Ds = new DataSet();

myAdapter.Fill(Ds);

if(Ds!=null)

{

DataView Dv = Ds.Tables[0].DefaultView;

Dv.Sort = "OrderDate" + " ASC"; // SortField ASC or DESC

DataGrid1.DataSource = Dv;

DataGrid1.DataBind();

}

}

catch (Exception e)

{

Message.Text = "Error in Binding Grid " + e.ToString();

}

}

private void UpdateRecord(string orderid,

string orderdate, string shipdate)

{

string sql = "UPDATE CMRC_Orders SET OrderDate = @OrderDate,

 ShipDate = @ShipDate WHERE OrderID = @OrderID AND CustomerID = '" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new

 SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.Int).Value =

 Int32.Parse(orderid);

cmd.Parameters.Add("@OrderDate", SqlDbType.NVarChar).Value =

 orderdate;

cmd.Parameters.Add("@ShipDate", SqlDbType.NVarChar).Value = shipdate;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void SetOrderStatusProceeded(string orderid)

{

string sql = "UPDATE CMRC_Orders SET status = @status WHERE OrderID = @OrderID AND CustomerID = '" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.Int).Value = Int32.Parse(orderid);

cmd.Parameters.Add("@status", SqlDbType.Int).Value = 1;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

private void DeleteRecord(string orderid)

{

string sql = "DELETE FROM CMRC_Orders WHERE OrderID = @OrderID AND CustomerID = '" + ViewState["CustomerID"].ToString() + "'";

SqlCommand cmd = new SqlCommand(sql, new SqlConnection(SiteGlobals.ConnectionString));

cmd.Parameters.Add("@OrderID", SqlDbType.VarChar).Value = orderid;

try

{

cmd.Connection.Open();

cmd.ExecuteNonQuery();

}

catch(SqlException se)

{

Message.Text = se.ToString();

}

finally

{

if(cmd.Connection.State == ConnectionState.Open)

{

cmd.Connection.Close();

}

}

}

protected void Edit_Click(Object sender, DataGridCommandEventArgs e)

{

DataGrid1.EditItemIndex = e.Item.ItemIndex;

BindData();

EditMode(true);

Message.Text = "";

}

protected void Cancel_Click(Object sender, DataGridCommandEventArgs e)

{

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "";

}

protected void Update_Click(Object sender, DataGridCommandEventArgs e)

{

string orderid = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

string orderdate = ((TextBox) e.Item.FindControl("TextBoxOrderDate")).Text;

string shipdate = ((TextBox) e.Item.FindControl("TextBoxShipDate")).Text;

UpdateRecord(orderid,orderdate,shipdate);

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "";

}

protected void DataGrid1_DeleteCommand(object source, DataGridCommandEventArgs e)

{

string deleteKey;

if(DataGrid1.EditItemIndex==-1)

{

deleteKey = DataGrid1.DataKeys[e.Item.ItemIndex].ToString();

DeleteRecord(deleteKey);

DataGrid1.EditItemIndex = -1;

BindData();

EditMode(false);

Message.Text = "Record was deleted!!!....";

}

else

{

Message.Text = "Can't delete until editing is done!";

}

}

protected void DataGrid1_ItemCreated(object sender, DataGridItemEventArgs e)

{

if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType == ListItemType.AlternatingItem)

{

// Delete Link is at Cell 0

LinkButton button = (LinkButton) e.Item.Cells[0].Controls[0];

button.Attributes.Add("onclick", "return confirm (\"Really? Delete? \");");

e.Item.Attributes.Add("onmouseover", "this.style.fontWeight='normal';this.style.color='red';this.style.cursor='hand'");

e.Item.Attributes.Add("onmouseout", "this.style.fontWeight='normal';this.style.color='';this.style.cursor='default'");

}

}

protected void EditMode(bool OnOff)

{

for(int i = 7; i < DataGrid1.Columns.Count; i++)

{

DataGrid1.Columns[i].Visible = (!OnOff);

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

///

Required method for Designer support - do not modify

///

the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.DataGrid1.ItemCommand += new System.Web.UI.WebControls.DataGridCommandEventHandler(this.Proceed_Click);

this.DataGrid1.UpdateCommand += new System.Web.UI.WebControls.DataGridCommandEventHandler(this.Proceed_Click);

this.DataGrid1.SelectedIndexChanged += new System.EventHandler(this.DataGrid1_SelectedIndexChanged);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

protected void Proceed_Click(object sender, DataGridCommandEventArgs e)

{

OrderController orderController;

string orderid = DataGrid1.DataKeys[e.Item.ItemIndex].ToString(); //selecting actual order

SetOrderStatusProceeded(orderid);//setting status to proceeded

orderController = new OrderController(orderid);

BindData();

Message.Text = "";

}

private void DataGrid1_SelectedIndexChanged(object sender, System.EventArgs e)

{

}

}

}

public class Register : System.Web.UI.Page

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

using System.Configuration;

namespace ASPNET.StarterKit.Commerce

{

 public class Register : System.Web.UI.Page

{

 protected System.Web.UI.WebControls.TextBox Name;

 protected System.Web.UI.WebControls.TextBox Email;

 protected System.Web.UI.WebControls.Label MyError;

protected System.Web.UI.WebControls.TextBox Street;

protected System.Web.UI.WebControls.TextBox HouseNo;

protected System.Web.UI.WebControls.TextBox PostNo;

protected System.Web.UI.WebControls.TextBox City;

protected System.Web.UI.WebControls.TextBox PhoneNo;

protected System.Web.UI.WebControls.DropDownList ddl_ISOCountryCode;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator1;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator2;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator3;

protected System.Web.UI.WebControls.RegularExpressionValidator RegularExpressionValidator1;

protected System.Web.UI.WebControls.RegularExpressionValidator RegularExpressionValidator2;

protected System.Web.UI.WebControls.RegularExpressionValidator RegularExpressionValidator3;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator4;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator5;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator6;

protected System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator7;

 protected System.Web.UI.WebControls.ImageButton RegisterBtn;

 public Register()

{

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The RegisterBtn_Click event handler is used on this page to

 // add a new user into the Commerce Starter Kit Customers database.

 //

 // The event handler then migrates any items stored in the user's

 // temporary (non-persistent) shopping cart to their

 // permanent customer account, adds a cookie to the client

 // (so that we can personalize the home page's welcome

 // message), and then redirects the browser back to the

 // originating page.

 //

 //***

 private void RegisterBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e)

{

 // Only attempt a login if all form fields on the page are valid

 if (Page.IsValid == true)

{

 // Store off old temporary shopping cart ID

 ASPNET.StarterKit.Commerce.ShoppingCartDB shoppingCart = new ASPNET.StarterKit.Commerce.ShoppingCartDB();

 String tempCartId = shoppingCart.GetShoppingCartId();

 // Add New Customer to CustomerDB database

 ASPNET.StarterKit.Commerce.CustomersDB accountSystem = new ASPNET.StarterKit.Commerce.CustomersDB();

 String customerId = accountSystem.AddCustomer(
Name.Text,

Email.Text,

ddl_ISOCountryCode.SelectedValue,

Street.Text,

HouseNo.Text,

PostNo.Text,

City.Text,

PhoneNo.Text);

if (customerId != "")

{

 // Set the user's authentication name to the customerId

 FormsAuthentication.SetAuthCookie(customerId, false);

 // Migrate any existing shopping cart items into the permanent shopping cart

 shoppingCart.MigrateCart(tempCartId, customerId);

 // Redirect browser

 Response.Redirect("CheckOut.aspx");

 }

 else

{

 MyError.Text = "Registration failed
";

 }

 }

 }

 private void Page_Load(object sender, System.EventArgs e)

{

if (!Page.IsPostBack)

{

ASPNET.StarterKit.Commerce.ProductsDB products = new ASPNET.StarterKit.Commerce.ProductsDB();

ddl_ISOCountryCode.DataSource = products.GetCountryList();

ddl_ISOCountryCode.DataTextField = "Land";

ddl_ISOCountryCode.DataValueField = "ISOCountryCode";

ddl_ISOCountryCode.DataBind();

}

 }

 private void Page_Init(object sender, EventArgs e)

{

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

#region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

this.RegisterBtn.Click += new System.Web.UI.ImageClickEventHandler(this.RegisterBtn_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNET.StarterKit.Commerce

{

 public class CheckOut : System.Web.UI.Page

{

 protected System.Web.UI.WebControls.Label Header;

 protected System.Web.UI.WebControls.Label Message;

 protected System.Web.UI.WebControls.DataGrid MyDataGrid;

 protected System.Web.UI.WebControls.Label TotalLbl;

protected System.Web.UI.WebControls.DropDownList ddl_Payment;

 protected System.Web.UI.WebControls.ImageButton SubmitBtn;

 public CheckOut() {

 Page.Init += new System.EventHandler(Page_Init);

 }

 //***

 //

 // The Page_Load event on this page is used to load the

 // ShoppingCart DataGrid *the first time* the page is

 // accessed.

 //

 // Note that subsequent postbacks to the page *do not*

 // reload the Datagrid. Instead, we rely on the control's

 // built-in viewstate management to rebuild the control

 // on the server.

 //

 //***

 private void Page_Load(object sender, System.EventArgs e)

{

 if (Page.IsPostBack == false)

{

 // Calculate end-user's shopping cart ID

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new ASPNET.StarterKit.Commerce.ShoppingCartDB();

 String cartId = cart.GetShoppingCartId();

 // Populate datagrid with shopping cart data

 MyDataGrid.DataSource = cart.GetItems(cartId);

 MyDataGrid.DataBind();

 // Update total price label

 TotalLbl.Text = String.Format("{0:c}", cart.GetTotal(cartId));

ASPNET.StarterKit.Commerce.ProductsDB products = new ASPNET.StarterKit.Commerce.ProductsDB();

ddl_Payment.DataSource = products.GetPaymentList();

ddl_Payment.DataTextField = "PaymentType";

ddl_Payment.DataBind();

 }

 }

 //***

 //

 // The SubmitBtn_Click event handle is used to order the

 // items within the current shopping cart. It then

 // displays the orderid and order status to the screen

 // (hiding the "SubmitBtn" button to ensure that the

 // user can't click it twice).

 //

 //***

 private void SubmitBtn_Click(object sender, System.Web.UI.ImageClickEventArgs e)

{

 ASPNET.StarterKit.Commerce.ShoppingCartDB cart = new ASPNET.StarterKit.Commerce.ShoppingCartDB();

 // Calculate end-user's shopping cart ID

 String cartId = cart.GetShoppingCartId();

 // Calculate end-user's customerID

 String customerId = User.Identity.Name;

 if ((cartId != null) && (customerId != null))

{

 // Place the order

 ASPNET.StarterKit.Commerce.OrdersDB ordersDatabase = new ASPNET.StarterKit.Commerce.OrdersDB();

 int orderId = ordersDatabase.PlaceOrder(customerId, cartId, ddl_Payment.SelectedItem.Text);

 //Update labels to reflect the fact that the order has taken place

 Header.Text="Check Out Complete!";

 Message.Text = "Your Order Number Is: " + orderId;

 SubmitBtn.Visible = false;

//Response.Redirect("OrderDetails.aspx");

 }

 }

 private void Page_Init(object sender, EventArgs e)

{

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 }

#region Web Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent() {

this.SubmitBtn.Click += new System.Web.UI.ImageClickEventHandler(this.SubmitBtn_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void Button1_Click(object sender, System.EventArgs e)

{

// Redirect browser

Response.Redirect("pis.aspx");

}

 }

}

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

namespace ASPNET.StarterKit.Commerce

{

 //***

 //

 // CustomersDB Class

 //

 // Business/Data Logic Class that encapsulates all data

 // logic necessary to add/login/query customers within

 // the Commerce Starter Kit Customer database.

 //

 //***

 public class CustomersDB

{

 //***

 //

 // CustomersDB.AddCustomer() Method

 //

 // The AddCustomer method inserts a new customer record

 // into the customers database. A unique "CustomerId"

 // key is then returned from the method. This can be

 // used later to place orders, track shopping carts,

 // etc within the ecommerce system.

 //

 // Other relevant sources:

 // + CustomerAdd Stored Procedure

 //

 //***

 public String AddCustomer(
string FullName,

string EmailAddress,

string ISOCountryCode,

string Street,

string HouseNo,

string PostNo,

string City,

string PhoneNo)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_CustomerAdd", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterFullName = new SqlParameter("@FullName", SqlDbType.NVarChar, 50);

 parameterFullName.Value = FullName;

 myCommand.Parameters.Add(parameterFullName);

 SqlParameter parameterEmailAddress = new SqlParameter("@Email", SqlDbType.NVarChar, 50);

 parameterEmailAddress.Value = EmailAddress;

 myCommand.Parameters.Add(parameterEmailAddress);

 SqlParameter parameterISOCountryCode = new SqlParameter("@ISOCountryCode", SqlDbType.NVarChar, 50);

 parameterISOCountryCode.Value = ISOCountryCode;

 myCommand.Parameters.Add(parameterISOCountryCode);

SqlParameter parameterStreet = new SqlParameter("@Street", SqlDbType.NVarChar, 50);

parameterStreet.Value = Street;

myCommand.Parameters.Add(parameterStreet);

SqlParameter parameterHouseNo = new SqlParameter("@HouseNo", SqlDbType.NVarChar, 50);

parameterHouseNo.Value = HouseNo;

myCommand.Parameters.Add(parameterHouseNo);

SqlParameter parameterPostNo = new SqlParameter("@PostNo", SqlDbType.NVarChar, 50);

parameterPostNo.Value = PostNo;

myCommand.Parameters.Add(parameterPostNo);

SqlParameter parameterCity = new SqlParameter("@City", SqlDbType.NVarChar, 50);

parameterCity.Value = City;

myCommand.Parameters.Add(parameterCity);

SqlParameter parameterPhoneNo = new SqlParameter("@PhoneNo", SqlDbType.NVarChar, 50);

parameterPhoneNo.Value = PhoneNo;

myCommand.Parameters.Add(parameterPhoneNo);

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterCustomerID);

 try

{

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Calculate the CustomerID using Output Param from SPROC

 int customerId = (int)parameterCustomerID.Value;

 return customerId.ToString();

 }

 catch

{

 return String.Empty;

 }

 }

 }

}

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

namespace ASPNET.StarterKit.Commerce

{

 //***

 //

 // OrderHistoryDB Class

 //

 // Business/Data Logic Class that encapsulates all data

 // logic necessary to query past orders within the

 // Commerce Starter Kit Orders database.

 //

 //***

 public class OrdersDB

{

 //***

 //

 // CustomerDB.GetCustomerOrders() Method

 //

 // The GetCustomerOrders method returns a struct containing

 // a forward-only, read-only DataReader. This displays a list of all

 // past orders placed by a specified customer.

 // The SQLDataReaderResult struct also returns the SQL connection,

 // which must be explicitly closed after the data from the DataReader

 // is bound into the controls.

 //

 // Other relevant sources:

 // + OrdersList Stored Procedure

 //

 //***

 public SqlDataReader GetCustomerOrders(String customerID)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_OrdersList", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCustomerid = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerid.Value = Int32.Parse(customerID);

 myCommand.Parameters.Add(parameterCustomerid);

 // Execute the command

 myConnection.Open();

 SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

 // Return the datareader result

 return result;

 }

 //***

 //

 // OrdersDB.CalculateShippingDate() Method

 //

 // The CalculateShippingDate method would be where you would

 // place all of the code necessary to calculate the shipping

 // ETA. For now, we are just making up a random date.

 //

 //***

 public DateTime CalculateShippingDate(String customerID, string cartID)

{

 Random x = new Random();

 double myrandom = (double)x.Next(0,3);

 return DateTime.Now.AddDays(myrandom);

 }

 //***

 //

 // OrdersDB.PlaceOrder() Method

 //

 // The PlaceOrder method places an order within the

 // Commerce Starter Kit Orders Database and then clears out the current

 // items within the shopping cart.

 //

 // Other relevant sources:

 // + OrdersAdd Stored Procedure

 //

 //***

 public int PlaceOrder(string customerID, string cartID, string payment)

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_OrdersAdd", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCustomerID = new SqlParameter("@CustomerID", SqlDbType.Int, 4);

 parameterCustomerID.Value = Int32.Parse(customerID);

 myCommand.Parameters.Add(parameterCustomerID);

 SqlParameter parameterCartID = new SqlParameter("@CartID", SqlDbType.NVarChar, 50);

 parameterCartID.Value = cartID;

 myCommand.Parameters.Add(parameterCartID);

 SqlParameter parameterShipDate = new SqlParameter("@ShipDate", SqlDbType.DateTime, 8);

 parameterShipDate.Value = CalculateShippingDate(customerID, cartID);

 myCommand.Parameters.Add(parameterShipDate);

 SqlParameter parameterOrderDate = new SqlParameter("@OrderDate", SqlDbType.DateTime, 8);

 parameterOrderDate.Value = DateTime.Now;

 myCommand.Parameters.Add(parameterOrderDate);

 SqlParameter parameterOrderID = new SqlParameter("@OrderID", SqlDbType.Int, 4);

 parameterOrderID.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterOrderID);

SqlParameter parameterPayment = new SqlParameter("@Payment", SqlDbType.NVarChar, 50);

parameterPayment.Value = payment;

myCommand.Parameters.Add(parameterPayment);

 // Open the connection and execute the Command

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Return the OrderID

 return (int)parameterOrderID.Value;

 }}}

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

namespace ASPNET.StarterKit.Commerce

{

 //***

 //

 // ProductDetails Class

 //

 // A simple data class that encapsulates details about

 // a particular product inside the Commerce Starter Kit Product

 // database.

 //

 //***

 public class ProductDetails {

 public String ModelNumber;

 public String ModelName;

 public String ProductImage;

 public decimal UnitCost;

 public String Description;

 }

 //***

 //

 // ProductsDB Class

 //

 // Business/Data Logic Class that encapsulates all data

 // logic necessary to query products within

 // the Commerce Starter Kit Products database.

 //

 //***

 public class ProductsDB

{

 //***

 //

 // ProductsDB.GetProductCategories() Method

 //

 // The GetProductCategories method returns a DataReader that exposes all

 // product categories (and their CategoryIDs) within the Commerce Starter Kit Products

 // database. The SQLDataReaderResult struct also returns the

 // SQL connection, which must be explicitly closed after the

 // data from the DataReader is bound into the controls.

 //

 // Other relevant sources:

 // + ProductCategoryList Stored Procedure

 //

 //***

 public SqlDataReader GetProductCategories()

 {

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_ProductCategoryList", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Execute the command

 myConnection.Open();

 SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

 // Return the datareader result

 return result;

 }

 //***

 //

 // ProductsDB.GetProducts() Method

 //

 // The GetProducts method returns a struct containing a forward-only,

 // read-only DataReader. This displays all products within a specified

 // product category. The SQLDataReaderResult struct also returns the

 // SQL connection, which must be explicitly closed after the

 // data from the DataReader is bound into the controls.

 //

 // Other relevant sources:

 // + ProductsByCategory Stored Procedure

 //

 //***

 public SqlDataReader GetProducts(int categoryID)

{

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_ProductsByCategory", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterCategoryID = new SqlParameter("@CategoryID", SqlDbType.Int, 4);

 parameterCategoryID.Value = categoryID;

 myCommand.Parameters.Add(parameterCategoryID);

 // Execute the command

 myConnection.Open();

 SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

 // Return the datareader result

 return result;

 }

 //***

 //

 // ProductsDB.GetProductDetails() Method

 //

 // The GetProductDetails method returns a ProductDetails

 // struct containing specific details about a specified

 // product within the Commerce Starter Kit Products Database.

 //

 // Other relevant sources:

 // + ProductDetail Stored Procedure

 //

 //***

 public ProductDetails GetProductDetails(int productID)

{

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_ProductDetail", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterProductID = new SqlParameter("@ProductID", SqlDbType.Int, 4);

 parameterProductID.Value = productID;

 myCommand.Parameters.Add(parameterProductID);

 SqlParameter parameterUnitCost = new SqlParameter("@UnitCost", SqlDbType.Money, 8);

 parameterUnitCost.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterUnitCost);

 SqlParameter parameterModelNumber = new SqlParameter("@ModelNumber", SqlDbType.NVarChar, 50);

 parameterModelNumber.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterModelNumber);

 SqlParameter parameterModelName = new SqlParameter("@ModelName", SqlDbType.NVarChar, 50);

 parameterModelName.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterModelName);

 SqlParameter parameterProductImage = new SqlParameter("@ProductImage", SqlDbType.NVarChar, 50);

 parameterProductImage.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterProductImage);

 SqlParameter parameterDescription = new SqlParameter("@Description", SqlDbType.NVarChar, 3800);

 parameterDescription.Direction = ParameterDirection.Output;

 myCommand.Parameters.Add(parameterDescription);

 // Open the connection and execute the Command

 myConnection.Open();

 myCommand.ExecuteNonQuery();

 myConnection.Close();

 // Create and Populate ProductDetails Struct using

 // Output Params from the SPROC

 ProductDetails myProductDetails = new ProductDetails();

 myProductDetails.ModelNumber = (string)parameterModelNumber.Value;

 myProductDetails.ModelName = (string)parameterModelName.Value;

 myProductDetails.ProductImage = ((string)parameterProductImage.Value).Trim();

 myProductDetails.UnitCost = (decimal)parameterUnitCost.Value;

 myProductDetails.Description = ((string)parameterDescription.Value).Trim();

 return myProductDetails;

 }

 //***

 //

 // ProductsDB.SearchProductDescriptions() Method

 //

 // The SearchProductDescriptions method returns a struct containing

 // a forward-only, read-only DataReader. This displays a list of all

 // products whose name and/or description contains the specified search

 // string. The SQLDataReaderResult struct also returns the SQL connection,

 // which must be explicitly closed after the data from the DataReader

 // is bound into the controls.

 //

 // Other relevant sources:

 // + ProductSearch Stored Procedure

 //

 //***

 public SqlDataReader SearchProductDescriptions(string searchString)

{

 // Create Instance of Connection and Command Object

 SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

 SqlCommand myCommand = new SqlCommand("CMRC_ProductSearch", myConnection);

 // Mark the Command as a SPROC

 myCommand.CommandType = CommandType.StoredProcedure;

 // Add Parameters to SPROC

 SqlParameter parameterSearch = new SqlParameter("@Search", SqlDbType.NVarChar, 255);

 parameterSearch.Value = searchString;

 myCommand.Parameters.Add(parameterSearch);

 // Execute the command

 myConnection.Open();

 SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

 // Return the datareader result

 return result;

 }

public SqlDataReader GetCountryList()

{

SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

SqlCommand myCommand = new SqlCommand("CMRC_CountryList", myConnection);

myCommand.CommandType = CommandType.StoredProcedure;

myConnection.Open();

SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

return result;

}

public SqlDataReader GetPaymentList()

{

SqlConnection myConnection = new SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);

SqlCommand myCommand = new SqlCommand("CMRC_PaymentList", myConnection);

myCommand.CommandType = CommandType.StoredProcedure;

myConnection.Open();

SqlDataReader result = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

return result;

}

 }

}
Stored procedures

CREATE Procedure CMRC_OrdersAdd

(

 @CustomerID int,

 @CartID nvarchar(50),

 @OrderDate datetime,

 @ShipDate datetime,

 @OrderID int OUTPUT,

 @Payment nvarchar(50)

)

AS

BEGIN TRAN AddOrder

/* Create the Order header */

INSERT INTO CMRC_Orders

(

 CustomerID,

 OrderDate,

 ShipDate,

 Payment

)

VALUES

(

 @CustomerID,

 @OrderDate,

 @ShipDate,

 @Payment

)

SELECT

 @OrderID = @@Identity

/* Copy items from given shopping cart to OrdersDetail table for given OrderID*/

INSERT INTO CMRC_OrderDetails

(

 OrderID,

 ProductID,

 Quantity,

 UnitCost

)

SELECT

 @OrderID,

 CMRC_ShoppingCart.ProductID,

 Quantity,

 CMRC_Products.UnitCost

FROM

 CMRC_ShoppingCart

 INNER JOIN CMRC_Products ON CMRC_ShoppingCart.ProductID = CMRC_Products.ProductID

WHERE

 CartID = @CartID

/* Removal of items from user's shopping cart will happen on the business layer*/

EXEC CMRC_ShoppingCartEmpty @CartID

COMMIT TRAN AddOrder

GO

/* -- */

CREATE Procedure CMRC_PaymentList

AS

SELECT

 PaymentType

FROM

 CMRC_Payment

ORDER BY

 PaymentType ASC

GO

/* -- */
� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

 “manage order”

 “create order”

 “manage order” use-case

 “create order” use-case

 “create order”

 “create order”

 “create order” use-case

 “create order” use-case

 “manage order”

 “create order”

 “create order”

 “create order”

�

Figure � SEQ Figure * ARABIC �29�

� http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/rup_bestpractices.html#4

� Appendix C: Project Methodology, p.147

� John Smith, A comparison of the IBM Rational Unified Process and eXtreme programming, p.19

� http://www.cs.unibo.it/people/faculty/cianca/wwwpages/labspo/BusinessModeling.pdf

� Appendix [K] business model, p 203

� Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002

� Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002, p 46.

� Appendix L: Use-case model, p 216

� Appendix M: Supplementary specification, p. 227

� Appendix D: Inception iteration Assessment, p156

� � HYPERLINK "http://www.indigoblue.co.uk/agile-rup.asp" ��http://www.indigoblue.co.uk/agile-rup.asp�, The agile perspective: Rational Unified Process

� Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002, p 46.

� Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002, p 129.

� Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002, p 135.

� Appendix N: product Vision, page (234)

� Appendix R: Risk List, page (321)

� Appendix O: SAD, page (248)

� Pc Pack documentation fragment, data import/export, appendix Q (Software Architecture document), page (280)

� Appendix (S), Prototype test 1.0 page (334)

� Appendix (T), testing procedure page (328)

� Appendix E: Elaboration iteration assessment, page (162)

� Commerce starter kit source

� Appendix (M), Supplementary Specification page (227)

� Appendix (S), Prototype test 1.0, page (334)

� Appendix U: KIS Admin test 1.0, page (339)

� Appendix V: PcPackWriter test 1.0 page (344)

� Appendix F: Construction iteration assessment, page (169)

� Appendix S: Prototype test 1.0 page (334)

� Appendix W: KIS Admin test 1.1, page (349)

� Appendix (Y) C5 ODBC driver test 1.0, page (358)

� Appendix (Z) C5 ODBC driver test 1.1, page (364)

� ODBC driver for Microsoft Navision C5 development solution, Appendix [XX],

� Appendix P: ODBC Driver for Microsoft Navision C5 Development solution, page (284)

� More details on shared C5 attributes may be found in the appendix[P], p (309)

� Appendix X: KIS Admin test 1.2, page (353)

� Appendix G: Construction iteration II assessment page (177)

� Developing KIS Shop database, Construction Iteration I, page (73)

� Appendix A1: KIS Shop test 1.0, page (368)

� Appendix H: Construction iteration III assessment, page (185)

� Appendix A2, KIS Shop test 1.1, 376

� Appendix I: Construction iteration IV assessment, page (192)

� appendix A3: Prototype test 2.0., page (384)

� appendix T: General testing procedure, page (328)

� Appendix J: Transition iteration assessment page(198)

� Appendix[..] Product pre-release description, page [..]

� Appendx [..] Product pre-release description, page [...]

� http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/rup_bestpractices.html#4

� explanations of terms could be find in Glossary, appendix [00]

� From interview with the general Company manager.

� Keycard Integration System

� Keycard Integration System

PAGE
5

_1160509295.vsd
+laodList() : String
+updateOrder() : Integer

-order : Object
-odbcReader : Object
-odbcWriter : Object

OderList

+Proceed()

-order : Object
-PC_PackWriter
-C5_Writer : Object

OrderController

+getReceiveCustomerNo()
+getIsoCountryCode()
+getName()
+getAttPerson()
+getStreet()
+getHousNumber()
+getPostNumber()
+getCity()
+getPhoneNumber()
+getEmail()
+getCustomerComment()

-receiveCustomerNo : int
-isoCountryCode : String
-name : String
-surName : String
-attPerson : String
-street : String
-houseNumber : String
-postNumber : String
-city : String
-phoneNumber : String
-email : String
-customerComment : String

Order

+writeToPcPack()

-Order : Object

PcPackWriter

+writeToC5()

-Order : Object

C5_Writer

odbcReader

+Admin()
+proceesOrder() : String
+delete()
+update()

-orderList
-oderController

Admin.Asex.cs

odbcWriter

_1160668781.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1160950600.vsd
System

KIS

Create Order

Manage Order

C5

PC Pack

General KIS use-case diagram

Customer

Administrator

_1160955994.vsd
Customer user interface component

Customer

Administrator

Administrator user interface component

Control Component of Customer User view

Control Component of Administrator user interface

Connection Component for External systems

Model component

Model component

ODBC Component

View Layer

Control Layer

Model Layer

Model component

Data layer

database

DBMS layer

C5

PC Pack

The view layer is responsible for maintaining interaction with system users. The layer contains components, representing Customer and Administrator user interface

Control layer consists of components, responsible for implementing enevt handling and accessing external systems (DMBS and other applications)

Model layer contains components, which express system model concepts

DBMS layer is a layer, which separates the data layer from other layers. Through this layer, Control layer components are connecting to database.

_1160951275.vsd
System

KIS

Manage Order

 C5

PC Pack

Manage Order Use Case

Administrator

_1160732830.vsd
1. Administrator access the Web Shop’s main page www.KeyCard.dk\admin, after validating authorization

2. Administrator selects the “Customers” from the menu

2.1 The Administrator selects particular Customer and opens his/her “Order list”

8. The System registers the order into C5 and inserts necessary data to Pc_Pack.

3&4. Administrator marks the order which supposed to be executed. Administrator confirms the execution of the order.

authorization

Accessing
web_Shop

Select
Customer

Register order to Pc Pack

PcPack

Main_Page

Administrator menu

Customer
list

Order
List

Administrator

Register to C5

C5

Open and execute order

_1160740647.vsd
Admin component

functionControls

-modelController : ModelController
-c5Writer : C5Writer
-pcPackWriter : PcPackWriter

OrderController

+writeToDebKart() : string
+writeToOrdKart() : string
+writeToOrdLinie() : string

-ImportDebKartFile : String
-ImportOrdKartFile : string
-ImportOrdLinieFile : string

C5Writer

Model

UserControls

+proceedClick()

Orders.asxc

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinieCollection

-generalDataHolder : GeneralDataHolder
-ordKart : OrdKart
-debKart : DebKart
-orderLinieCollection : OrderLinieCollection

ModelController

+writeToPcPack() : void

-fileName : string

PcPackWriter

-generalDataHolder : GeneralDataHolder

PcPackOrder

_1160745625.vsd
Web Shop Server

Customer

Admin Server

Admin

Client: Browser

<<HTTP>>

<<HTTP>>

Web Shop database

<<OLEDB>>

Client,C5

C5 Datbase

PcPack Datbase

Client,PcPack

<<OLEDB>>

_1160739777.vsd
AdminDB

AdminDetailes

C5Writer

OrderDetails

OrderDB

PCPackWriter

Security

SiteGlobals

DebKart

OrdKart

Admins

Header

Tabs

OrdLinies

BreadCrumbs

Customers

ProductAdd

OrderDetail

Profile

Login

OrdLinie

GeneralDataHolder

PcPackOrder

GenericFunctions

ModelController

OrderController

FunctionControlls

Model

_1160740287.vsd
-modelController : ModelController
-c5Writer : C5Writer
-pcPackWriter : PcPackWriter

OrderController

+writeToDebKart() : string
+writeToOrdKart() : string
+writeToOrdLinie() : string

-ImportDebKartFile : String
-ImportOrdKartFile : string
-ImportOrdLinieFile : string

C5Writer

+proceedClick()

Orders.ascx.cs

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinies

-generalDataHolder : GeneralDataHolder
-ordKart : OrdKart
-debKart : DebKart
-orderLinieCollection : OrderLinieCollection

ModelController

+writeToPcPack() : void

-fileName : string

PcPackWriter

-generalDataHolder : GeneralDataHolder

PcPackOrder

_1160739702.vsd
ShoppingCartDB

CustomersDB

OrdersDB

ProductsDB

ProductDetails

SearchResults

Register

ProductDetailsPage

ShoppingCart

AddToCart

ProductsList

C_Menu

CheckOut

FunctionControlls

Model

_1160730263.vsd
1. Customer Access the Web Shop’s main page “www.KeyCard.dk”

2. Customer Access one of the “Item Category” in main menu

2.2 After selecting an item, customer chooses to add the item to the “Shopping cart”.

3. Customer chooses to finalize the purchase.

4. Customer inserts personal information.

5. Customer is informed about successfully created order and is redirected to main page.

Access_Shopping
Cart

Accessing
web_Shop

Submit
Purchase

Enter Customer info

Wrong Info

Back to main page

Main_Page

Shopping Card

Customer
 Card

Confirmation
Page

Customer

Item Category

_1160641395.vsd
Packaging

International Sales

Telecommunications

Shipping

Customer Service

Person 1

Mail Room

International Division

Packaging the
product

International Sales

Shipping by
Post Denmark

Web-shop

printer

Ordering Products on line

Printing task:
invoice

invoice

C5
Accounting System

Customer Service

Package
label

1

2a

2b

3

4

Customer

Ordering Product by phone

Stamping the
Package with
the package label.
The invoice is put
 inside the packet.

Pc Pack
(Post Danmark Application)

Registering
 the order

Registering
the order

Printing task:
Package label

5

6

7

8

9

_1160646614.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1160646719.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1160646421.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1160588807.vsd
Sale

Order

Initiates

Customer

Paid-by

creates

1

1

1

1

1

1

_1160594628.vsd
+Page_Load()
+Present_Order()
+btn_proceedOrder_click()

-Order : object(idl)
-OrderController : object(idl)

AdminController

+OrderController() : Object
+PresentOrder()
+ProceedOrder()

-Order : object(idl)
-PcPackWriter : object(idl)
-OrderText : string(idl)

OrderController

+pcPackWrite() : object(idl)
+writeToPcPack()

-Order : Object

PcPackWriter

+getReceiveCustomerNo()
+getIsoCountryCode()
+getName()
+getAttPerson()
+getStreet()
+getHousNumber()
+getPostNumber()
+getCity()
+getPhoneNumber()
+getEmail()
+getCustomerComment()
+getProductList() : Object

-receiveCustomerNo : int
-isoCountryCode : String
-name : String
-surName : String
-attPerson : String
-street : String
-houseNumber : String
-postNumber : String
-city : String
-phoneNumber : String
-email : String
-customerComment : String
-productList : Object

Order

+setProductID() : void
+setProductName()
+setProductAmount()
+setProductPeice()
+getProductID()
+getProductName()
+getProductAmount()
+getProductPrice()

-productID : String
-productName : String
-productAmount : String
-productPrice

Product

+writeToC5()

-order : Object

C5Writer

_1160607334.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1160636550.vsd
Web Shop Server

KIS Shop

Admin Server

KIS Admin

Client: Browser

<<HTTP>>

<<HTTP>>

MS SQL Server

<<OLEDB>>

Client:C5

C5 Datbase

PcPack Datbase

Client:PcPack

<<OLEDB>>

KIS database

_1160596108.vsd
+writeToDebKart()
+writeToOrdKart()
+writeToOrdLinie()

-importDebKartFile : String
-importOrdKartFile : String
-importOrdLinieFile : String

C5Writer

_1160589858.vsd
DebKart

OrdKart

OrderLinie

A
D

A
D
C

A
C

AD

AC

A

_1160513911.vsd
view

Presentation component

Even Handler

control

Model

Function

Presentation
Layer (ASP.NET)

Business layer
(ASP.NET)

UserControls

Model

Function Controls

_1160553184.vsd
<<Process>>
Client Browser

<<Process>>
Commerc
Application

<<Process>>
Client Browser

<<Process>>
Admin
Application

<<Process>>
webshop
Database

<<Process>>
C5
Application

<<Process>>
PcPack
Application

?

?

in this case, we don't know

if the commer separt file

is part of the process

or not

Static Structure

_1160572127

_1160513934.vsd
Admin component

functionControls

-modelController : ModelController
-c5Writer : C5Writer

OrderController

+writeToDebKart() : string
+writeToOrdKart() : string
+writeToOrdLinie() : string

-ImportDebKartFile : String
-ImportOrdKartFile : string
-ImportOrdLinieFile : string

C5Writer

Model

UserControls

+proceedClick()

Orders.asxc

-A
-D
-C

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinieCollection

-generalDataHolder : GeneralDataHolder
-ordKart : OrdKart
-debKart : DebKart
-orderLinieCollection : OrderLinieCollection

ModelController

_1160513027.vsd
view

Presentation component

Even Handler

control

Model

Function

Presentation
Layer (ASP.NET)

Business layer
(ASP.NET)

UserControls

Function Controls

_1160513073.vsd
UserControls

-pcPackOrder : PcPackOrder

Orders.ascx

KIS Admin component

FunctionControls

+writeToPcPack() : void

pcPackWriter

_1158572303.vsd
�

�

Statechart�

�

Inserting Data�

�

Validating data�

Logging in as Admin
Composite state �

Wrong data�

Log in�

Data
check �

Valid
Data�

Static Structure�

_1159129365.vsd
+Page_Load()
+Present_Order()
+btn_proceedOrder_click()

-Order : object(idl)
-OrderController : object(idl)

AdminController

+OrderController() : Object
+PresentOrder()
+ProceedOrder()

-Order : object(idl)
-PcPackWriter : object(idl)
-OrderText : string(idl)

OrderController

+pcPackWrite() : object(idl)
+writeToPcPack()

-Order : Object

PcPackWriter

+getReceiveCustomerNo()
+getIsoCountryCode()
+getName()
+getAttPerson()
+getStreet()
+getHousNumber()
+getPostNumber()
+getCity()
+getPhoneNumber()
+getEmail()
+getCustomerComment()
+getProductList() : Object

-receiveCustomerNo : int
-isoCountryCode : String
-name : String
-surName : String
-attPerson : String
-street : String
-houseNumber : String
-postNumber : String
-city : String
-phoneNumber : String
-email : String
-customerComment : String
-productList : Object

Order

+setProductID() : void
+setProductName()
+setProductAmount()
+setProductPeice()
+getProductID()
+getProductName()
+getProductAmount()
+getProductPrice()

-productID : String
-productName : String
-productAmount : String
-productPrice

Product

+writeToC5()

-order : Object

C5Writer

_1159957648.vsd
Activity

Customer

Menu

Item list

Shopping Card

Item 1

Default

Item 2

Item…..N

Categories

Item Details

Home

Category…..N

Add To Cart

Category 1

Category 2

Enter Data

Static Structure

_1160300064.vsd
-A
-D
-C

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinieCollection

_1160503532.vsd
Data

Application

ODBC driver manager

ODBC driver

External data source

_1160507043.vsd
C5 application

C5data.dat

relational DB support mechanism

_1160479695.vsd
Admin component

functionControls

-modelController : ModelController
-c5Writer : C5Writer
-pcPackWriter : PcPackWriter

OrderController

+writeToDebKart() : string
+writeToOrdKart() : string
+writeToOrdLinie() : string

-ImportDebKartFile : String
-ImportOrdKartFile : string
-ImportOrdLinieFile : string

C5Writer

Model

UserControls

+proceedClick()

Orders.asxc

GeneralDataHolder

-generalDataHolder : GeneralDataHolder

DebKart

-generalDataHolder : GeneralDataHolder

OrdKart

-generalDataHolder : GeneralDataHolder

OrdLinie

-OrderLinie[] : OrdLinie

OrderLinieCollection

-generalDataHolder : GeneralDataHolder
-ordKart : OrdKart
-debKart : DebKart
-orderLinieCollection : OrderLinieCollection

ModelController

+writeToPcPack() : void

-fileName : string

PcPackWriter

-generalDataHolder : GeneralDataHolder

PcPackOrder

_1160240609.vsd
Customer

Default

Categories

Select Payment method

Category N

Category 1

Category 2

Item list

Item 1

Item 2

Item N

Final Check Out

Shopping Card

Item Details

Add To Cart

Enter Customer information

_1159129369.vsd
+Page_Load()
+Present_Order()
+btn_proceedOrder_click()

-Order : object(idl)
-OrderController : object(idl)

AdminController

+OrderController() : Object
+PresentOrder()
+ProceedOrder()

-Order : object(idl)
-PcPackWriter : object(idl)
-OrderText : string(idl)

OrderController

+pcPackWrite() : object(idl)
+writeToPcPack()

-Order : Object

PcPackWriter

+getReceiveCustomerNo()
+getIsoCountryCode()
+getName()
+getAttPerson()
+getStreet()
+getHousNumber()
+getPostNumber()
+getCity()
+getPhoneNumber()
+getEmail()
+getCustomerComment()
+getProductList() : Object

-receiveCustomerNo : int
-isoCountryCode : String
-name : String
-surName : String
-attPerson : String
-street : String
-houseNumber : String
-postNumber : String
-city : String
-phoneNumber : String
-email : String
-customerComment : String
-productList : Object

Order

+setProductID() : void
+setProductName()
+setProductAmount()
+setProductPeice()
+getProductID()
+getProductName()
+getProductAmount()
+getProductPrice()

-productID : String
-productName : String
-productAmount : String
-productPrice

Product

+writeToC5()

-order : Object

C5Writer

_1159129370.vsd
Administrator

Menu

Header

Admin

Footer

Right Pane

Default

Products

Default

Customers

Category

Home

Orders

Brows Products

Add

Proceed

Delete

Delete

Edit

Edit

Add New product

Add New Admin

Edit/Updat
Product

Brows Admin

_1159129366.vsd
-orderNumber : int
-orderState : string
-receiverCustomerNo : string
-productCode : string
-iSOCountryCode : string
-name : string
-surname : string
-attPerson : string
-street : string
-houseNo : string
-postBox : string
-postNo : string
-city : string
-province : string
-momsNo : string
-phoneNo : string
-contactPerson : string
-eMail : string
-customerComment : string
-sentFrom : string
-sentTo : string
-packageNumber : int
-barCode : string
-itemAmount : string
-countryId : string
-itemDescription : string
-taxInside : string
-taxValue : string
-currency : string
-packageLength : string
-packageHeight : string
-packageWidth : string
-packageWeight : string
-nettoWeight : string
-packageVolume : string
-taxTarif : string
-taxDescription : string
-service : int
-changeTradeForm : string
-ensurance : string
-reference : string

Order

_1159129368.vsd
-generateFileName() : void
+writeToPcPack() : void

-order : Object
-fileName : string(idl)
-filePath

PcPackWriter

_1158766265.vsd
< Back

Next >

OK

Cancel

?

Enter Title Here

Favorites

Go

Menu Name

Status field

Enter text

Static Structure

Uplaudsgade 12, 1.th

2300 Kobenhavn S

Phone Number:

+45 50544320

Email Address:

ratata@louisemus.dk

_1159044878.doc
[image: image1.png]e — |

_1158572483.vsd
�

�

�

�

�

Statechart�

�

Request Keycard site�

Message will be

 displayed for

 the customer

comfirming the

Purchase �

�

Accessing web shop�

�

Selecting Items�

�

CompositeState1�

Open
Browser�

End Sission�

shopping
card delete�

Order
confirmed�

End Session �

End Session �

Static Structure�

Stat chart diagram for
Customer �

_1158572320.vsd
�

�

�

�

�

�

�

Statechart�

Statechart�

�

Accessing order list�

�

Closeing Browser�

�

Logging out�

Managing Order
Composite state �

�

�

Delete Order�

�

Update Order�

�

Proceed Order�

�

Confirm Update�

�

Confirm Delete�

�

Confirm Proceed�

Log out �

End Session �

Back to main menu �

Static Structure�

Valid
Data�

Order list Access�

Order
confirmed �

Update
Confirmed �

Delete
confirmed �

Activity�

_1156874096.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Registered �

Registered �

Manages �

Visits �

Visits�

Contains �

Contains�

Contains �

�

�

�

Creates �

*�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

*�

*�

*�

*�

*�

*�

*�

�

Administrator�

�

C5�

�

PC_Pack�

�

Order�

�

Customer�

�

Web_Shop�

�

Item�

�

Category�

�

Catalog�

_1158303537.vsd

ActorClass

Use Case

Use Case

1. Administrator access the Web Shop’s main page www.KeyCard.dk, after validating authorization.

2. Administrator is authorized by insering username and password

2. Administrator selects the “order list” from the menu.

3. Administrator marks the order which supposed to be executed.

4. Administrator confirms the execution of the order.

5.The order is registered to C5 and Pc Pack

6. Administrator is informed about successfully registered order

authorization

Accessing
web_Shop

Back to main page

Select
“order list”

Register order to Pc Pack

Back to main page

Main_Page

Administrator menu

Order
list

order

Administrator

Register to C5

Inform about executed order

C5

_1158344686.vsd
Web-shop

Pc Pack

C5

Web shop database

Pc Pack database

C5 database

IN

Told and Skat

Payment Authorization service

_1158482383.vsd
�

�

Statechart�

Statechart�

Purchasing Item
Composite state �

�

Creating Shopping Card�

Item
selected �

�

Update Shopping card�

�

Submit shopping card�

�

Filling up customer card�

�

Validating data�

Data check �

If Wrong Data
redirect to
Customer card�

 If data is right
Purchase is done
& back to web shop
�

End Session�

�

Delete shopping card�

back to web shop
�

Accessing web shop�

Static Structure�

Activity�

_1157188933.vsd
Administrator

Customer

_1157955518.vsd
iBook

Tower PC

Server

Data

Print Queue

Client

Client

Printer

Web Server

MS SQL
Web Shop
Database

PcPack

C5

Administrator

http request

http response

http request

http response

http request

http response

order product by phone

Receives confirmation

Client

Keycard company

Client

_1157027512.vsd
�

The legal-political dimension�

International Dimension �

Technological dimension�

The Economic dimension�

The Internal
Environment �

Labor market �

Competitors �

Customers �

Suppliers �

Keycard
Company�

The External Environment �

_1156309811.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1156418624.vsd
Name
Title�

Name
Title�

Owners
Rune & Jasper
�

Administration & shop in Sweden
Inge�

Shop in Denmark
Rune & Kurt�

Administration
Jasper & Tomas �

_1155363853.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

_1155671791.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

Duration

