
5th Semester Report
Roskilde Business College

School of Computer Science
6th of August 2002 – 11th of November 2002

C A R T R A C K I N G
S Y S T E M

by
The Jacks
Dario Pacino
Hjörtur Sheving

The Jacks

Car Tracking System

“Programavimas šiandien tai lenktynės tarp programų sistemų inžinierių ir gamtos:
vieni stengiasi kurti programinę įranga visiškiems neišmanėliams,
o gandras vis atneša naujų idiotų.

Kol kas gamta pirmauja.”

Rich Cook

A 5th Semester Report

By:
The Jacks,
Dario Pacino
Hjörtur Scheving

Students at:
Roskilde Business College,
School of Computer Science
Bakkesvinget 67
4000 Roskilde
Denmark

Project Period:
6th of August – 11th of November 2002

Supervised by:
Michael Claudius

Synopsis:
The knowledge and experience we have acquired through the last four semesters at RBC are to be brought together
here in this report.

The report is build upon the development of a demo version of the Car Tracking System, which was developed by
the Jacks for Sidabrinis Tinklas.

It is our hope that this report will proof to be of great help for future developers of the system.

Roskilde, 11th of November 2002

Title:

Car Tracking System

Keywords:

Rational Unified Process, RUP®

eXtreme Programming, XP

Mobile solution

Summary:

This report tries to describe the process of developing a demo version of the Car Tracking System, from A
to Z. It follows the developers, two 5th semester students at Roskilde Business College, though their
process, explaining their choices and decisions along the way.

We hereby give our permission to the school library, at Roskilde Business College, for lending out this
project report to our fellow students and other interested parties. All rights reserved. No part of this report
may be reproduced, or stored in a database or retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or any other media embodiments now known or hereafter
to become known, without the written permission of the authors.

Authors:

________________________ _________________________

Hjörtur Scheving Dario Pacino

Table of Contents

5

Table of Contents
Table of Contents 5

Preface 11

Introduction 11
Acknowledgments 12

Problem Definition 15

Methodology 17

1. Introduction 18
2. Choosing the Methodology 18

2.1 Development Models 18
2.2 Agile vs. Heavyweight Methodologies 19
2.3 Our Choice 20

3. Conclusion 20

Environment Set 21

1. Introduction 22
2. Development Case 22

2.1 Introduction 22
2.2 Overview of the Development Case 22
2.3 Phases 22
2.4 Core Workflows 23

3. Conclusion 32

Project Management Set 33

1. Introduction 34
2. Risk List 34

2.1 Introduction 34
2.2 Risks 34

3. Software Development Plan 37
3.1 Introduction 37
3.2 Project Overview 38
3.3 Project Organisation 38
3.4 Management Process 39
3.5 Supporting Process Plans 42

4. Iteration Plans 43
5. Iteration Assessments 43

5.1 Introduction 43
5.2 Iteration 0 43

Table of Contents

6

5.3 Iteration 1 44
5.4 Iteration 2 45
5.5 Iteration 3 46
5.6 Iteration 4 47
5.7 Iteration 5 48

6. Conclusion 49

Requirements Set 51

1. Introduction 52
2. Business Case 52

2.1 Introduction 52
2.2 Product Description 52
2.3 Business Context 52
2.4 Product Objectives 52
2.5 Constraints 52

3. Vision Document 53
3.1 Introduction 53
3.2 Positioning 53
3.3 Stakeholder and User Descriptions 54
3.4 Product Overview 55
3.5 Product Features 57
3.6 Constraints 58
3.7 Quality Ranges 58
3.8 Precedence and Priority 59
3.9 Other Product Requirements 59

4. Software Requirement Specification 60
4.1 Introduction 60
4.2 Functional Requirements 60
4.3 Usability Requirements 62
4.4 Reliability and Performance Requirements 62
4.5 Supportability Requirements 62
4.6 Supplementary Specifications 62
4.7 Online User Documentation and Help System Requirements 64
4.8 Interfaces 64
4.9 Licensing Requirements 65
4.10 Legal, Copyright, and Other Notices 65

5. Conclusion 65

Analysis & Design Set 67

1. Introduction 68
2. Our way 68
3. Class Description 68

3.1 Introduction 68
3.2 The Core Classes 69

4. General System Architecture 69
4.1 Introduction 69
4.2 Purpose 69
4.3 Type of Network 69

Table of Contents

7

4.4 System Architecture 70
4.5 System Layers 71
4.6 Solution Options for the Query System 72
4.7 The Architecture Selection 75

5. Software Architecture Document 76
5.1 Introduction 76
5.2 Architectural Goals and Constraints 76
5.3 Use-Case View 76
5.4 Logical View 77
5.5 Component View 78
5.6 Deployment View 79

6. Conclusion 79

Implementation Set 81

1. Introduction 82
2. Implementation Restrictions 82

2.1 Introduction 82
2.2 Limitations 82

3. XP Practices 83
3.1 Pair Programming 83
3.2 Refactoring 83
3.3 Collective Ownership 83
3.4 Continuous Integration 84

4. Conclusion 84

Test Set 85

1. Introduction 86
2. JUnit™ 86
3. Conclusion 87

Query System 89

1. Introduction 90
2. Requirements Set: Use Case Specifications 90

2.1 Generate GUI 90
3. Requirement Set: Software Requirements Specification 91
4. Analysis & Design Set: Software Architecture Document 91

4.1 Introduction 91
4.2 Architectural Representation 91
4.3 Use-Case View 91
4.4 Logical Views 92
4.5 Deployment View 97
4.6 Implementation Views 97

5. Implementation Set: Implementation Document 99
5.1 Introduction 99
5.2 Implementation Issues 100

Table of Contents

8

6. Test Set: Test Document 102
6.1 Introduction 102
6.2 Requirements for Test 102
6.3 Test Strategy 103
6.4 Test Result 105

Messaging System 107

1. Introduction 108
2. Requirements Set: Use Case Specification 108

2.1 Mobile User Message Sending 108
3. Requirements Set: Software Requirement Specification 109
4. Analysis & Design Set: Software Architecture Document 109

4.1 Introduction 109
4.2 Architectural Representation 109
4.3 Use-Case View 110
4.4 Logical Views 110
4.5 Deployment View 113
4.6 Implementation Views 114

5. Implementation Set: Implementation Document 115
5.1 Introduction 115
5.2 Implementation Issues 115
5.3 Limitations 116

6. Test Set: Test Document 116
6.1 Introduction 116
6.2 Requirements for Test 116
6.3 Test Strategy 116
6.4 Test Result 118

Tracking System 119

1. Introduction 120
2. Requirements Set: Use Case Specifications 120

2.1 Mobile Client Sends Position To Central Client 120
3. Requirements Set: Software Requirement Specification 121
4. Analysis & Design Set: Software Architecture Document 121

4.1 Introduction 121
4.2 Architectural Representation 121
4.3 Use-Case View 122
4.4 Logical Views 122
4.5 Deployment View 125
4.6 Implementation Views 126

5. Implementation Set: Implementation Document 128
5.1 Introduction 128
5.2 Implementation Issues 128
5.3 Limitations 129

6. Test Set: Test Document 129
6.1 Introduction 129
6.2 Requirements for Test 129

Table of Contents

9

6.3 Test Strategy 130
6.4 Test Result 131

Deployment Set 133

1. Introduction 134
2. Deployment Document 134
3. Demo Development Proposal 134

3.1 Introduction 134
3.2 Present Demo problematic 134
3.3 Proposals for Future Development of the Demo 135

4. Conclusion 136

Epilogue 137

1. Evaluation 138
1.1 The Environment 138
1.2 The Process 139
1.3 The Product 140

2. Conclusion 142
3. Final Conclusion 145

Appendices 147

Preface

11

Preface
This report is a part of our main thesis for the International Datamatician course at Roskilde Business
College (RBC), were we bring together the knowledge and experience we have acquired through the last
four semesters, furthermore it will explore our ability, as international students, to adapt to an international
real life working environment. The project this report describes was undertaken in Vilnius, Lithuania in co-
operation with Sidabrinis Tinklas (ST), a local software company.

The report is written with IT professionals in mind, either teachers of Computer Science or future
developers. The contents and writing style of the report therefore requires the readers to have a broad
knowledge, especially of Rational Unified Process (RUP®), eXtreme Programming (XP) and Object
Oriented Analysis and Design (OOA&D).

The structure of the report is rather straight forward, mainly based upon the structure of RUP®. The report
is divided into four main parts. We start by describing the process of selecting the appropriated software
methodology. The second part is divided into the sets of RUP®, describing the general ideas and
architecture of the system, together with everything else related to the process including the conclusions of
each of the sets.

The third part is the most product oriented one, divided into the three subsystems were we cover the
Requirements, Analysis & Design, Implementation, Test Set of each the three systems in more depth. At
the end of this part we have, a Deployment Set were we finalise the practical part of the project and
describe the hand over of the product.

Finally, yet importantly, in our fourth part, we have an Epilogue were we evaluated the process and finally
try to answer our problem definition. We use many abbreviations through out the report, therefore we
include a special abbreviation table in Appendix A in order to ease the reading.

The reader should consider, as RUP®/XP is an iterative process so there might be shown decisions in a set
that are not described until in later sets, e.g. some of the things stated in the Analysis & Design Set are not
explained before in the Implementation Set. However, this is an exception and should not hinder the reader
in getting an understanding of the system and the process through the report.

Introduction
Since this is, a very product oriented report then in order to ease the understanding of what is to follow in
this report then we include here a little introduction to the system we developed. Lets start with the project
proposal presented to us by ST:

“Project proposal: Car-tracking system

The project goal is to develop a car-tracking system using GPS (Global Positioning System) and GPRS
wireless data transfer technologies in combination with a geographical information system (GIS).

A full setup of the system is as follows. A numbers of cars drive in a pre-defined area (e.g., city of Vilnius).
Each car is equipped with a GPS/GPRS device, which delivers car’s positions to a central computer using
GPRS wireless data transfer technology. The central computer has a GIS system installed (e.g., Akis, see
www.akis.mii.lt), which displays received positions. Some of the cars are additionally equipped with computers
having the same GIS system, so that they can receive positions of other cars from the central computer.

Other information that can be sent between car computers and the central computer includes:

- positions and states of other selected objects
- object-related information
- messages

Preface

12

The tasks of the project include analysis of the system and programming of system components such as:

- transfer of positions to the central computer
- displaying objects in a GIS system
- transfer of positions from the central computer to car computers
- transfer of other information

The expected result is a functioning demo system. Programming can be done using C++ or Java™.”

Even if the tasks seemed to be pretty set at the start, we found out that more things were actually required,
and that the structure of system was mainly up to us.

The Car Tracking System (CTS) is a system designed for companies that have to manage mobile
employees and a large fleet of vehicles. The system will allow the users to keep track of their vehicles, by
visualising their geographical position on a Geographical Information System (GIS). Moreover, the
companies will be able to exchange messages with all the vehicles and the system will allow the users to
run queries on particular databases.

The main aim of the project was though, to create the system so that it is flexible towards future
implementations and database connections. By this we mean that the system must be able to connect to
different kind of Database Management Systems (DBMS) with minimum, if any, implementation changes,
and that its architecture must be so that it can be tailored to fit different customers.

During the process, we divided the system into three essential subsystems: the Query System, the
Messaging System and the Tracking System:

Tracking system:

The idea is that a company with a fleet of vehicles equip each car with a GPS/GPRS device, which
delivers the car’s position to a central computer. The central computer is then able to display the
car’s position on an installed GIS system enabling greater coordination and overview of the fleet.

Messaging system:

Even a sophisticated system like the Tracking system does not help much on its own. Even if the
company knows where the cars are then they need to be able to communicate with them in order to
coordinate the fleet. Of course, there are several options here; use normal mobile phones or short
wave radio but these solutions do not enable an easy way of keeping records of the
communications. Therefore, each car would be equipped with a computer and we would utilise the
GPRS connection we already have between the cars and the central computer, making message
passing between the cars and the central computer possible and store all communications into a
database.

Querying system:

Accessing information can often be a tedious task for the mobile worker, but having the
connection to the central computer can provide a remote access to a central database. This would
give the mobile worker the opportunity to make searches in a central database, accessing the
needed information within seconds.

Acknowledgments
First of all, we would like to thank Vilnius University and Roskilde Business College for giving us the
chance to do our main thesis in Lithuania.

Michael, thank you for your guidance through out the project, we know it was not an easy process. Special
thanks for believing in us, and trusting us to represent RBC in Lithuania.

Preface

13

Saulius, thank you for all you assistance during our stay in Lithuania, thanks to you everything in relation
to the university went smoothly.

To everyone at Sidabrinis Tinklas, thanks for having us around. It was a pleasure to get to know you guys
and thanks for all the help.

A very special thanks goes to Giedrius, for being so patient with the two crazy persons we are. With out
you we would not have reached as far as we did during this project. We own you big time.

To Audrius and Ignas, guys we would never have made it without you!! We would have been homeless for
the entire stay. Thanks for showing us around and teaching us how to use the trolleybuses.

There is more to life than just work; to all the bartenders and waitresses at Brodvejus that made our
weekends rock, we love you, and we’ll be back!!

Never have we in such a short time made as many friends as we did in Lithuania. To all our friends we left
in there, thank you for making this an unforgettable stay, we will never forget you, however we will never
forgive you for letting us go. See you all soon!!!

Problem Definition

15

Problem Definition
The project can be divided up into two parts, a practical and a theoretical part. The practical part is rather
straight forward provided to us by Sidabrinis Tinklas (ST). ST is a Lithuanian software company, located in
Vilnius but stretches it’s business angles worldwide with customers located e.g. Finland, Sweden, and
Estonia to name a few. Armed with about 25 capable employees they specialise in mobile solutions, both
“shrink-wrapped” and customised software.

Even though the Car Tracking System is supposed to be a “shrink-wrapped” product then this project has a
connection with a costumer of ST that is interested in a system like this and will be able to comment it.

There is no doubt that it costs a lot of money, both the needed hardware and the manpower, to develop a
full system of this magnitude. Therefore, in fact we can say that the demo is the bait for that costumer, to
allure them into investing in this system. So, this project and its outcome can have substantial financial
benefits for ST.

There are a couple of questions that come to our mind, when we look at the practical part of the project.

• Is it possible to use a demo version of a system to attract costumers?

• Can a customised system also become a “shrink-wrapped” product?

• Can two datamatician students go abroad and work with a local company as a part of their main
thesis?

• How well are we prepared to handle methods/tools/techniques/technologies outside the curriculum
of our studies?

The goal of software development is to produce quality, on time and within budged software but it is not as
easy as it sounds. There does not exist a “Silver Bullet” to reach that goal but it is not all lost because there
is help to be found. But where and what to look for? We will start in the jungle, the methodology jungle!
There are literally hundreds of software development methodologies out there, ready to guide us towards
the goal, and there we will start and end our theoretical part of this project.

We will try to evaluate different development models and methodologies and out from that choose one or
sculpture our own development methodology that we will follow through out the project. We will argue
and present valid reasons for our choice. Our main focus will be on answering the following

• Does the chosen methodology suit the scope and size of our project?

However, under this broad question we have many others:

• How well does the methodology cover the project management of our project?

• How well does the methodology cover the documentation of our project?

• Does the methodology cover the whole lifecycle of our project?

• Is it necessary to tailor the chosen methodology to our project and how easy is it to do so?

• Does the methodology give the developed system the necessary support it needs to go into further
development after the project finishes?

• How easy is it to follow the methodology?

• Is the support and tools provided with the methodology adequate?

There are no simple answers to these questions. However, in the Conclusion part of the Epilogue we try to
base our answers to these questions upon our experience gather though out this project.

Methodology

17

Methodology

Methodology

18

1. Introduction
It is not always that the project manager or the development team can choose themselves which software
development methodology to follow, as a matter of fact that happens rarely nowadays. “..this is less likely
nowadays, the project manager may have the power to decide on the most appropriate development model
to be used for the project” (James Cadle & Donald Yeates, 2001). However, for this project the
development team has the full authority to choose whichever methodology to follow.

Sure, we have preferences and suggestions from our customer, who uses RUP® as a standard in their
company, but never the less we have tried to take an objective look into the jungle of methodologies. In this
chapter, we try to describe this process but it is not our intentions nor is it possible to discuss all available
development models and software methodologies.

2. Choosing the Methodology

2.1 Development Models
Basically, there are only two development models1: a waterfall model and a spiral model. There exist many
others but they are merely variants or refinements of these two, way too many for us to discuss here in this
chapter.

• Waterfall model:

Breaks the system development into number of sequential stages, where each stage has to be
completed before entering the next one. The outputs from one stage are used as inputs to the next.
There is no iterative work between the stages but can be with in a stage.

• Spiral model:

Often referred to as the iterative model, works in a different way than the waterfall model. It
carries out the same activities over a number of cycles in order to produce the wanted system,
clarifying the requirements, issues and solutions on the way.

For us there was never a question, which way we wanted to go, we were going spiral!

The waterfall model is a good model to follow if, and only if, the requirements and the business
environment are stable. This is due to the sequential structure of it; it requires that you are able to finish one
stage before entering the other. But when do you know all requirements upfront? This is very unlikely in
today’s business environment where things change rapidly.

As vigorously, as the waterfall model rejects changes, the spiral model embraces them. As only parts of the
system are developed at a time then changes in requirements come early and before the whole system has
been developed. This model gives the chance of delivering a working version of the system in a short time,
giving the customer the satisfaction of seeing some return on their investment.

Even with the limited experience we have in software development, we have seen and experienced that
working after a spiral model suited us much better in situations like our project, as we knew very little
about the requirements of the system and we saw great risks ahead of us with many new technologies that
we had no experience with. Furthermore, we believe that this gives a more correct system as the
requirements are discovered through out the system development not all upfront. Divide and concur!

1 Project Management for Information Systems, 3rd Edition

Methodology

19

2.2 Agile vs. Heavyweight Methodologies1
It is not enough to have a model to follow we need a methodology to follow, or create our own. However
you can say that there is no need to reinvent the wheel, it is out there. There are literarily hundreds if not
thousands of methodologies existing today. They can be divided into two main groups: agile and
heavyweight methodologies.

• Agile methodologies:

As the name indicates they are flexible, where the user can modify them to suit their own needs.
They aim to deliver working software frequently, where the working software, not documents, is
the primary measurement of progress. They promote close working relationship between the
business people and the developers.

• Heavyweight methodologies:

When talking about heavyweight methodologies then bureaucracy is never far away. They have
set steps to follow and are not flexible. They focus on documenting everything very carefully,
believing that it will make quality software.

Few years’ back no one had heard of agile methodologies, or lightweight methodologies, as they are also
known as, but today it is one of the keywords of software development. It is somewhere in between the so-
called “cowboy coding”, where you just code and do not follow any methodology, and the heavyweight
methodologies where you document everything.

The main creators of today’s agile methodologies came together and found out that even though their
methodologies had some differences then they could agree on a common manifesto1:

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

1 Methodology resources

Methodology

20

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behaviour accordingly.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

We are rather practical oriented developers; with little interest in droving our motivation in paperwork. We
also believe strongly that everything said in the manifesto helps and guides us in producing a quality
software and project. Therefore, we will focus on agile methodologies.

2.3 Our Choice
Now we have narrowed our search in the methodology jungle but still a bit lost, as there are many
methodologies that belong to the agile methodology group. However, after a brief introduction to eXtreme
Programming (XP) on our third semester, we were already fascinated by it and eager to try it.

However, the company we are working with, uses Rational Unified Process (RUP®), and there we became
for the first time familiar with it. There have been some discussions in the software development
community if RUP® can be categorised as an agile methodology. There lies the beauty of it, its flexibility.
It can be a heavyweight methodology or an agile methodology; all depends on the configuration of it by its
user.

Since our objectives of this project are to produce software for a software company, which is not going to
use the system but build upon it, and to produce a quality academic report, we really need to document the
process and the product specifications it in a proper way. Therefore, we concluded that XP does not suit for
our project because of its lack of documentation. However, RUP® will be suitable to help us to fulfil these
objectives.

We are though not willing to completely give up on XP, nor is there any need to. There are some key
features in XP that we want to try to integrate with RUP®; pair programming, refactoring, continuous
integration and collective ownership. Where these practices come exactly into the process, we discuss in
the later on in the Environment Set. However, we are not sure at this stage if RUP® and XP can really
work together, that we will have to find out the hard way.

3. Conclusion
It was a very interesting process, were we explored new territories. This was the first time that we had free
hands in choosing a methodology to follow. We already had some preferences when we went into the
project but things are easier said than done, as the saying goes, and we realised that what we initially
intended to use could not work to our satisfaction unless combined with another methodology. One thing
we learned is that a system developer has to be flexible and quick to adapt to new practices, because we
still believe that different methodologies apply to different type of project. It is not the same do develop a
system for a space shuttle or a homepage for a local football club.

Environment Set

21

Environment Set

Environment Set

22

1. Introduction
The Environment Set focuses on providing the software development organisation with the software
development environment - both processes and tools - that will support the development team. It is
necessary for us, as for every development group, to evaluate the chosen developments processes, in our
case RUP® and XP, and modify them and the related artefacts as needed.

2. Development Case

2.1 Introduction

2.1.1 Purpose
This document presents the manner in which the RUP® and XP development methodologies are to be used
for the Car Tracking System project by the Development group The Jacks.

It defines the process configuration for this project. In particular, it defines the Process Roles supported in
the Project and which Artefacts to produce.

2.1.2 Scope
This development case applies to the Inception, Elaboration, Construction, and Transition phases of the Car
Tracking System project.

2.1.3 Overview
The remainder of this document describes ways in which the RUP® and XP will be adapted for this
project.

Section 2 contains an overview of the development process, including project management and quality
assurance activities. Section 3 describes the iteration workflows for the four phases. Section 4 describes the
core workflows of RUP®, not just their workflow but also their artefacts and which artefacts have been
eliminated and not least why they have been eliminated.

2.2 Overview of the Development Case
This project will consist of a combined Inception and Elaboration phase, a four-iteration Construction
phase, and a small Transition phase. Design and code reviews will take place at key iteration milestones,
and project quality reviews will be conducted on the fly.

2.3 Phases

2.3.1 Inception & Elaboration

Define the Scope and Vision, and Preparing the Development Environment
We will work with the stakeholders of the system to be developed to define the vision and the scope of the
project. This will be done by meetings and reviewing the project proposal. We will produce the Vision
document and the Business Case as artefacts. An initial version of the project risks will also be developed
at this point. Researching and model the desired development lifecycle to be follow during the project and
out line it in the Development Case.

Outline and Clarify the Functionality that is to be Provided by the System.
We will have meetings to collect stakeholders’ opinions on what the system should do. We will outline the
overall architecture of the system at this point as a basis for subsequent design activities.

Environment Set

23

Define the Software Development Plan.
With input from the Vision and Business Case, we will look into the resource estimates, the environment
needed, and success criteria. We will also update the Risk List to refer to the identified use cases and add
new identified risks. We will develop the initial Software Development plan to fully map out the project
phases.

2.3.2 Construction

Clarify and Finalise the Requirements of the System
We will produce the Software Requirements Specification (SRS) of the whole system and specific ones for
each individual subsystem. The SRS for the whole system will be delivered to the user company for
verification. All needed documents will be updated to reflect on the up-to-date requirements.

Complete Component Development and Testing Against the Defined Evaluation Criteria
The system will be developed iteratively and incrementally in order to produce a complete product that is
ready to transition to the user. This will be done by completing the analysis, design, development and
testing of all required functionality for each subsystem at the time and then gradually intergrading them
with the main system.

2.3.3 Transition

Prepare the System and its Related Documents for Deployment
A Deployment Document will be produced and all document related to the product that can be handy for
further development of the system are up-to-date. The system along with its source code and documents
will be handed over to Sidabrinis Tinklas.

2.4 Core Workflows

2.4.1 Introduction
This Development Case covers the configurations for all nine core workflows in The Rational Unified
Process: Business Modelling, Requirements, Analysis & Design, Implementation, Test, Deployment,
Configuration & Change Management, Project Management, and Environment.

2.4.2 Core Workflow Configuration
The purpose of this section is to explain how the core workflow configuration works. This includes the
purpose of the different tables and sections that describe each core workflow.

Section: "Workflow"
This section details any changes made to the structure of the workflow itself. Typical changes include the
addition of activities to describe our ways of working.

Section: "Artefacts"
The section describes, in a table, how the artefact will be used. These artefacts are mostly based upon
RUP® templates but additional artefacts are added to the table as needed.

Created / Revised Artefacts
Inc/Elab Const Trans

Review Details Tools used Templates

<Artefact name> X X X <Review procedure>

Environment Set

24

The 'X' in one or more of the phase cells, means that we plan to revision of that artefact in that particular
phase. In the cell Review Details we refer often to the Academic Committee or the Quality Group, these
terms are explained in the Project Management Set, section 3.3.2. Finally, the Templates cell displays if
there is a template provided by the RUP® or not.

Section: "Notes on Artefacts"
The main purpose of this section is to provide a list of all major artefacts that we want to exclude in this
Workflow and the motives behind excluding them.

2.4.3 Business Modelling
As the project proposal from Sidabrinis Tinklas does not include anything regarding the business aspect of
this system, we will not follow the workflow of the Business Modelling or produce any of the associated
artefacts. Per say we consider the Business Modelling outside the scope of the project.

2.4.4 Requirements

Workflow
Requirements are captured through the development of use-cases and the Vision Document. Use-cases
define actors, describing how the actors interact with the system. During the development of use-cases, a
set of non-use-case requirements will also be captured. In the end, all requirements will be gather in a
Software Requirement Specification for each subsystem.

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Actor X X None Microsoft
Word® No

Software Requirements
Specification

X X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word®/Ration

al Rose®
RUP®

Supplementary Specification X X X None Microsoft
Word® No

Use Case Specification X X Formal by Academic
Committee

Microsoft
Word®/Ration

al Rose®
RUP®

Vision X X X Formal by Academic
Committee

Microsoft
Word®/Ration

al Rose®
RUP®

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Actor Used No special document is required as the actors are few and simple
enough to capture them with the Use-Cases

Boundary Class Not used Simple enough architecture to keep an overview with the System
Architecture Document

Glossary Maybe
It will be used if found necessary, but the close working environment
and the small size of the development group makes it unlikely to be
of great value

Environment Set

25

Artefacts How to Use Reason/Notes

Requirements
Attributes

 Not used Due to the close working environment and the small size of the
development group makes it unlikely to be of great value

Requirements
Management Plan

 Not used Due to the close working environment and the small size of the
development group makes it unlikely to be of great value

Stakeholder Requests Not used
The stakeholders request come from meeting we have with our
contact person at Sidabrinis Tinklas and not needed to be put in to a
separate document

Supplementary
Specification

 Used
A separate document will not be produced but the supplementary
specifications will be captured in the Software Requirement
Specification

Software
Requirements
Specification

 Used A SRS for the Car Tracking System will be produced but also a
separate SRS for each of the three subsystems.

Use-Case Model Not used An overview of the system will be captured in the Vision and in the
Software Architecture Document.

Use-Case Package Not used Due to the close working environment and the small size of the
development group makes it unlikely to be of great value

Use-Case Storyboard Not used The needed info will be captured in the Use-Case Specification
User-Interface
Prototype

 Not used Sketches of the interfaces will be enough and placed in the SRS

2.4.5 Analysis & Design

Workflow
The use-cases developed during the Requirements workflow form the basis for subsequent analysis and
design. Object-oriented design and analysis techniques will be used to complete the use-cases initially
developed, produce the analysis and design object models and the software architecture document.

This is not a real-time system, so the real-time design workflow is omitted.

Artefact

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Analysis Model
X X X None Rational

Rose®
No

Data Model X X X None Rational
Rose® RUP®

Deployment Model
X X X None Rational

Rose®
No

Design Class
X X X None Rational

Rose®
No

Design Model
X X X None Rational

Rose®
No

Design Package
X X X None Rational

Rose®
No

Environment Set

26

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Event X X X None
Microsoft

Word®/Ration
al Rose®

No

Interface X X None
Microsoft

Access®/Wor
d®

No

Software Architecture
Document

X X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word®/Ration

al Rose®
RUP®

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Analysis Class Not used Due to the simplicity of the system we will sketch up the proposed
classes on paper

Analysis Model Used This will be included in the Software Architecture Document
Capsule Not used Not a real-time system
Deployment Model Used This will be included in the Software Architecture Document
Design Class Used This will be done in the Design Model
Design Model Used This will be included in the Software Architecture Document
Design Package Used This will be included in the Software Architecture Document

Design Subsystem Not used
We will split the systems up and produce separate designs for each
system then we don’t need this or you can say we already thought of
this

Event Used This will be included in the Software Architecture Document
Interface Used This will be included in the Software Architecture Document
Protocol Not used We do not is the Capsule nor is it a real-time system
Reference
Architecture

 Not used We don’t have any reference architecture to rely on

Signal Not used Not of importance in our project

Software Architecture
Document

 Used
Quality Criteria will not be covered here because it will be covered
in the Vision document. Process view will be included in the
implementation view.

Use-Case Realisation Not used Not needed because of the simplicity of the use cases

2.4.6 Implementation

Workflow
Implementation will occur by developing objects and packages based on the design models developed
earlier. Once these are initially created, the development team will review them, unit tested by the
developers, and integrated into subsystems and the Car Tracking system for integration testing. Here we
will add to the traditional RUP® some of the implementation practices of XP: pair programming,
refactoring, collective ownership and continuous integration.

Environment Set

27

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Build X X Formal by Quality
Group

TextPad®,
Java™ 2 SDK

1.3, Java™
VM

No

Component X X None

TextPad®,
Java™ 2 SDK

1.3, Java™
VM

No

Implementation Model X Formal by Academic
Committee

Microsoft
Word®/Ration

al Rose®
No

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Build Used
There will be no special documents associated with the Build. It will
consist of our working demo of the Car Tracking System, and will
grow as we produce and intergraded the subsystems.

Implementation
Subsystem

 Not used
We will produce an Implementation Model for the Car Tracking
System and for each individual subsystem. Therefore, we have
decided that there is no need for this the Implementation Subsystem.

Integration Build Plan Not Used

The iterations are small and each subsystem is rather small at this
demo stage, therefore, we have decided just to plan the Integration
Build Plan on the fly and will not be documented. In addition, the
development team only consists of two members that will be doing
pair programming so there is no need to coordinate the activities of
many programming pairs.

2.4.7 Testing

Workflow

Informal test cases and scripts that are developed from the use-cases will drive the test workflow. Using
again some of the core practices of XP, (e.g. pair programming, collective ownership and continuous
integration.), with the core Testing workflows described by the RUP®.

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Test Class X None

TextPad®,
Java™ 2 SDK

1.3, Java™
VM, JUnit™

No

Environment Set

28

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Test Components X None

TextPad®,
Java™ 2 SDK

1.3, Java™
VM, JUnit™

No

Test Evaluation Summary X None Microsoft
Word® No

Test Plan X None Microsoft
Word® RUP®

Test Results X None Microsoft
Word® RUP®

Test Document X Formal by Academic
Committee

Microsoft
Word® No

Test Script X None TextPad® No

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Test Case Not used

It has been decided that because this is only a demo version then we
will not produce any Test Cases but testing is though done but only
discussed between the developers and then implemented straight
away, and the source code the only documentation of the test case.

Test Model Not used
Because this is only a demo version and due to the close working
environment we have decided that this artefact is not necessary for
the development of the system.

Test Evaluation
Summary

 Used Included in the Test Document

Test Plan Used Included in the Test Document

Test Document Used A test document will be created for each subsystem, covering what
will be tested and then a short evaluation on how the testing went

Test Package Not used
Because this is only a demo version and due to the close working
environment we have decided that this artefact is not necessary for
the development of the system.

Test Procedure Not used Included in the Test Document
Test Subsystem Not used Will be covered by producing a Test Document for each subsystem

Workload
Analysis Document

 Not used
Because this is only a demo version and due to the close working
environment we have decided that this artefact is not necessary for
the development of the system.

2.4.8 Deployment

Workflow
We will use the main RUP® deployment workflow but crammed into one artefact. We will hand in the
product, Car Tracking System Demo version, and a simple user guide that will include the installation
procedures. No formal training will be provided.

Environment Set

29

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Bill of Materials X None Microsoft
Word® No

Deployment Document X
Formal by Academic

Committee and
Quality Group

Microsoft
Word® No

Deployment Plan X None Microsoft
Word® No

Deployment Unit X None None No

End-User Support Material X None Microsoft
Word® No

Installation Artefacts X None Microsoft
Word® No

Product X None
Java™ 2 SDK

1.3, Java™
VM

No

Release Notes X None Microsoft
Word® No

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Bill of Materials Used
Because this is only a demo version and is only to be handed over
for further development. Then we will cram this into the
Deployment Document along with other Artefacts of this Set.

Deployment
Document

 Used This is not a part of RUP® but we will use inspirations from the
templates of the Deployment Set and build our own document.

Deployment Plan Used
Because this is only a demo version and is only to be handed over
for further development. Then we will cram this into the
Deployment Document along with other Artefacts of this workflow.

End-User Support
Material

 Used Will only consist of shot description of the system and included in
the Deployment Document.

Installation Artefacts Used
Because this is only a demo version and is only to be handed over
for further development. Then we will cram this into the
Deployment Document along with other Artefacts of this workflow.

Product Artwork Not used This demo is not to be marketed or any trademark to be registered so
this is not needed.

Release Notes Used
Because this is only a demo version and is only to be handed over
for further development. Then we will cram this into the
Deployment Document along with other Artefacts of this workflow.

Training Materials Not used
As this demo is not to be used for anything else than further
development and for supervised demonstrations then there is no need
for a Training Materials

Environment Set

30

2.4.9 Configuration & Change Management

Workflow
For our project we have a lightweight configuration management process, we have put everything that
belongs to Configuration & Change Management into Project Management. These issues will be cover in
the Software Development Plan.

2.4.10 Project Management

Workflow
The project management part of the project will rely mostly on the produced plans: Software Development
plan and the Iteration Plans. Those documents will guide us through the process and give us criteria to
evaluate our process as well as guiding us with the Configuration Management of the project. Risks will
also be managed during this continues workflow using the Risk List to try to mitigate us through them.

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Business Case X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word® RUP®

Effort Sheets X X X None Microsoft
Word® No

Iteration Assessments X X X None Microsoft
Word® RUP®

Iteration Plan X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word®/

Microsoft
Project

RUP®

Review Record X X X None Microsoft
Word® No

Risk List X X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word®/

Microsoft
Project

RUP®

Software Development Plan X X X
Formal by Academic

Committee and
Quality Group

Microsoft
Word® RUP®

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Business Case Used Is only to give a brief overview and will not be kept up to date unless
decided otherwise by the development group

Effort Sheets Used Are updated daily and kept to be able to evaluate if planed efforts
measure against actual efforts

Measurement Plan Not used The metrics are simple in this project and are described in Software
Development Plan

Environment Set

31

Artefacts How to Use Reason/Notes

Problem Resolution
Plan

Not used Due to the close working environment and small development group
the problems will be dealt with on the fly

Product Acceptance
Plan

Not used
The matter will be covered briefly in the Software Development
Plan, and is of little importance here as this is a study project and no
promises made of the out come of the project

Project Measurements Not used
The metrics are simple in this project and are described in Software
Development Plan and no special storage is needed for the outcome
of them other than in the Academic Report

Quality Assurance
Plan

Not used

The quality is mainly the concern of the Academic Committee and
the Quality Group therefore the quality assurance lies with them but
sure quality will also be considered by the development group and is
addressed by meetings and reviews made by prior mentioned parties.

Risk Management
Plan

Not Used The risks are managed through the Risk List

Review Record Used Will be kept as meeting notes and as emails

Status Assessment Not used Status will be monitored in the meetings and through Iteration
Assessments

Work Order Not used Due to the close working environment and small development group
the work order is discussed on the fly

2.4.11 Environment

Workflow
The environment workflow focuses on the activities necessary to configure the process for a project. It
describes the activities required to develop the guidelines in support of a project.

Artefacts

Created / Revised Artefacts

Inc/Elab Const Trans

Review Details Tools Used Templates

Development Case X X X Formal by Academic
Committee

Microsoft
Word® RUP®

Notes on the Artefacts

Artefacts How to Use Reason/Notes

Business Modelling
Guidelines

Not used The business aspect of this project is not important and is handled
lightly by only producing a minimum Business Case

Design Guidelines Not used Due to the size and scope of the project we decided to keep the
Design Guidelines built into the Software Development Plan

Development
Infrastructure

Not used This is handled in the Development Case, in a simple efficient way
for a project of this size

Development-
Organisation
Assessment

Not used The development group is fixed and external people cannot be added
therefore it is pointless to make any effort in assessing the group

Environment Set

32

Artefacts How to Use Reason/Notes

Manual Styleguide Not used
As a demo version is only to be developed at this stage and the
produced user guide will be very limited therefore we will set the
style of it in a informal way when we produce it

Methods, Tools, and
Techniques

Not used
Due to the size of the development group and the close working
environment we think this is covered in a satisfactory manner in the
Software Development Plan and the Development Case.

Project-Specific
Templates

Not used We will mostly us RUP® templates and those styles will be kept
through out all produced documents including the Academic Report.

Programming
Guidelines

Maybe

The development group consists of two persons, Pair Programming
will be conducted so the standards will just be set as we go and
should not produce any problems. If needed for further development
then these standards can be listed at the end of the project

Test Guidelines Maybe See Notes for Programming Guidelines
Tools Not used Covered in the Development Case
Tool Guidelines Not used Will be included in the Development Case if found necessary
Use-Case Modelling
Guidelines

Not used Again due to the size and close working environment we will just set
this up along the way in an informal way

User-Interface
Guidelines

Not used
This is only a demo version so user interface is not of great
importance, we will only produce some sketches and try to get them
approved by the user

3. Conclusion
RUP® is a big framework with a lot of activities and processes connected to it, there for it was essential for
us to go through the whole RUP® process and evaluate it and try to decide what was necessary for us. It
was pretty hard as we have never worked with it before, and we had different requirements than a normal
software development project due to the academic side of it. Then we had to find ways to integrate the
chosen XP practices to the whole process, and ways to document them. This was not done all in the
beginning of the project; we started by building a frame to work from and then refined the working process
along the way.

We only produced one document in this set, Development Case1, even though RUP® has many more
suggestions. This was done due to the size of the project and the development team and because of the
close working environment. However, the prior mentioned document was of great use for use and the
RUP® template was easy to follow covering the whole development process.

1 Page 26

Project Management Set

33

Project Management Set

Project Management Set

34

1. Introduction
Project Management Set covers the art of balancing competing objectives, managing risk, and overcoming
constraints to successfully deliver a product, which meets the needs of both customers and the users. The
fact that so few projects are unarguably successful is comment enough on the difficulty of the task.

The chapter is divided into Risk List, where we try to analyse the risks associated with the project,
Software Development Plan, where we have a general plan to follow, Iteration Plans, were we dig deeper
into the planning of each iteration, and finally we have the Iteration Assessments, where we evaluate the
success of the iterations.

2. Risk List

2.1 Introduction
This Document provides an overview of the risks connected to this project, describing them and the
eventual actions to be taken.

2.1.1 Purpose
The risk list document has been designed to be ready to take actions in case problems arise during the
project. It describes the risks associated with the project, including their priority probability and solution to
them.

2.1.2 Scope
This Risk List Document goes beyond the scope of the Car Tracking System project for the customer; it
also includes risks associated with the academic part of this project.

2.1.3 Overview
The Risk List is organised into two tables where the risks are listed in a priority order. For each risk, there
is a description, a probability level, the impact that it will have, and mitigation and a contingency plan. The
first table lists all the academic risks, which are defined with a higher priority in a study project. The
second table lists all the risks related to the practical project.

2.2 Risks

2.2.1 Academic Risk List

ID Description Probability Impact Mitigation
Plan

Contingency
Plan

AR1
One of the two group
member is not able to
continue the project

1

Level: 4

Lost of 50% of
team members,

and 50 % of
workload increase
on the other team

member.

None

Contact
supervisor.

Resize project
and scope. Re-
plan project.
Ask for time
extension.

Project Management Set

35

ID Description Probability Impact Mitigation
Plan

Contingency
Plan

AR2

One of the two group
members becomes ill

during the project
and is unable to work
at all his capabilities

2

Level: 3

Delays on products
delivery, and
increase of

workload for other
members.

None

Lower ill
member

workload.
Resize project
scope, increase
working hour if
possible to other
team member.

Contact
Supervisor. Ask

for time
extension.

AR3
Team members have
personal problem that
impact the team work

2

Level: 4

Poor project
quality

None

Contact

Supervisor.
Consider
friendly

negotiation or
splitting the

project into two.

AR4 Project cannot finish
on due date. 3

Level: 4

Poor project
quality, non-

terminated report.

Careful
planning of
each of the

iterations, with
project scope

resizing if
needed.

Contact
Supervisor.

Drastically stop
the practical
project and

concentrate on
academic report,
emphasising on

the reason of
project failure.

Or

Resize scope to
present achieved

situation, and
finish academic

report.

Follow-up
The table below is a follow-up of the Academic Risk List; it displays how the risks are positioned in
relation to probability and impact. The risks positioned in the first quarter of the table are the most relevant
for our project.

Project Management Set

36

PROBABILITY

 5 4 3 2 1

5

4 AR4 AR3 AR1

3 AR2

2

IM
PA

C
T

1

From the Follow-up table it can be concluded that, regarding the academic part of this project, no real
threads are present, beside the delivery due date.

2.2.2 Practical Risk List

ID Description Probability Impact Mitigation
Plan

Contingency
Plan

PR1
Hardware devices
do not work or in
expected manners

2

Level: 3

Long delays if
other devices are

not available at that
time. Impossibility

to continue the
project.

Do not use the
devices in an
improper way
and make sure

to acquire
sufficient

knowledge
before using.

Stop working
on the devices
and transform

the demo
software in to a
simulation that
does not need
the devices.

PR2
The User company

is very slow at
sending feed back.

4

Level: 3

Delays on the
project and days
with very low
productivity.

Appear active
to the company

and
demonstrate
that work is
being done.

Take own
decision and
explain to the

User Company
that due to

restricted time
some decision
has been taken,

but that they can
be changed.

PR3

The User company
does not accept the
decisions made if

the previous risk had
happened.

3

Level: 3

Delays on project
realisation, and
waste of work.

Take as flexible
decision as

possible. Try to
push the

company a
little to receive

faster
responses.

Explain to the
company that

the decision will
be changed, but
they will stay as
they are for the
demo version of

the product.

PR4

Insufficient
knowledge of tools

to complete the
project

3

Level: 3

Delays on the
project and low
quality of end

product

Choose best
practices

methods and
tools, but

prioritising
known ones if

possible

Resize the
scope of the

project, consult
with supervisors

Project Management Set

37

Follow-up
The table below is a follow-up of the Practical Risk List; it displays how the risks are positioned in relation
to probability and impact. The risks positioned in the first quarter of the table are the most relevant for our
project.

PROBABILITY

 5 4 3 2 1

5

4

3 PR2 PR3/
PR4 PR1

2

IM
PA

C
T

1

From the follow-up tables we can conclude that the major risks go around the User Company. The lack of a
fast communication could cause serious delays. The choice of tools and practices should be made with
particular attention, as the learning risk “PR4” seems to be of big importance for the success of the project.

3. Software Development Plan

3.1 Introduction

3.1.1 Purpose
The objective of this Software Development Plan is to define the development activities in terms of the
phases and iterations required for implementing the Car Tracking System and to produce the academic
report for the 5th semester theses at Roskilde Business College.

3.1.2 Scope
This Software Development Plan describes the overall plan to be used by the development group The Jacks
for developing the Car Tracking System and the academic report. The details of the individual iterations
will be described in the Iteration Plans. The plans as outlined in this document are based upon the product
requirements as defined in the Vision Document.

3.1.3 Overview
This Software Development Plan contains the following information:

Project Overview – provides a description of the project’s purpose, scope and objectives. It also defines the
deliverables that the project is expected to deliver.

Project Organisation – describes the organisational structure of the project team.

Management Process – explains the estimated schedule, defines the major phases and milestones for the
project, and describes how the project will be monitored.

Technical Process Plans – provides an overview of the software development process, including methods,
tools and techniques to be followed.

Supporting Process Plans – this includes the configuration management plan.

Project Management Set

38

3.2 Project Overview

3.2.1 Project Purpose, Scope, and Objectives
Primarily objective of this project is to demonstrate the capabilities of the developers to applying the
acquired knowledge from the four previous semesters at Roskilde Business Collage in practice. On the
other hand, the scope of this project is to build a demo version of the Car Tracking System, in order to be
able to practically demonstrate the potentials of the product. The product is being designed to facilitate and
speed up the process of information research, and vehicle fleet coordination for a variety of companies.

3.2.2 Assumptions and Constraints
• During the development of the demo of the Car Tracking System, security will not be considered

as this is only a demo version and showing functionality is of more importance to the user than
having a secure system.

• The project has a deadline, the 11th of November, set by Roskilde Business College.

• As this is an academic project then it is limited to the two members of the development group, The
Jacks.

3.2.3 Project Deliverables

Artefact Receiver Date of delivery
Academic Report, including everything

below
Roskilde Business College/

Sidabrinis Tinklas 11/11/02

Software Requirements Specification Sidabrinis Tinklas 18/10/02

Demo version of the Car Tracking System Sidabrinis Tinklas 18/10/02

Other product related documents Sidabrinis Tinklas 18/10/02

Source Code Sidabrinis Tinklas 18/10/02

3.2.4 Evolution of the Software Development Plan
The Software development plan will be updated every time a new iteration starts. Artefacts and releases list
will be updated as well as the phase plan.

3.3 Project Organisation

3.3.1 Organisational Structure
The Team is composed of only two members:

Dario Pacino, 5th semester student at Roskilde Business College

Hjörtur Scheving, 5th semester student at Roskilde Business College

3.3.2 External Interfaces
The Team is connected to two external groups: Academic Committee and Quality Group.

The Academic Committee is composed of Michael Claudius the official project supervisor. The Quality
Group is composed of only one member Giedrius Slivinskas. The Academic Committee checks the quality
of the academic report, while the Quality Group supervises the quality of the practical products.

Project Management Set

39

3.3.3 Roles and Responsibilities
Due to the small project group and the close working environment, then the roles and responsibilities have
not been divided between the two members. Both members are equally responsible of all tasks needed for
developing the Car Tracking System and the Academic Report. However, the roles and responsibilities that
apply to both members are those defined by the Rational Unified Process®1.

3.4 Management Process

3.4.1 Project Plan

Phase Plan
The development of the Car Tracking System will be conducted using a phased approach where multiple
iterations can occur within a phase. Inception Phase and the Elaboration Phase have been combined into
one phase due to the small size and short timeframe of the project. For the same reasons, Iteration 1
overlaps both the Elaboration Phase and the Construction Phase. The phases and the relative timeline are
shown in the table below:

Phase Iterations No. Start End

Inception/Elaboration Phase 0, (1) 06.08.2002 22.08.2002

Construction Phase 1, 2, 3, 4 19.08.2002 14.10.2002

Transition Phase 5 15.10.2002 18.10.2002

The phase plan does not apply to the Academic Report.

Iteration Objectives

Phase Iteration
No. Description Associated Milestones

Inception/
Elaboration 0 Analyse system and prepare Project

Environment.

- M1-Establishment
- M2- Architectural Design
- M3-Query System Proposal

1 RUP® Framework, support documents and tools

Team

Dario Pacino
Hjortur Scheving

Academic Committee
Michael Claudius

Quality Group
Giedrius Slivinkas

Project Management Set

40

Phase Iteration
No. Description Associated Milestones

Elaboration/
Construction 1

Develop a flexible interface that can
connect to different types of databases
implying little changes to the interface.

Write Software Requirements
Specifications for the general system and

also specially for the Query and the
Messaging system

- M4-Software Architecture
Document
- M5- Iteration 2 Plan
- M6- Software Architecture
Document
- M7- Test Units
- M8- DB Interface Unit
- M9- Software
Requirements Specification

Construction 2

Develop a flexible querying GUI that can
adapt itself to the database in use. And

integrate it with the database interface to
combine them into the complete demo

version of the Querying System

- M10- Iteration 3 Plan
- M11- Test Units
- M12- Query System
- M13- All Documents
Updated

Construction 3 Develop the Messaging System

- M14- Iteration 4 Plan
- M15- Software
Architecture Document
- M16- Test Units
- M17- Messaging System
- M18- Query/Messaging
System

Construction 4 Develop the Tracking System

- M19- Software
Architecture Document
- M20- Test Units
- M21- Tracking System
- M22- The Car Tracking
System
- M23- Iteration 4 Plan

Transition 5 Finalise systems integration an deliver the
demo

- M24- Deployment
Document
- M25- Product Related
Documents
- M26- The Car Tracking
System

Releases
Key features as defined in the Vision Document are targets for four releases.

Release Type Functionality Date of delivery

Querying System Demo

The mobile user is able to send queries to the
database and get results displayed on the screen.
He/she can then look through 20 latest results.
The central operator is able to do the same and
pass the result to the mobile users if needed.

The central operator can also see all connected
mobile users

17/09/2002

Project Management Set

41

Release Type Functionality Date of delivery

Messaging System Demo

The mobile user and the central operator are
able to communicate with each other through

the system, seeing all messages sent and
received in the current log in session. However,
the central operator can communicate with all

mobile users but the mobile users can only
communicate with the central operator. The

mobile user can send a specific Action Result to
the central operator relating to a certain result

from the database, this will be displayed on the
screen of the central operator. No information is

stored in this demo version

30/09/2002

Tracking System Demo

The Mobile User can see his/her own location
on the AKIS system. The Central Operator can

see the location of all Mobile Users on the
AKIS system on his/her screen. However,

because of absent of the GPS device we will
work only with computer generated data
regarding the locations of the vehicles.

14/10/2002

Car Tracking System Demo

The Car Tracking System with the user
interfaces, both for the central operator and the

mobile user is ready, and communicates as
needed with the AKIS system. Combining all

the functions of the Query, Messaging and
Tracking system.

14/10/2002

Project Schedule
A Gantt chart is included to give a better overview over the development of the Car Tracking System:

ID Task Name
1 Iteration 0
2 Project initiation
3 Architectural Analysis & Design
4 Iteration 1
5 Academic Report Initialisation
6 SRS Documentation
7 Server
8 DB Interface
9 Iteration 2
10 DB GUI
11 Integration
12 Query System
13 Iteration 3
14 Messaging System
15 Intergration
16 Query/Messaging System
17 Update documents
18 Iteration 4
19 Mobile Client GIS display
20 Central Client GIS display
21 Tracking System
22 Intergration
23 Car Tracking System
24 Update documents
25 Iteration 5
26 Prepare System Delivery
27 Delivery of the Car Tracking System
28 Delivery of Product Related Docum

Sep 17

Sep 30

Oct 10

Oct 14

Oct 18
Oct 18

Fr Mo Th Su We Sa Tu Fr Mo Th Su We Sa Tu Fr Mo Th Su We Sa Tu Fr Mo Th Su We
4 '02 Aug 11 '02 Aug 18 '02 Aug 25 '02 Sep 01 '02 Sep 08 '02 Sep 15 '02 Sep 22 '02 Sep 29 '02 Oct 06 '02 Oct 13 '02 Oct 20

Project Management Set

42

We only included the initial stage of the academic report as that would be the most consuming part of it
otherwise we decided neither to include the academic report in the above Gantt chart or make a separate
Gantt chart for it. The academic report is created in parallel to the whole software lifecycle, as its main
substance is the RUP® documents that we make along the way. Therefore, we saw no reason to plan it
specifically.

3.4.2 Project Monitoring and Control

Schedule Control Plan
The schedule will be controlled using effort-monitoring timesheets1 and by monitoring if, set milestones are
being met. Delays in the schedule will be compensated with additional working hours if applicable. In case
the project goes out of schedule, the plan will be reviewed. If delays continue then the scope of the iteration
will be changed (see Risk List, Risks: PR1, PR5, AR4)

Quality Control Plan
Practical product quality will be ensured by the use of testing tool throughout the process. Software releases
will go through the Quality Group, which will have to accept the software before it can be released.

Academic products are sent to the Academic Committee that will revise them and send feedbacks. From the
feedback, correction will be made. There are two possible scenarios, either the feedback is sent through
email or through a meeting. It the case of an email then it will be stored. In the case of a meeting then a
meeting, report will be produced covering the evaluation.

Reporting Plan
The size and type of this project does not require any paper report for the practical part of the project. The
Quality Group is situated in the same office and reporting meetings are arranged on the fly, or at the
reaching of each milestone. However, a meeting report2 is produced after each meeting covering the agenda
and noting down decision and future steps of the development.

To the Academic Committee, reports are sent as needed, presenting deliverable artefacts that have been
created or gone through major modifications.

Measurement Plan
Effort and time will be used to track progress of the project. Planned vs. actual Effort-monitoring
timesheets will be used by the development group to measure progress. Nevertheless, our main tool for
measurement are our milestones that are easy to evaluate if reached or not through their evaluation criteria.

Close-out Plan
At the end of the project a conclusion will be drawn, considering the effectiveness of the process as a
whole, lessons learned and included in the Academic Report.

3.5 Supporting Process Plans

3.5.1 Configuration Management Plan

Document Storing Procedure:
Every document name must be formatted as follow: <name>_<version >. The revision sheet on top of the
document must be filled out every time a document is changed. Old copies of the documents must not be
deleted until the final document is released. The document files are kept on a server at Sidabrinis Tinklas
and backed up by their internal procedure.

1 Appendix K
2 Appendix L

Project Management Set

43

Source Code Storing Procedure:
A folder has to be created for each workshop. Microsoft Visual SourceSafe® 6.0 is used to keep track of
our source files. The source files are kept on Sidabrinis Tinklas database, the program creates a new version
every time some modifications have been made and enable us access on every version of the code we
make. It also makes sure that the two developers do not work on the same file at the same time with a check
out and in procedures on each file, locking them for editing unless checked out.

Academic Report Storing Procedure:
Same as Document Storing Procedure but the reports will be stored in a different folder.

4. Iteration Plans
See Appendix B.

5. Iteration Assessments

5.1 Introduction

5.1.1 Purpose
The objective of the Iteration Assessments is to capture the result of the iterations, the degree to which the
evaluation criteria were met, and a lesson learned and changes to be done

5.1.2 Scope
These Iteration Assessments applies to all the iterations of the Car Tracking System.

The successes of the iterations are measured against the milestones and their evaluation criteria as outlined
in the Iteration Plans1 for the system.

5.1.3 Overview
This document evaluates the iterations, summarising the objectives that were met, how well each of the
iterations ran according to its plan.

Each of the iterations has its own section where the results are evaluated according to the criteria
established in the Iteration Plan for each milestone.

Finally, the section lists the external changes that affected the iteration, such as changes in requirements,
and problem areas that require future rework.

5.2 Iteration 0

5.2.1 Iteration Objectives Reached
The project was established and the environment set for the project. A common general vision of the
system has been established but still there are some unclear requirements left. An overall design of the
system has been made and agreed system architecture of the Query system has been made.

5.2.2 Adherence to Plan
The iteration executed according to plan completing on schedule.

1 Appendix B

Project Management Set

44

5.2.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans and comments
on how well the criteria for success were met.

Milestone Evaluation Criteria Iteration Results

M1 Agreement that the right sets of requirements
have been captured and that there is a shared
understanding of these requirements.

The general requirements were understood
but some specific requirements were still a
little unclear.

M1 Agreement that the schedule estimates,
priorities and development process is
appropriate.

Was not completely accomplished. The
Development Case document is not ready
though the development process has been
decided among the developers. No future
dates have been set for these documents but
should be finished as soon as possible. The
schedules have been approved.
Nevertheless, with better understanding of
the system these are bound to change.

M1 All known risks, at the time, have been
identified and a mitigation strategy exists for
each, where applying.

The risks have been identified and a
mitigation strategy has been made for each
of them.

M2 The System Architecture Design document
should contain the proposed solution for the
architectural structure of the query system,
emphasising on how long it will take to add a
database, and the time for implementation.

A document listing three options that we
have for the Query system, listing their
advantages and disadvantages. Moreover,
evaluated on their criteria.

M3 The Architectural design should include the
basic architecture of the system. The
document should include a UML model of
the system, and list all the possible
architectures that could be used, the one
proposed and a brief explanation of the
reason it has been chosen

A decision was made to make a document
listing the two “easier” options for the
Query system. The document was then
delivered to the user company

5.2.4 External Changes Occurred
None

5.2.5 Rework Required
The Schedules and the Risk list have to been updated as needed.

5.3 Iteration 1

5.3.1 Iteration Objectives Reached
Clarifying some of the systems requirements was a big part of the Iteration 1 and was necessary in order to
produce an up to date SRS for the system. The Query System has been analysed and designed down to
implementation level. The Query interface has been created and is now only missing the GUI part of the
system.

Project Management Set

45

5.3.2 Adherence to Plan
Very early on, a week was added to the original plan due to changes in the requirements of the system.
However, it did not hurt, as a week shorter was needed for the Query Interface. In addition, 2 days were
added to allow the developers to establish their Academic Report part of the project. Moreover, at the end
of the iteration, we added the weekend as working days as we were behind on the schedule; therefore, we
also moved the some of the milestones from Friday to Monday.

5.3.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans and comments
on how well the criteria for success were met.

Milestone Evaluation Criteria Iteration Results

M4 The SAD should include all the use case
view and logical view of the system, in the
form of UML diagrams.

All known use cases were documented.

M5 The Iteration Plans Document should be
updated and should include a detailed plan
for iteration 2.

Has been accomplished. Iteration 2 plan is
now included and the whole document been
updated.

M6 The SAD should include use case, logical
and implementation view of the Database
interface part of the Query System

A special SAD for the Query System has
been done capturing the use cases, logical
and implementation views.

M7 A list of test classes made using JUnit™ is
ready to be used during testing phases

This Milestone was unrealistic, because the
test cases were implemented on the fly, a
small code, a small test or vice versa.
Therefore, the test classes were not ready
until the end of the iteration.

M8 Java™ Implemented Units should be ready
and well tested. JUnit™ tests should give a
100% correctness result, and so should the
integration test.

The Units were ready and all working
correctly. With 100% result from the tests.

M9 The SRS documents should be approved by
our Quality Group

This was accomplished and documents
send to user pending evaluation.

5.3.4 External Changes Occurred
The User changed and clarified some it’s requirements causing extra workload and changes of the original
Iteration Plan.

5.3.5 Rework Required
All schedules and documents produced so far for the system need to been updated with latest requirements.

5.4 Iteration 2

5.4.1 Iteration Objectives Reached
A user interface has been created both for the mobile user and the central operator and integrated with code
produced in Iteration 1.

Project Management Set

46

5.4.2 Adherence to Plan
A day was added to the original plan due to some unexpected complications with the use of layout manager
in Java™. Because of this the milestones were moved a day.

5.4.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans1 and comments
on how well the criteria for success were met.

Milestone Evaluation Criteria Iteration Results

M10 The Iteration Plans Document should be
updated and should include a detailed plan
for iteration 3.

Has been accomplished. Iteration 3 plan is
now included and the whole document been
updated.

M11 Test classes for every unit of the Query
System, that can be tested with JUnit™ are
ready.

Has been accomplished, but it is not
possible to test the GUI itself using JUnit™
so there were not many new test classes
created. Giving 100% result

M12 The system has to meet the criteria set in the
Iteration Plans, section 1.4.41 and approved
by the Quality Committee.

The system meets the criteria, 100% and
has been approved by the Quality
Committee but there are some minor
defects and some refactoring left to do.
Some days have been dedicated for this
purpose in Iteration 3 Plan.

M13 A consistency is kept through out the project
documents.

This Milestone was not completely met, but
will be reached within the 19th of
September.

5.4.4 External Changes Occurred
None

5.4.5 Rework Required
All schedules and documents produced so far for the system need to been updated with latest requirements.
Furthermore, some minor defects and some refactoring on the Query System are left to do. Implementation
and Testing documents for the Query System have to be made.

5.5 Iteration 3

5.5.1 Iteration Objectives Reached
A user interface has been created both for the mobile user and the central operator supporting the
messaging part of the Car Tracking System and integrated with code produced in Iteration 1&2.

5.5.2 Adherence to Plan
The development of the Messaging System itself went according to plan if not even a little better, however
a week was added to the original plan, as we needed to update many of our documents. Because of this the
milestones M14 and M15 were moved a week.

5.5.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans and comments
on how well the criteria for success were met.

1 Appendix B

Project Management Set

47

Milestone Evaluation Criteria Iteration Results

M14 The Iteration Plans Document should be
updated and should include a detailed plan for
Iteration 4

Has been accomplished. Iteration 4 plan is
now included and the whole document been
updated

M15 The Software Architecture Document should
include use case, data model, logical and
implementation view of the Messaging
System.

Was accomplished and has been intergraded
into the academic report

M16 Test classes for every unit of the Messaging
System, that can be tested with JUnit™ are
ready

Has been accomplished, but it is not
possible to test the GUI itself using JUnit™
so there were not many new test classes
created. Giving 100% result

M17 The system has to meet the criteria set in
Iteration Plans, section 1.5.41 and approved
by the Quality Committee

The system meets the criteria, 100% and has
been approved by the Quality Committee

M18 An integrated version of the Query and the
Messaging system with a common main GUI.

Was accomplished and approved by the
Quality Committee

5.5.4 External Changes Occurred
None

5.5.5 Rework Required
None

5.6 Iteration 4

5.6.1 Iteration Objectives Reached
A connection between the Car Tracking System and a GIS has been made and the GIS can show the
position of the mobile users, both locally on the mobile users computer and on the central operators
computer.

5.6.2 Adherence to Plan
Everything went according to plan.

5.6.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans1 and comments
on how well the criteria for success were met.

Milestone Evaluation Criteria Iteration Results

M19 The Software Architecture Document should
include use case, data model, logical and
implementation view of the Tracking System.

The document was ready on time, covering
all prior mentioned sections

M20 Test classes for every unit of the Tracking
System, that can be tested with JUnit™ are
ready.

Has been accomplished, but it is not
possible to test the GUI itself using JUnit™
so there were not many new test classes
created. Giving 100% result

1 Appendix B

Project Management Set

48

Milestone Evaluation Criteria Iteration Results

M21 The system has to meet the criteria set in
Iteration Plans, section 1.6.41 Plan and
approved by the Quality Committee.

The system meets the criteria, 100% and has
been approved by the Quality Committee

M22 An integrated version of the Car Tracking
System with a main GUI and running AKIS2
parallel to it in order to display the positions
of the cars.

Has been accomplished.

M23 The Iteration Plans Document should be
updated and should include a detailed plan for
iteration 5.

Iteration 5 plan is now included and the
whole document been updated.

5.6.4 External Changes Occurred
None

5.6.5 Rework Required
A meeting is set with the User Company on the 16th of October, therefore some new requirements might
come up and some rework on the Software Requirements Specifications might be necessary.

5.7 Iteration 5

5.7.1 Iteration Objectives Reached
The deployment of the Car Tracking System was successful.

5.7.2 Adherence to Plan
Everything went according to plan.

5.7.3 Results Relative to Evaluation Criteria
The following table lists the milestones evaluation criteria as outlined in the Iteration Plans and comments
on how well the criteria for success were met.

Milestone Evaluation Criteria Iteration Results

M24 The Deployment Document should include a
list of documents and files that are part of the
deployment, an installation guide, guide for
launching the applications for the Car
Tracking System. It should also list all known
errors and problematic features of the system.

The document was produced covering the
set criteria.

M25 All products related documents should be
finalised and up-to-date ready to be deployed
to Sidabrinis Tinklas.

All documents ready and handed over to
Sidabrinis Tinklas.

M26 A final version of the Car Tracking System
from the Jacks with Java™ comments for all
the classes.

Has been accomplished and the system
handed over to Sidabrinis Tinklas.

1 Appendix B
2 Akis © V.Paliulionis

Project Management Set

49

5.7.4 External Changes Occurred
None

5.7.5 Rework Required
None

6. Conclusion
Now we have tried to manage projects both using the waterfall model and now with the spiral model. And
we are convinced that it is easier to successfully manage a project after a spiral model, especially if the
developers themselves are also the project managers, unless you have a very stable business environment
and software requirements. Project management is mainly covering two things time planning and risk
management. And by the iterative approach, you uncover new risks quickly and you learn from your
previous iterations, therefore you can quickly fix your time schedule according to lessons learned.

The RUP® documents we produced supporting the project management process, were of great help. Risk
List1 was produced in the start of the project and was under continuous revision through out the project.
This focused us on avoiding risks when ever possible. The Software Development Plan2 gave us a good
overview over the whole project and was revisited after each of five iterations and updated, this gave
Sidabrinis Tinklas good overview over the project and what and when to expect certain things.
Furthermore, the Iteration Plans3 deliver a more detailed plan into the iterations, which were assessed using
the Iteration Assessments4 that helped us to look back and learn from our experience. However, we found
that the Effort Sheets5, that we initially planed to use, were of no help to us because we did not plan
everything in such details that we could compare them with our plans. Instead, we found that the milestones
set in the Iteration Plans3, were a better evaluation tool to monitor our progress.

1 Page 38
2 Page 41
3 Appendix B
4 Page 47
5 Appendix K

Requirements Set

51

Requirements Set

Requirements Set

52

1. Introduction
The Requirements Set covers the artefacts that help in managing the systematic approach to finding,
documenting, organising and tracking the changing requirements of a system. This is essential in order to
create a common understanding of the system between the developers and the users.

First the chapter presents a Business Case, where we try to address the business aspect of the system, then
we go to the Vision document where we try to establish a common view of the system between the
developers and the business people, and last but not least a Software Requirements Specification is
presented, covering the requirements of the system as a whole.

2. Business Case

2.1 Introduction
The Business Case document provides an overview of the project and gives a brief reason why this product
is of business interest.

2.2 Product Description
The product is a car tracking system suitable for companies that need to keep track of their vehicle fleet and
allowing their mobile workers to access a central database remotely. The system should run on a mobile
computer situated in a car, and should be able to connect to a central computer. The server in the central
computer will have a database of information that can be queried. The information will be exchanged
between the central system and the mobile unit, via the Internet using the new GPRS wireless connection
technology. In addition, every vehicle will be equipped with a GPS device. Connecting the central
computer and the client to a GIS, the two parties can receive information about the position of the cars
within the specific area of the GIS, with the possibility of visualising special information such as car-status
or messages.

2.3 Business Context
This project is aimed at create a commercial product that is suitable for a variety of companies that need to
keep track of their vehicle fleet. At this initial state, the product only is developed up to a demo version that
can demonstrate the real product potentialities.

2.4 Product Objectives
The product objective is to ease the processes of information research, and improve the coordination of the
vehicle fleet. The use of mobile computers in the cars will enable the mobile worker to do searches from
their cars. Thanks to the GPRS technology, it will be possible to maintain a constant on-line connection to a
central computer, with out requiring any bigger devices than a mobile phone. Using the GPS, it will be
possible to send and display the position of the cars in the GIS, which will give a better overview of the
situation and it will ease and speed up the coordination of the vehicle fleet. To improve communication, the
messaging service will allow the users to send messages between the cars and the central system. It will
also allow the central system to broadcast messages to all the cars in one go.

2.5 Constraints
• The Project will be running concurrently with an academic project as well.
• Programming language for the system: C++ or Java™
• Time frame: 6/8/2002 – 11/11/2002
• Hardware:

o GPS/GPRS device
o GPRS enable mobile phone

Requirements Set

53

3. Vision Document

3.1 Introduction

3.1.1 Purpose
The purpose of this section is to collect, analyse, and define high-level needs and features of the Car
Tracking System. It focuses on the capabilities needed by the stakeholders and the target users, and why
these needs exist. The details of how the Car Tracking System fulfils these needs are detailed in the Use-
Case1 and in the Software Requirement Specification2.

3.1.2 Scope
The scope of the Vision is to give an overview of the system as a whole, and to characterise the system
features. It will change if the system requirements or features will change.

3.2 Positioning

3.2.1 Business Opportunity
The software product produced will be targeted for a wide market place. The flexibility of the system will
allow the product to be sold and configured to different companies, and with a minimum amount of
installation and configuration work.

3.2.2 Problem Statement
The problem of Managing a fleet of vehicles and communicating with mobile

workers and keeping logs on those communications. Furthermore, not
having a direct connection to a central database for the mobile
workers

Affects The mobile workers, their customers and the company as a whole

The impact of which is A lack of coordination among the mobile workers and a delay in
information research. Furthermore, miscommunications can occur
and no way of verifying the communication, that went on.

A successful solution would Centralise the coordination of the vehicles, keep logs of all
communications and would give the mobile workers the access to the
needed information.

1 Appendix C
2 Page 64

Requirements Set

54

3.2.3 Product Position Statement
For A variety of companies that need to manage a fleet of vehicles and

mobile workers

Who Need to gain fast access to information and effectively coordinate
action.

The Car Tracking System Is a tool

That Enables on-line database query, message exchange, keeps a log of
those messages and can display the current position of the vehicles.

Unlike Old radio communication systems.

Our product Provides a mobile communication and connection to database and a
GIS system.

3.3 Stakeholder and User Descriptions

3.3.1 Stakeholder Summary
Name Represents Role

Giedrius Slivinskas Customer company & contact
person to user company On-Site Customer

3.3.2 User Summary
Name Description Stakeholder

Mobile Worker Uses the system as a mean to get
valuable information Giedrius Slivinskas

Central Operator
Uses the system as a mean to

coordinate the vehicle fleet and the
mobile workers

Giedrius Slivinskas

3.3.3 User Environment
There are two types of users for this system, mobile users and a central operator. The mobile user will be
using a vehicle as his/her workspace. The number of vehicles connected to the central computer can vary
depending on the user company that will embrace the system. Being the systems environment, the vehicle,
the physical space for hardware is limited. The central operator can either be situated in a vehicle or more
likely at a central office managing the coordination’s of the vehicles.

3.3.4 Stakeholder Profiles

Giedrius Slivinskas
Type Database expert, Project Manager at Sidabrinis Tinklas.

Responsibilities Contact person to the user company, and ensuring that needed hardware and
support is provided to the developers by Sidabrinis Tinklas. Moreover, he
evaluates any releases of the system and documents related to it.

Requirements Set

55

Success Criteria The development of the system is not delayed because of lack of communication
to the user company or due to lack of needed hardware or other support provided
by Sidabrinis Tinklas. His evaluations reflect on the requirements of the user
company.

Involvement Quality coordinator and mediator with user company and Sidabrinis Tinklas.

3.3.5 Key Stakeholder or User Needs Related
Need Priority Concerns Current Solution Proposed Solutions

Query
System

High The mobile users
don’t have a access
to the central
database

Radio
communication is
used where the
mobile users asks a
central operator to
access the central
database and then the
info is related
through the radio
system

User would like to have
online access to the database
from the car using a GPRS
enabled mobile phone and
being able to look through
previous query results.
Furthermore, allowing the
mobile users to send Action
Results related to the query
result.

Messaging
System

Medium No records are kept
on the
communication
between the mobile
users and the
central operator.

All communications
go through the radio
system.

User would like to be able to
send and receive messages
between the car and the
central computer. Still using
the same GPRS connection.
Moreover, keeping logs with
all communications between
the two parties.

Tracking
System

Medium Managing and
coordinating a large
fleet of vehicles is
hard without any
oversight over the
positions of the
vehicles.

The central operator
has no way of
knowing the position
of the vehicles unless
the mobile users
radio in their
position.

The vehicles will be
equipped with GPS devices
that send the positions of the
vehicles to the central
computer, which will display
them using the integrated
GIS of the Car Tracking
System.

3.4 Product Overview

3.4.1 Product Perspective
The Car Tracking System will be a completely new system designed to ease the process of gathering
information from a central database and managing a fleet of vehicles. It will consist of a client component
for the central database, and two client-server components for the messaging and the location information.

The system will run on two clients, one for the mobile users, placed in the vehicles, and one for the central
operator for the administrative and coordination operations. Both Clients communicate to and through a
central server, which is used as an interface to one or more database servers, and as a mean of
communication between the clients.

The main idea of the system is to have a flexible architecture that can adapt itself to different databases
with the minimum changes to the system.

Requirements Set

56

System Context Diagram

System Overview

3.4.2 Summary of Capabilities
The following table describes the main capability of the Car Tracking System, in terms of benefits and
supporting features.

User

Car Tracking
System

Query
System

Central
Database

Messaging
System

Tracking
System

Response:
-Query Result
-Cars Position
-Receive Msg

GIS

Request
-Cars Position
-Send Msg
-Query

GPS Position

Msg

Query

Result

Position

Mobile
User

Client
 GPS

COM Port

Tracking
Sys

Car Tracking
System
Server

Msg. Sys

Query
Sys

Central
Database

GPRS/VPN

Central
Operator

Client

Tracking
Sys

Msg. Sys

Query
Sys.

GPRS/VPN/
LAN

Requirements Set

57

Customer Benefit Supporting Features

Ability to see the position of the vehicles at any
time, allowing easier coordination of the fleet.

On-line Tracking System, based on GPS devices
and GPRS wireless technology, displaying the

results using an integrated GIS.

Faster research of information. On-line database connection, accessible from the
vehicles at any given time.

Fast reporting of actions taken upon related
topics.

With every query result, it is possible to send to
the central operator a message, which tells what

actions have been taken regarding a certain result.
Possibility of message interchange between

vehicles and central operator, which will help the
coordination.

On-line messaging accessible from the vehicles
and the central operator at any time.

Ability to see transcripts of the communications
between the mobile users and the central operator.

A database that keeps a log of all the
communications.

No need for software change if changes are made
to the database

Self-modelling interfaces that read the structure of
the database from a provided text file, from the
user built on a protocol set by the developers.

24-hour on-line connection to the system. GPRS technology allows the system to have a
permanent connection to the internet/LAN/VPN.

3.4.3 Assumptions and Dependencies
The following list describes all the assumption and dependencies related to the system.

• Customer Company provides the team with GPS and GPRS devices, for all the implementation
stages of the project that utilise those technologies.

• The suggested GIS, Akis1, can and permission granted to integrate it with the Car Tracking
System.

3.5 Product Features

3.5.1 Logon
All users of the system must logon and provide sufficient authentication of them.

3.5.2 Search on Databases
The users are able to make searches in the connect database, using different types of criteria, depending on
the part of the database that is to be addressed or the kind of information to be retrieved. The results are
then displayed on the screen of the requesting party.

3.5.3 Send/Receive Messages
The Mobile Users are able to send and receive messages to and from the Central Operator; the messages
that have been sent/received during the login session, of the users, are displayed on the screens of the
Mobile Users.

However, the Central Operator can choose to which Mobile user he/she wants to send a message to, or even
broadcast a message to all the Mobile Users.

3.5.4 Send/Receive Query Result Without Request
The Central Operator can send a specific query result to a particular Mobile User or even broadcast it to all
Mobile Users. The Message then pops up on the Mobile Users screen.

1 Akis © V.Paliulionis

Requirements Set

58

3.5.5 Monitor Cars
The system will keep track of the current positions of the vehicles, using the integrated GIS system to
display them and the user will be able to monitor the vehicles movements. The cars will be displayed on the
map of the GIS as car icons images together with the name identifier.

3.5.6 Send Action Results
With every query result, the Mobile Users gets, they can choose from a list or enter some Action Results
related to that specific result and send it to the Central Operator, and then furthermore it will be saved on a
database.

3.5.7 Add/Delete/Modify Users Information
The system will provide the facility to add, delete or modify the users information.

3.5.8 Add or Delete Database Structures
The system will provide the facility to add or delete Database structures, thereby controlling which
databases are connected to the system at a given time.

3.5.9 View Past Query Results
The users are able to select to view past query results, navigating through them with the press of a back and
forward button.

3.5.10 Save/View Communication Logs
All communications between the Mobile Users and the Central Operator will be saved on a database. Then
the Central Operator can choose to view any prior communications from the main menu.

3.5.11 Send/Receive Objects
The Central Operator can send to the Mobile Users objects that need to appear on the integrated GIS, e.g. a
building. The sent object then visualises on the screen of the Mobil Users, showing the position of that
object.

3.5.12 View Online Users
All online users are displayed on the screen of the Central Operator, allowing him/her to keep track of all
users.

3.6 Constraints
• The systems have to use GPS device and GPRS wireless technology

• Programming must be done using Java™ or C++

3.7 Quality Ranges
Availability 24 hours – 7 days a week.

Usability The system should be easy to use. New users should be ready to use the system
within few days.

Maintainability No maintainability quality ranges have been set at this stage.

Comprehensibility The system should be very comprehensible for the users, as they will have limited
computer knowledge and training with the system. Making the system easy and
logical to use is therefore considered quite important.

Requirements Set

59

Efficiency The efficiency of the system it is important because the system handles confidential
data that should be transferred correctly.

Security Security is an important issue for the final system. The confidential information
that is transferred should not be intercepted and corRUP®ted by any intruders. The
data should only be changed by authorised personnel outside and not in any
connection with this system. However, those issues will not be implemented in this
demo version.

Testable Testing is an important part of any system, it will not be possible to ensure any
efficiency if the system could not be tested.

Flexibility Flexibility is one of the most important sides of this system. The system should be
able to be configured to different kind DB servers with the least number of
changes.

Reusability As previously explained in the Flexibility Quality, this system is very likely to be
reused and connect to other DB servers. Therefore, particular attention should be
paid at design and implementation phases.

Portability Portability seems not to be a very important part of this system, but as the system is
to be designed to be flexible, some thought about portability could be made,
especially at implementation time.

The system should be a highly reliable and an efficient system, based on a flexible architecture that allows
changes with the least amount of work. It should also be possible to test the correctness of the system. Little
thought into security and portability should also be done, but only as examples or suggestions at design
time.

3.8 Precedence and Priority
The following list defines the priority with witch the system had to be built.

• Query System

• Messaging System

• Tracking System

3.9 Other Product Requirements

3.9.1 Applicable Standards
• The communication will relay on TCP/IP protocols.

• The whole system will be platform independent, in order to be as flexible as possible.

• The connection will use GPRS technology.

• The vehicles position shall be determined by the use of GPS technology.

3.9.2 System Requirements
• The system should interact with a database in the most flexible way. Any kind of DBMS should

be able to connect to the interface and the GUI, causing the least number of changes in the
software.

• The GUI should be user friendly and self-describing.

• The system should be continuously on-line, using GPRS technology for communication.

Requirements Set

60

3.9.3 Performance Requirements
None at this stage.

3.9.4 Environmental Requirements
None at this stage.

4. Software Requirement Specification

4.1 Introduction

4.1.1 Purpose and Scope
The Software Requirement Specification describes all currently known functional and non-functional
requirements of the Car Tracking System. This document helps keeping track of what the system actually
has to perform and with what characteristic or constraints. It can also be used to as a mean to clarify the
system functionality with the User Company.

4.1.2 Scope
This Software Requirement Specification refers to the requirements of the Car Tracking System as a full
system, not only the demo version of it.

4.1.3 Overview
This document is organised by kind of requirements, going through the functional ones to the design
constraints and supplementary specifications.

4.2 Functional Requirements

4.2.1 Main Application

Authentication
The level of access to the system is secured by a login procedure that allows only authorised access. The
access level of the user determines which application is to be run, the Mobile-Client or the Central-Client.

4.2.2 Mobile-Client Application

Launched Automatically
The application should be launched automatically every time the computer is turned on and should be the
only programme running on the computer.

Querying
Mobile User is able to select a database and run queries against that database using a GUI. The Querying
criteria are specified in Section 4.6.6. The query result will be displayed using a GUI, following the
graphical criteria described in Section 4.3.1.

View Received Query Results Locations
If a Query Result has an addressed linked to it, then the Mobile User should be able to see the location of it,
displaying it using a GIS.

Requirements Set

61

Log all Query Transactions
Mobile User is able to see a log of all his/hers query transactions; both received and sent within his/her log
in session (‘Query Sent’, ‘Result Received’). The log also contains the results received without a request
from the Central Operator. Moreover, it should be possible to select a specific “Result Received” from the
list and view it; the number of results stored depends though, as the number can be configured in each
application (see Section 4.6.9).

Messages
Mobile User is able to send messages to and receive messages from the Central Operator. The system
displays received messages following the graphical format described in Section 4.3.1. All sent and received
messages from the last login time should be visible in a scrollable text area.

Action Results
For each Query Result received, the Mobile User is able to input a reply, an Action Result. The reply can
either be selected from a list of choices or typed in by the user. Each database has a pre-defined list of
replies, which can be configured by the Central Operator.

View Own Location
Mobile User should be able to see his/her location displaying them using a GIS.

Lifetime of Displayed Objects
The objects displayed on the GIS will be displayed until deleted by the Mobile User.

4.2.3 Central-Client Application

Listing Online Users
Central Operator is able to see all Mobile Users that are connected to the server application.

Querying
Central Operator is able to select a database and run queries against that database using a GUI. Querying
criteria are specified in Section 4.6.6. The query result will be displayed using a GUI, following the
graphical criteria described in Section 4.3.1.

View Received Query Results Locations
If a Query Result has an addressed linked to it, then the Central Operator should be able to see the location
of it, displaying it using a GIS.

Log all Query Transactions
Central Operator is able to see a log of all his/hers query transactions; both received and sent within his/her
log in session, (‘Query Sent’, ‘Result Received’). Moreover, it should be possible to select a specific
“Result Received” from the list and view it; the number of results stored depends though, as the number
can be configured in each application (see Section 4.6.9).

Sending Query Results Without Request
Central Operator is able to send a query result to selected Mobile Users, and if needed connect a message to
it. Furthermore, the Central Operator can choose if the result should be displayed directly on the screen of
the selected mobile client or if the mobile client can choose when to display it.

Requirements Set

62

Messages
Central Operator is able to send a message to selected Mobile Users, if they are online. All sent and
received messages from the last login time should be visible in a scrollable text area. The Central Operator
should be able to set the importance of the message, normal or critical. If normal then display on only
within the text area but if critical then a pop up window should also be used to display the message at the
mobile client.

Action Results
Central Operator is able to view Action Results of the Mobile Users within the message text area.

Configuration of Action Results List
Central Operator is able to create a list of Action Results for a selected database, as well as modify and
delete such lists.

Configuration of Databases
Central Operator is able to add, remove or modify a database, which can be used for querying. When
adding a database, the Central Operator must specify a path for a text file describing the database structure
(its format is given in Section 4.6.7). Once the Central Operator has added, removed or modified a database
used for querying, the mobile client updates to reflect those changes. During this update, the mobile client
is not available to the Mobile Users.

The server must validate the text file format, which is representing the database structure, and give a
message to the central operator about the validation success.

User Management
Central Operator is able to add, modify and remove users of the system. He/she may also assign access
permissions to different databases and functionalities.

View Mobile Clients Locations
Central Operator should be able to see the location of all the online Mobile Users displaying them using a
GIS.

Display Locations on the Mobile Client GIS
Central Operator should be able to display objects locations on the screen of a selected Mobile User using a
GIS to display it. Furthermore, he/she should be able to connect a message to the object.

4.3 Usability Requirements

4.3.1 Graphical User Interface
Graphical user interfaces of client applications should be as simple and intuitive as possible.

4.4 Reliability and Performance Requirements
None at this stage

4.5 Supportability Requirements
None at this stage

4.6 Supplementary Specifications

4.6.1 Display Connection Status
Show the connection status, between the Clients and the Server, at all time. This must be done in a clear
manner and in a graphical way, e.g. red and green light indicating the status of the connection.

Requirements Set

63

4.6.2 Display a Detailed Progress Bar
Display the progress of transactions, how much percentage is done of the transaction.

4.6.3 Display Acknowledgements
Acknowledgments should be displayed for all transactions. This should be done by a brief text on a
progress bar; unless an error occurs in the transaction then a pop up message should be displayed reporting
so.

4.6.4 Keyboard and Mouse
Limit all keyboard and mouse actions due to the nature of the suggested hardware. See Section 4.8.2.

4.6.5 Query Format
Queries from the server application to the DB Server will be sent using SQL.

4.6.6 Search Criteria
The client and server applications will accept the following search criteria for queries:

= (searches for fields with values that are equal to the given value)

LIKE (searches for fields with values that have matching patterns with the given value)

Given values for both criteria are case insensitive.

4.6.7 DB Structure Format
The server application accepts the following format text file for the DB structure:

<TABLE>
NAME table_name

<FIELD>
NAME field_name
TYPE field_type
SEARCHABLE Y/N

</FIELD>
.
.
</TABLE>

Example:

<TABLE>
NAME car

<FIELD>
NAME ID
TYPE TEXT
SEARCHABLE Y

</FIELD>
<FIELD>
 NAME Picture
 TYPE GRAPHIC
 SEARCHABLE N
</FIELD>
</TABLE>

Requirements Set

64

This file would describe a database table named “car” that has two fields. The first field is named “ID” and
is of type “TEXT”; queries can be run on this field. The second field is called “Picture” and is of type
“GRAPHIC”, which means that it will contain an image; this field is not searchable.

Note:

TYPE Allowed Description

TEXT String format (500 characters allowed)

GRAPHIC Image in JPEG or GIF format

INT 32 bit Integer Number

FLOAT 32 bit floating-point number

BOOLEAN Y or N value. Y stands for true and N for false

4.6.8 Action Result Type
Valid Action Result type has to be in the format of a text string.

4.6.9 Configuration of the Number of Query Results Stored
Users are able to configure how many Query Results the application keeps for further viewing.

4.6.10 Log all Transactions
A log should be kept on a database about all transactions in the system, e.g. all messages send and received,
all queries made, all Action Results etc. These logs should be viewable from the system by the Central
Operator.

4.6.11 Configure Updates of Objects in GIS
It should be configurable, for the users, how often the location is updated of the displayed objects on the
GIS.

4.7 Online User Documentation and Help System Requirements
None at this stage.

4.8 Interfaces

4.8.1 User Interfaces

Querying GUI
The interface needs to be able to model itself automatically depending on the database it is to be used for.

General GUI
The user interfaces should be as simple and intuitive as possible. The application should be in one window
occupying the whole screen, with no pop up windows

Query Result
The query result has to display the exact time and data of when the specific result was received.
Furthermore, it should also show the criteria that were searched to achieve this specific result.

4.8.2 Hardware Interfaces

GPS Device
The system has to be able to communicate with the GPS device.

Requirements Set

65

GPRS Enable Device
Yet to be determined.

Keyboard
Limited keyboard with maybe only 15 keys.

Mouse
If needed then an easily operated mouse, as users may be wearing gloves while operating the application.

4.8.3 Software Interfaces
The system has to interact with a GIS system.

4.8.4 Communications Interfaces
The server application and the DB server will be directly connected via a LAN and will communicate using
JDBC drivers and SQL.

4.9 Licensing Requirements
None at this stage.

4.10 Legal, Copyright, and Other Notices
None at this stage.

5. Conclusion
Like most other activities, this was not a one-time activity, but a continuous process through out the
process.

One of the most crucial activities in the software process is to gather and manage the requirements of the
proposed system. In our case, we started with making a Business Case1, but soon found out that the
business aspect was out of our scope for this project, as Sidabrinis Tinklas assigned us to the specific task
of developing the system nothing else. Therefore, we left out all other business documents suggested by
RUP®, and actually, we did not even bother of updating the Business Case1 as it was of no importance for
us.

The Vision document2 though was a bridge between the developers and the business people; it gave us a
common vision of the system. We believe it should help future developers, and others that come in any way
towards this system, to get an overview over the system and the objectives of it.

However, it turned out that the Software Requirements Specification3 was one of our most valuable
document. It helped creating a detailed understanding of the system and the functionality of it one. It served
as a very important link between Sidabrinis Tinklas and us as this was the document that we handed over to
them after each major update of it, and in return got feedback from them on our understanding of the
system.

1 Page 56
2 Page 57
3 Page 64

Analysis & Design Set

67

Analysis & Design Set

Analysis & Design Set

68

1. Introduction
The Analysis & Design Set focuses on creating a robust architecture of the system. The artefacts for this set
have been produced in order to help in transforming the requirements into a design of the system-to-be.

Differently then the traditional Object Oriented approach, we will not run two different sections for
analysis and design, but we will combine them due to the size of the system. At first glance, we see that the
classes and operations involved in this system are too few, in our opinion, to use time for detailed analysis.
Furthermore, the division of the system in subsystems makes the product even easier to analyse.

In this chapter, we show the process that we followed in order to select the architecture in which the system
is to run. First a little introduction into the way we worked on the Analysis and Design then we present a
series of researches we made and present a proposal of different architectural solution. Further on we show
witch architectural design has been choose, then end with the Software Architecture Document1 of the
general architecture of the system. More detailed architecture of each of the three subsystems can be found
in appropriated subsystem chapter.

2. Our way
We will use some of the practices from analysis to get an overview of the system, but without spending to
much time on details. We will produce logical views of the main classes with just enough information to
have an idea of what the architecture of the system will be. To show the main functionalities we will refer
to the Use-Cases specification2 realised during the Inception phase. However, as we go down to a single
subsystem, we will start the design of each of its components. Differently than the traditional Object
Oriented approach, we will not design all the parts of a subsystem in one go, but we will go through one
and start the implementation phase. Once that part has been developed and tested, we will start the design
of the next part of the subsystem.

During the design, we will produce a detailed design model of the specific component using UML diagram
that will include the main attributes and operations of each class. Together with the diagram a brief
description of the classes will be given. If necessary, state chart diagram will be used for the respective
classes. Furthermore than the diagram, a list of the main functions will be compiled and a specification of
the most complex one will be created.

The documentation of these activities will be showed in the Software Architecture Document1 of each
subsystem, which will be updated as needed.

Due to the simplicity of the system, activities like class and event evaluation will be run on the fly and will
not be documented. Eventual changes in the Analysis and Design of the system will be asserted during next
iterations.

3. Class Description

3.1 Introduction
Hereafter are brief descriptions of the main classes of the system. Since an iterative approach is used during
this development, then occasionally classes and parts of the system might be displayed in diagram but
explained in later stages. Therefore this section has been created in order to aid in the understanding of the
critical classes in the system and their functions.

1 Page 72
2 Appendix C

Analysis & Design Set

69

3.2 The Core Classes

Server Class
This class represents the server of the system. It manages all the system transactions and holds the system
configuration.

MobileClient Class
The MobileClient class is the representation of the client application resided on the vehicles computers. It
interacts with the system via the Server class.

CentralClient Class
This class is an extension of the MobileClient class, and represents the client application resided on the
central computer. It has the same functionality as the MobileClient class with a few extra features, such as
system configuration.

Result Class
The Result class holds the data received from the result of a query sent to the database.

ActionResult Class
For every Result, it is possible to send a response on what has been done concerning the task connected to
the Result. The ActionResult class holds the information referring to this connection.

Message Class
All messages exchanged are passed trough the Message class, which also holds information such as sender
and receivers of the message.

Database Class
This is the representation of the database structure to which the system is connected. All information such
as tables, file path, users etc.

User Class
This class holds data about the users in the system, e.g. personal data, access level and privileges.

4. General System Architecture

4.1 Introduction
This documents presents the possible architectural solutions for the Car Tracking System, but with special
emphasise on the Query System.

4.2 Purpose
This document has been created to give a better overview of the problem and its possible solution. It is
created mainly for the user company, giving them the power of choosing a solution that suits them.

4.3 Type of Network
It is obvious, from the system requirements (see page 64), that the Query System is a distributed system.

Analysis & Design Set

70

The idea of sending query requests and receiving results gives us the idea of a System based on Client-
Server architecture. Arguments could be set about the architecture looking at the messaging system. The
Client-Server architecture does not seem to be so correct once we talk about exchanging messages between
clients. Therefore, we decided to question the user Company in that matter and realised that messages are
only sent between a Mobile Client and the Central Operator. Therefore, we decided to go on with the
Client-Server architecture and use the Server as a dispatcher for the messages. If in future implementation
the system will work with more than one Central Client, the Server could be used as a filter for the
messages.

The user company has an already installed server with which our system will have to communicate with.
The choice that was placed on us was if we had to implement our system through a LAN or through the
Internet. In the tables below, we list the advantage and disadvantage of using the two technologies, in
relation with the Car Tracking System.

 Internet

 Possibility to use the software from any computer online.

 New computers do not need installation. The browser will download the software when needed.

 Security measure will have to be considered more seriously. The possibility of intruders is
higher.

 Local Area Network

 Security is important but the possibility of intruders in drastically reduced.

 Available only inside network. Opening gateway will decrease the security level.

 New computers will have to be configured to access the LAN.

 Lack of documentation about GPRS and LAN

Even after our research, we are still not sure about what to choose. The security issue could be critical to
the User Company, so the decision will be participated to the next iteration. This choice will tough not
cause any delays because the application can still be implemented. Implementing a commercial application
means implementing an application that can suit more than one user. Implementing the system as a web
application will enable us to come close to a generic type of user. Web application can anyway run both on
Internet and Intranet, giving us the possibility of using both Internet and LAN networks for our solution.

4.4 System Architecture
There are three main distribution patterns for web application: Thin Client, Thick Client and Web Delivery.

The tables below show advantages and disadvantages of these patterns in connection to the system.

 Thin Client Web Application Pattern

 Connection is cheaper because is used only to receive the results.

 Inflexible interface. In Thin Client the interfaces are fixed, there are no functionalities.

 The response time depends exclusively on the server and the size of the database.

Analysis & Design Set

71

 Thick Client Web Application Pattern

 Adds functionality to the Thin Client Pattern

 Supports sophisticated interfaces

 The response time depends on the size of the database and the capability of the server

 Web Delivery Web Application Pattern

 Components are automatically loaded in the browser when needed

 Need longer time connections.

 Inflexible server structure.

All transaction passes by the Server and through the DBMS, therefore the response time of each of those
design patterns depends mostly on the size and capacity of the Server and of the DBMS, even though the
functionality are placed in different places.

However, as this system will have to communicate with existing servers, we assume that the User
Company has a server that can handle the amount of users that the company will allow access. The Thin
Client is a pattern that does not fit with our system because it goes against the requirement of a flexible
interface, see Requirement Set: Software Requirement Specification, section 4.8.1. The Web Delivery
pattern will lead us to eliminate the functionality from our client, and we cannot pretend the User Company
to have a server with already all the functionality installed. The ideal solution will be to use the Thick
Client Pattern, it will allow us to interface the database server and transfer the needed functionality in the
client.

4.5 System Layers
As flexibility and reusability are high requirement of the system, we decided to divide the system in layers.
Making independent layers will give us the possibility of creating a more flexible architecture; every time a
change is needed, it will be possible to change only the interested layer, while the others will work anyway.
The different layers could then also be divided between the server and the client depending from the
architecture chosen.

Presentation
Layer

Preparation Layer

Communication Layer

Query GUI

Query Interface
Generator

Query Generator

DB Connection

Analysis & Design Set

72

4.5.1 Presentation Layer
The Presentation Layer receives raw data from the Preparation Layer and formats it in a presentable way to
the user. In formation about the querying criteria that can be used are received from the Preparation Layer,
and the Query GUI will change according to them.

4.5.2 Preparation Layer
The Preparation Layer takes care of preparing the information transaction from and to the Presentation
Layer. The Query generator reads the querying criteria sent by the Presentation Layer and submits them to
the Communication Layer, in an understandable format. The Query Interface Generator receives the
database structure from the Communication Layer and send to the Presentation Layer information on how
the querying can be presented to the user.

4.5.3 Communication Layer
The communication layer takes care of open and closes the communication to the server and to send and
receive the data from the database.

4.6 Solution Options for the Query System
Three different options, concerning the architecture of the system, has been offered to the User Company:

• Complete XML Solution

• SQL Solution

• Protocol Solution

4.6.1 Complete XML Solution
This solution is based on XML to query the server and transport data.

Server
• Sends DTD file describing the database structure

• Reads the query in XPATH querying language

• Sends the result of the query in XML

Client
• Creates GUI based on the structure described by the DTD file

• Creates and sends XPATH query to the server

• Visualise the XML result using XML schemas

Advantages
• The system will not care what kind of DBMS is used

• There are existing tools for creating DTD files from databases e.g. “DB/XML Vision by
DataMirror Corporation”

• Easy to configure to a DBMS

Disadvantage
• The DBMS must support XML

• The server must understand XPATH

Analysis & Design Set

73

• Complex solution, it requires more implementation time

Customer Possible Judge
The Customer might like the short configuration time, but as our costumer is very reluctant to reveal its
database structure then this solution might discourage them.

4.6.2 SQL Solution
This solution is based on SQL to communicate with the server.

Server
• Sends a query in SQL representing the database view for the interface.

• Sends a list of fields where the search can run.

• Sends the result of the query.

Client
• Creates a GUI from the list of fields coming from the server.

• Creates a Query on the Query using the searching criteria.

• Receives the result and displays it

Advantages
• Easy to implement

• Well-known technology and tools

Disadvantages
• Bound to RDBMS and therefore limiting the flexibility of the system and would not allow the

system to be connected to different database systems like e.g. Object Oriented DBMS

Customer Possible Judge
Known technologies are always preferred, but the Customer might not like to send information about the
database structure. The Customer might not have a RDBMS.

4.6.3 Protocol Solution
This solution is based upon the creation of a standard protocol for communication with the server.

Server
• Sends a list of fields where it is possible to search.

• Creates a query from received search criteria.

• Sends the result in XML

Client
• Creates a GUI from received searching fields.

• Sends search criteria.

• Visualise XML result using XML schemas.

Advantages
• Flexible database interface

Analysis & Design Set

74

• No need for any database structure.

Disadvantages
• DBMS must support XML or translating routine must be implemented.

• Server has to have the querying routine.

Customer Possible Judge
The customer would probably like the idea of not giving the database structure and not been bound to a
DBMS because then they can change the database structure and system as they want. However, it might not
like to have to implement querying routine in the server.

4.6.4 Tools, Technology and Knowledge Level
The following table is a summary of the technologies needed for the different proposed solutions, and in
relation to it, we also show the level of knowledge of the team in relation to those technologies. The reason
for compiling such a table is to help us in the decision-making. For example, if the speed of development is
an important issue in the project we could deduce from this table that the SQL solution will improve the
development speed because the technologies involved are well known.

Protocol Solution Level Of Knowledge
ASP or Java™

XML
XSL or CSS schemas

Medium

Complete XML Solution
XML
DTD

XSL or CSS schemas
XPATH

Java™ or ASP

Low

SQL Solution
SQL

ASP or Java™ High

4.6.5 Times
The following table is also used as help in the decision-making, it shows the time each solution would need
in order to add a new database to the system and the implementation time behind each solution. By “Us”
and “User”, it is showed the time the user needs to spend in adding the database, and the time the
development team needs to implement eventual changes.

The times are measured in day units; eventual extra times are expressed in words.

Time to add a new database
Phase SQL Solution XML Solution Protocol Solution

 Us User Us User Us User
GUI 0 0 0 0,5 0 0,5

Querying 0 0 0 0 0 0
Interface 0 0,5 0 0,5 + tool 2 or more 0

 Implementation time
 3-4 Weeks 4-5 Weeks 3-4 Weeks

Analysis & Design Set

75

4.7 The Architecture Selection

4.7.1 User Company’s Answer
The Project Proposal Document that was sent to the User Company had 3 possible architectural solutions to
the system; the purpose of it was to allow the User Company to select the most suitable solution for them.

The User Company did not choose any of the solutions sent but it used some of the ideas and gave us this
in return:

1. The system consists of a client application, an HTTP server and a DB server.
2. XML should be used for communication between the HTTP server and the client.
3. SQL should be used for communication between the DB server and the HTTP server. (DB server

may, or may not, be able to deliver query result in XML.)
4. Intranet will probably be used (but the system should also work using the Internet).
5. The client program should be designed so that it could be used by a keyboard with minimum

number of keys (perhaps only number and functional keys; letter keys could be displayed on the
screen).

6. Tests will be done using a regular laptop. If the project goes well, EB may decide to buy a special
car computer.

In the following section, we describe the architectural design that finally was decided to be implement,
emphasising on the changes made to the User Company’s proposed solution.

4.7.2 The Chosen Architecture
The system will run on a client-server architecture, where the communication between the system and the
database will be run at the server side. Communication between the server and the clients will be done
using Java™ streams1. A database driver such as ODBC2 or JDBC3 will handle communication between
the server and the database.

In the following section, we try to describe the reason for changing some of the architecture choice of the
User Company into what is to be implemented.

Java™ Stream vs. XML
During the first meeting, we had the impression that we were suppose to implement a client application that
would be able to connect to a server owned by the User Company, but during the requirement research, we
discovered that the server implementation was actually a part of our system. For that reason we decided to
use a more suitable communication means between the clients and the server, which will make it easier for
us to implement a flexible structure. We then thought that XML would be good communications means that
most application uses, but as it has already been decided to implemented both the server and the client with
Java™, we found it more convenient to use the already build in communication structure of Java™
(Java.io). By doing so we will use an already tested and a reliable communication structure that will help us
decrease the implementation time, and therefore provide the Demo software in a shorter time.

1 Sun Microsystems Java™ SDK 1.4.0, package Java.io
2 Microsoft Corp.
3 Sun Microsystems

Analysis & Design Set

76

Server vs. HTTP Server
Choosing not to implement the server as an HTTP server, but rather as a normal server, is based on a
functional reason. An HTTP server gives responses only to requests, and this does not fit the requirement of
the system. The System is supposed to be able to send messages between a Central Operator and a Mobile
User, but an HTTP server will not be able to dispatch a message to a client that hasn’t send a request to
retrieve the message. Again, the same problem will rise when a Central Operator will try to send a query
result to a Mobile User. The main problem is that an HTTP Server does not keep the connection with a
client, but by using a normal server, it will be possible to keep the connection to the client and exchange
information with it at any time.

5. Software Architecture Document

5.1 Introduction

5.1.1 Purpose
This document provides a comprehensive architectural overview of the system, using a number of different
architectural views to depict different aspects of the system. It is intended to capture and convey the
significant architectural decisions that have been made on the system.

5.1.2 Scope
The scope of this document is to give a general overview of the architectural structure of the Car Tracking
System.

5.1.3 Overview
This document represents the general architecture of the Car Tracking System in the form of Use-Case
view, Logical view and Deployment view.

5.2 Architectural Goals and Constraints
The most important objective of this system architecture is the flexibility and independency from the
database Server. The designed architecture should give the maximum flexibility and the possibility to
transport the system to other Users with the minimal amount of changes.

5.3 Use-Case View
RUP® suggests to include all significant Use-Cases in this document, but as we treat the system as a group
of three subsystems we decided to show in this document only the views that will allow us to have a simple
and general overview of the system, and keep the ones specific of each subsystem in separate documents
for each subsystems.

Analysis & Design Set

77

5.4 Logical View
The Car Tracking System is composed of two clients, a Server and a Communication Interface with the
Database Server. The Central Client is the client that has all the functionality connected to security and
connectivity to the DB. No special requirements have been given from the User Company about the Central
Client; the User Company actually does not ask for more than a GUI for the server application, but to
ensure a smoother move to further implementations we decided to implement it as a client. This will
eventually enable the system to have more than one Central Operator working on the system. The Mobile
Client will be used remotely and will connect to the Server for messaging and querying services. The
Server will be some kind of router that will manage the exchange of messages and data. In addition, the
Server will also be used to exchange information for the GIS between the tracking subsystems.

Send/Receive Message

Send Query

Send Result
Send Query

Send Query

DB Server

Server

Send Result

Car Agent

Send GPS Position

Central Operator

Analysis & Design Set

78

Central ClientMobile Client

Server

DB Communication

<<Interface>>

5.5 Component View
Looking closer into the subsystems we found out that they all share the same component structure, except
only the Query System has the connection to the Database Server Component. Therefore, we have included
the component view here instead of going through it with every subsystem.

The following diagram shows the division of the classes into components and the relation between them.

During the different iterations we will run the design section of each component, setting up communication
interfaces between the components in order to create independent components and increase the flexibility
of the system.

Notice though that the Database Server component is just a representation of the Database Server owned by
the User Company, and therefore there will be no design of this component. Neither will we do any design
of the Administration Component due to the scope of the demo version.

Mobile Client
Componet

Central Client
Component

Server
Component

Administration
Component

Database Server
Component

Analysis & Design Set

79

5.6 Deployment View
The Central Client, the Server and the DB Server will be installed in the same LAN, while the Mobile
Client will access the server remotely either via the Internet or directly (VPN) using the GPRS wireless
technology.

As shown in the diagram it is also possible to connect the Central Client through the internet using a VPN
or a GPRS device, this allow us to implement the Mobile Client and Central Client as a single application
and control the access level with an authorisation mechanism.

Mobile
Client

Central
Client

 Server

DB
Server

LAN / GPRS / VPN

LAN

GPRS / VPN

6. Conclusion
This phase of the project has been one of the most long and with the most number of decisions. Starting
with making researches of how the architecture of the system could be, we compiled an architecture
proposal document for the User Company. Differently than expected the User Company did not choose one
of the solutions send by us, it compiled a new solution, which was a mixture of the solutions we proposed.
With a few changes, an architecture design has been finalized in the expected time. During the successive
Iterations, there has never been the need to change anything in the original architecture design, beside the
addiction of functionalities to the system.

All the documents and artefacts selected for this set has been compiled using the templates coming from
RUP®. Though we think that the templates from RUP® are of very good quality, we found that in many of
them there were information that had no significance to the project, therefore we decided to tailor the
documents, and to add few of the extra information that we found more useful for the project, or as in some
cases create our own documents. An example of this is the General System Architecture1. As previously
explained, we decided to give the User Company the possibility of choosing the architecture for the system
out of a short selection. Information relative to the architecture choice has also been added, including some
technical details such as the implementation time needed if the system is to configure to a new database.

1 Page 73

Implementation Set

81

Implementation Set

Implementation Set

82

1. Introduction
It is always nice to see something being created and coming to life. That is what the Implementation Set is
about, start seeing something being born, something else than documents.

This chapter does not explain implementation decisions, as these decisions are handled in the chapters of
each subsystem, however we discuss here the implementation restriction associated to the demo version of
the system, and some refactoring issues that should be done.

Here is where XP comes into the picture and we try to explain how those activities came into practice in
our project and explain how we used them.

2. Implementation Restrictions

2.1 Introduction

2.1.1 Purpose
To address issues which were considered to be out of the scope of the demo version due to various reasons.
This will give future developers of the system an idea of things that have to be added to the system and
even sometimes an idea of a way to add them.

2.1.2 Scope
The scope is the limits of demo version of the Car Tracking System.

2.2 Limitations

2.2.1 System Status Control
By system status control, we mean all the functionalities related to the reliability of the system. Those
functionalities include the handling of Server, Database Server and Client crashes. The system should be
able to handle those crashes by checking the status of the connection. The only one of those functionality
implemented by the server is the monitoring of communication crash between the server and the client, the
crash is though only implemented at the server side.

2.2.2 System Administration
By System Administration, we refer to all the functionalities related to the administration of the server and
of the users of the system. Examples of those functionalities are the adding and removing of database
connection to the system. The implementation of those functionalities should though be postponed until the
analysis of the Administration System Component has been done.

2.2.3 GUI Looks
The GUI looks has been selected as a low priority feature because it does not address any special and
central feature of the system. Though requirements and importance of the GUI have increased, we decided
to keep the GUI analysis to a later stage then the Demo in order to keep the focus on the functionalities of
the system. However, all known requirements regarding the GUI have been documented.

2.2.4 Authentication
Authentication functionalities will allow the system to identify users and load different functionality to the
system depending on the access level of the user. For the demo version, the two types of client have been
implemented as two different applications, but they should have been implemented as a single application
that changes functionality depending on the access level of the user. That would have made it possible to
install only one application at every workstation.

Implementation Set

83

2.2.5 Information Security
Information security is an important issue of this system, but it is out of the scope of the demo version,
because we do not believe it would help in displaying the essential of the system, as the security features
are just an add-on to the system.

Furthermore, we decided not to implement it because as everything is implemented using objects, it will be
relatively easy for future programmers, to change the class that needs security without needing to change
other parts of the system. Security features can be implemented using the Java.security1 and the
Java.crypto1 packages provided by Java™.

2.2.6 Acknowledgements
Showing acknowledgements for transactions is needed in order for the users to know that sent information
are reaching their destinations as they are supposed to. For example when the Central Operator sends a
Query Result to a Mobile User then there is no way for the Central Operator to know if the Query Result
reached its destination or not. We suggest though, instead of displaying an acknowledgement every time a
transaction has taken place then an error message is to display instead if a transaction fails with in a set
timeframe.

3. XP Practices2

3.1 Pair Programming
Pair programming is one of the technique that we imported into RUP® from XP. Two programmers sitting
at the same computer sharing their ideas and concentrating in quality, create the code. Following the
guidelines of XP, this will help the programmer in the long run, because as two persons are overlooking the
code it will be easier to spot errors and incompatibility with the architecture.

During this project, every time code was involved we gathered around one computer and started
programming. This turned out to be a very good process, while the programmer that was typing was
concentrated in how the function was working, the programming parted would concentrate more on how
the function could fail and on how this function would fit in the system.

3.2 Refactoring
Refactoring is another of the practice that we imported from XP. It consists in the continuous search for a
better way of designing and programming. It does not mean that one should spend time on redesigning the
whole system, but every time one finds a better way of programming a function or a better design, he/she
should be free of changing the code or de design to the better one.

During this project refactoring was a very important part. The whole system has been designed with the
idea that it will be changed, therefore we kept a simple design and code, which would be easy to change.
As the implementation of the system, as well as the whole project process, has been divided in iterations,
we came across the same classes different times, and every time we refactored the code and the design of
the system to better fit the new requirements that were discovered.

3.3 Collective Ownership
As for pair programming and refactoring, collective ownership is also a practice taken from XP. It consists
of sharing the code between the programmers, meaning that anyone can change or add functionality to the
code, without asking permission to anyone. In order to keep the changed code consistent with the rest of the
system, automated unit tests are created, and only code that passes the test 100% can be released.

1 Sun Java™ SDK 1.4.0
2 Methodology Resources

Implementation Set

84

In this project, we extended the concept of collective ownership not only to the code but also to all the
documents that were part of the project. The code and the documents were hold in a share driver and could
have been accessed and changed by any of the members of the team. Differently then for the code, were
unit test could have been made to check the consistency with the system, the documents needed something
to show had been made. Therefore we decided to use a review history, which will show what changes had
been made to the documents.

3.4 Continuous Integration
This practice, also coming from XP, tells us to continuously integrate our code. Every pair of programmers
should work in the latest version of the system, and integrate often. Also this practice from XP has been
successful in our project, instead of implementing the three subsystems as separate systems and then
integrate them at the end, we integrated the code to the latest version of the system, giving to the Company
the feeling that the system was growing.

This practice also helped us in the continuous research for new and clearer requirement. Every time we had
a demonstration of the system with the User Company, it was possible to show the system as a whole. In
this way, the User Company was facing the whole system every time, letting it have the chance to think
about requirements that might have been overviewed in previous demonstrations.

4. Conclusion
The implementation section of the project has been of very big interest, because we were to test the new
working practice suggested by XP. At the start, it was a bit odd to be two programmers in front of a single
computer, but the uncomfortable feeling did not last too long. We soon learned what actually was the job of
each programmer, and then the process went smoothly and less and less bugs were found in the system as
the process went.

While programming, each programmer would look at the code in a different way and from a different
angle. This helped us to create a more simple code and design and to avoid the usual logical mistakes that
often come from the rush of programming fast.

The iterative process and the refactoring practice helped us looking more than one time at the implemented
classes and creating a more flexible system.

The only real document that RUP® proposes for the implementation set, is the Implementation Build Plan1,
but as this plan was not going to be used, it has been cut out during the tailoring of the methodology. We
found it; instead, more useful to create a document, which would contain all the important implementation
decision taken during this section. This document will help anyone who is new to the project, to understand
the important implementation issues met during the building of the system, without the need of looking
through the code itself.

1 RUP® Framework, support documents and tools

Test Set

85

Test Set

Test Set

86

1. Introduction
In order to produce a quality product we need to test it, one way or another. The Test Set is very small and
here we only cover JUnit™ and how we used it during the development process. However, we produced a
Test Plan for each subsystem in order to identify the software components that should be tested, list the test
strategies need for it and review the results of it. These documents are located in the chapters related to
each subsystem.

2. JUnit™
JUnit™ is the automated testing tool we used during the project. The tool is a framework for automated
unit tests, created by Kent Beck and Erich Gamma. For each class a test case is created and it will test the
class methods. Giving an expected value or event that the method should return or react to, and compare it
to the actual behaviour of the method makes the tests.

This tool allows the programmer to create fast test cases that does not involve any changes in the actual
system code, by creating the test cases as stand alone classes.

For many of the most logical classes, which had computing functionality, we had no problems in creating
and running the test cases. The lack of experience with this tool has though given us some problems in
designing particular tests, in which case we decided to use manual tests. We though feel that this tool
would have been of much greater help to our project if we had the time to get experience in test case
designing. The web documentation and the number of add-ons for this tool, such as GUI testing, make us
confident in the usefulness of this tool in our future projects.

Test Set

87

3. Conclusion
Testing was an important part of our project, deciding to follow the XP practice; we had to test
continuously during the implementation and the integration of the system. As suggested by XP we created
automated unit test, but we found it very hard to test the actual network communication between client and
server. Therefore, we were facing the problem of deciding whether to use time in finding a way to test the
communication using the automated tool, or just test the communication in a different way. Due to the
timeframe we were working on, we decided not to create the automated test, but to set up some use-cases
based test for all the part of the system that could not be tested automatically.

The three test document that we have choice to use from RUP®, turned out not to have a lot of information
as separate documents, therefore we decided to combine them into one single document, that in our project
case, gave an overview of which tests were made, how they were made and the result of them.

Query System

89

Query System

Query System

90

1. Introduction
This subsystem of the Car Tracking System is used to allow the users to connect to the central database and
be able to run queries on it. The main functionality of this system is actually not the ability of sending
queries to the database, but the ability of connecting the system different databases and having the system’s
GUI adjusting to the new database automatically. The system furthermore allows the Central Operator to
send a specific Result directly to one or all of the Mobile Users. All the transactions pass through the
Server.

The chapter starts by describing the most essential use case for the subsystem, other use cases can be found
in Appendix C. Thereafter we go in to details of the architecture of the subsystem in the Software
Architecture Document, following by the Implementation and the Test documents. Software requirements
specifications for the subsystem have been captured and described in the Software Requirements
Specification in the Requirements Set1.

2. Requirements Set: Use Case Specifications

2.1 Generate GUI

Receive DB Structure

(from Use Cases)

Central Client
Mobile Client

(from Actors)

Prepare Quering Criteria
(from Use Cases)

Display GUI

(f rom Use Ca ses)

Quering Interface

(from Actors)

2.1.1 Details

Description

The Query Interface generates a GUI from the information given by the Central/Mobile Client.
The information is created from the database structure and passed to the Central/Mobile Client.

Basic Flow

• The user selects a database to search in
• The Central/Mobile Client receives the DB Structure
• The Central/Mobile Client fills-in the info for searching GUI criteria
• Query Interface reads info
• Query Interface creates the GUI
• The Use-Case ends

1 Page 64

Query System

91

Alternative Flows

1. Structure Invalid

The DB structure passed to the Central/Mobile Client in not a valid structure. A
message displaying the fatal error is displayed. The Query System closes.

Pre – Conditions
None

Post – Conditions
A Graphical User Interface is created suiting the DB structure

Special Requirements
None

Frequency
Every time the query window is opened

Primary Actor
Querying Interface

Secondary Actor
Central/Mobile Client

Secondary Use-Cases
None

3. Requirement Set: Software Requirements Specification
See Requirement Set; Software Requirements Specification.

4. Analysis & Design Set: Software Architecture Document

4.1 Introduction

4.1.1 Scope
The scope of the Software Architecture Document is to give different views of the Query System, (a
subsystem of the Car Tracking System), with enough details to give the programmer all the information
needed to start the system implementation.

4.2 Architectural Representation
The architecture of the Query System is represented in the form of a Use-Case view, Logical view,
Deployment view and Implementation view.

4.3 Use-Case View

4.3.1 Use-Case Realisations
The Use-Cases realisation can be found in Appendix C

.

Query System

92

4.4 Logical Views

4.4.1 Analysis Model
The following diagram shows the Logical view of the system; it does not have any details because this is
left to the design of each component. Following the diagram, we will give a brief description of the overall
system, explaining in a general manner the classes and the connection between them.

The most important classes shown in the diagram are the Client, the Server and the Database Server
Classes. The Client classes describe the remote applications that will connect to the Server for data
services. The Server handles the requests and sends/receives data for the Database Server class. The
Database Server class itself is a representation of the Database Server owned by the User Company.
Information about the users are described the Users classes. Of particular interest is the association between
the Users classes and the Database Server class; every user has particular “Permission”, on the data that can
be accessed, therefore the association represents the connection between a particular User and the
Databases that he/she is allowed to access.

4.4.2 Design Models

Server Component
The Server component is one of the central and more critical parts of the system. It has to handle all the
requests from the Clients and forward them to the User Company Database Server.

Mobile Client Central Operator

Clients

Permissions Server

+1..m

+1..1

Database Server

+1..m

+1..1

Users+1..m+1..1

+1..m

+1..m

Mobile UserCentral Client +1..m

+1..m

Query System

93

Server

storeDBStructure()
validateDBStructure()
translateQuery()
sendResult()
sendDBStructure()
connectToDB()
disconnectFromDB()
sendQuery()

Database
DBPath
username
password

+1..1

+1..m

Table
name

+1..1

+1..m

Field
name
type
searchable

+1..1

+1..m

The Component is made of two classes; one is the Server itself and the other, “Databases”, is the
representation of the databases connected to the Server. For security reason the User Company does not
want the Server to know directly the structure of the databases, therefore the database structure is passed to
the Server as an external file. The structure described in the file will be held in the Databases classes, which
will contain all the data relative to those databases. The database structure held in the “Database, Table and
Field” classes is then used by the system as a reference to how the database is structured.

Functions
N. Function Type Specification Complexity Uncertainty

1 Server.sendResult() S N 1 1

2 Server.sendDBStructure() S N 1 1

3 Server.storeDBStructure() U N 1 1

4 Server.validateDBStructure() C S 3 3

5 Server.translateQuery() C S 3 2

6 Server.connectToDB() C I 1 1

7 Server.DisconnectFromDB() C I 1 1

8 Server.sendQuery() S N 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Query System

94

Function Specification
See Appendix D.

Mobile Client Component
The Mobile Client Component is one of the two Client applications of this system. This component is used
to send queries to the server and display the result. In order to have a better understanding of what are the
events around this component, we used a State Chart Diagram of the MobileClient class.

Connected

Loaded

Outdated

DB Structure is Outdated

DB Structure is updated

No Query
Services

Ready

DB Structure is not found

DB Structure is Loaded

Disconnected
Start

Connection is established

Connection is interrupted

Terminate

DB Structure Is Loaded

Terminate

Terminate

The above diagram assisted us in learning about the different events that are around the Mobile Client, and
gave us hints on possible error situation such as the crush of the server. The Mobile client, once started,
will try to connect to the server and, if the connection is successful, it will check if the Database structure is
up to date. If not then the client gets an updated structure, before entering the ready state; otherwise, it goes
straight into that state. The No Query Services is an error state, which describes the absence of a database
structure; therefore, the query services cannot be performed.

The State Chart Diagram also brought up a discussion about how and when should a Client check for
updates in the Database structure. We came out with two solutions that can be considered. However, it
should be kept in mind that we did not do any thorough investigation into these solutions; neither do we
plan to implement this feature due to the limited scope of the demo version.

The first solution would be to introduce a “date & time” attribute in the Database classes, so that every time
that a Client connects to the Server can check if the Database structure in the Server has the same date.
However, this solution implies communication with the server at least once a day from each client.

Considering that the Database Structure will probably not change so often, the second solution suggests
having a list of the client that do not have an updated database structure. Once a client connects, the server
will check if the client is outdated, and send the updated version if needed.

Query System

95

Results GUI

Database
DBPath
username
password

Result

Mobile Client
Query

sendQuery()
receiveQuery()
receiveDBStruc ture()
showResult()

+1..1

+1..m +1..1

+1..m

Query GUI

createQuery()

The above diagram is the design model of the Mobile Client. The central class is the Mobile Client class,
which handles the communication with the server. The Database class is the representation of the database.
The data for the Database class comes from the Server and becomes updated every time the structure
changes. The result class holds the results coming from queries sent to the server. We set it as a class
because the results do not have to be only displayed but also stored; a log of all the results must be kept for
the login time. Because of the possible large size of the results, we decided to keep the log to a maximum
of 50 results. The “ResultGUI” is used to display the Results received from a query and to show the Result
log. The “QueryGUI” is automatically created from the information stored in the Database class, and
allows the users to formulate queries.

Functions
N. Function Type Specification Complexity Uncertainty

1 MobileClient.sendQuery() S N 1 1

2 MobileClient.receiveResult() S N 1 1

3 MobileClient.receiveDBStructure() S N 1 1

4 MobileClient.showResult() C N 1 1

5 QueryGUI.createQuery() C S 2 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Query System

96

Function Specification
See Appendix D.

Central Client Component
All that has been stated for the Mobile Client Component is also valid for the Central Client Component,
and therefore we will limit ourselves to display the design model and explain only the differences. Only
extra functionalities will be displayed.

Online User GUI Query GUI

createQuery()

Database
DBPath
username
password

MobileClient

CentralClient
Query

sendQuery()
receiveResult()
receiveDBStructure()
showResult()

+1..m

+1..1

+1..1

+1..m

ResultGUI

sendResult()

Result

+1..m

+1..1

The Central Client has two more GUIs, than the Mobile Client. The “OnlineUserGUI” enables the Central
Client to see all online Mobile Clients. The “ResultGUI” is the same as the one from the Mobile Client
with the addition of the option of sending the found Result to a specific Mobile Client.

Functions
N. Function Type Specification Complexity Uncertainty

1 ResultGUI.sendResult() S S 1 1

Query System

97

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Function Specification
See Appendix D.

4.5 Deployment View
See Analysis & Design Set; Software Architecture Document.

4.6 Implementation Views

4.6.1 Server Component

ServerClientCommunication

sendResult()
sendDBStructure()
receiveQuery()

<<Interface>>

DB Server Communication

connectToDB()
disconnectToDB()
sendQuery()

<<Interface>>

Field
name
type
searchable

Server

storeDBStructure()
translateQuery()

Table
name

+1..1

+1..m
SDatabase

DBPath
username
password

+1..1

+1..m

+1..1

+1..1

EBConncetion

+1..1

+1..1

EBSCCommunicationServer Thread
<<Thread>> +1..1

+1..1

Query System

98

Client Communication and DB Server Communication are the interfaces that connect the Server
Component to the Database Server Component and the Clients Components. To make the Server able to
handle more than one request at the time we decided to implement the Client Communication interface
with a Thread, which will then serve the clients. The Database class will be loaded in a java.vector1 class
and will be persistently stored in a file. By doing so we will need the information of the database structure
only once, and by loading it into a Vector it will improve the performance of the algorithms that are using
this structure (e.g. validateDBStructure()). Note that vector was chosen because we were very familiar with
it but other, like Arraylist could also have been used.

4.6.2 Mobile Client Component

ClientServerCommunication

sendQuery()
receiveResult()
receiveDBStructure()
sendResult()

<<Interface>>

Results GUI

CDatabase
DBPath
username
password

Result
Mobile Client
Query

showResult()
+1..1

+1..m +1..1

+1..m

Query GUI

createQuery()

ClientThread
<<Thread>>

EBCSCommunication

Notice that in this diagram and in the Server Component Implementation diagram, that the Database class,
in the design section, has changed name. The reason for this is that the information stored in the Database
class in the server is more confidential (e.g. DB Server password), and should therefore not been sent
through the network for unnecessary reasons. Our solution to this is has been to make the Server Database
Class an extension of the normal Database class. By using a generalisation, we also can construct the
Database class for the client with a bit more flexibility, allowing future implementation to change the class
without interfering with the server classes.

The ClientServerCommunication interface describes the methods that will be used for the communication.
The EBCSCommunication class as part of the Mobile Client class then implements the interface. To ensure
that the user can interact with the different GUIs without being interRUP®ted from Client-Server
communication, all incoming communications are handled by the ClientThread class, which runs as a
separate thread.

1 Java™ SDK 1.4.0 java.util package

Query System

99

4.6.3 Central Client Component

ClientServerCommunication

sendQuery()
receiveResult()
receiveDBStructure()
sendResult()

<<Interface>>

Online User GUI Query GUI

createQuery()

MobileClient

CDatabase
DBPath
username
password

CentralClient
Query
Info_Structure

sendQuery()
receiveResult()
receiveDBStructure()
showResult()

+1..1

+1..m

+1..1+1..m

ResultGUI

sendResult()

Result

+1..m

+1..1

ClientThread
<<Thread>>

EBCSCommunication

The implementation comments for the Mobile Client and the Central Client are the same; the only
difference to mention is that the Central Client implements the “sendResult()” method of the
ClientServerCommunication interface.

5. Implementation Set: Implementation Document

5.1 Introduction

5.1.1 Scope
It is important to realise the scope of the demo version of the Query System before going any further. The
demo is implemented so that it can show the main and most important feature of the system. Those features
are the sending of query, the receiving of results and the sending of results from a Central Client to a
specific Mobile Client.

Query System

100

5.2 Implementation Issues

5.2.1 Observer/Observable Pattern1
The “Central Client” has the functionality of showing all online “Mobile Clients”. In order to implement
this functionality we decided to use the Observer/Observable pattern. We chose the “CentralClient” class as
an Observable object because it is the class containing the information about the Mobile users online. As
Observer, we chose the “OnlineUsersGUI” class, which displays the online users on a JList2 component.

public class OnLineUsersGUI extends JPanel implements Observer{
 .

.
public void update(Observable o, Object arg){

 updateListModel();
 this.repaint();
 }
 .
 .
}//end class

However, doing so, we met the problem of trying to use multiple inheritances in Java™; the “CentraClient”
was already a generalisation of the class “Client” so it could not be a generalisation of Observable1 (as it
must be in the Observer/Observable pattern). To solve the problem we decided to create a class that would
hold the information about the users (“Users” class), this class could then inherit from Observable without
any problems.

 class Users extends Observable{

.

.
 public void add(User user){
 usersVector.add(user);
 setChanged();
 notifyObservers(usersVector);
 }
 public void remove(User user){
 this.usersVector.remove(user);
 setChanged();
 notifyObservers(usersVector);
 }

.

.
}//end class

1 SUN Java™, JDK 1.4 Java.util package
2 SUN Java™, JDK 1.4 Javax.swing package

Query System

101

5.2.2 Mobile and Central Client Information
Every time the server receives a connection from one of the clients, the server checks if the client is a
Mobile Client or a Central Client, and place it in the respective Vector1. The Vector actually stores a
reference to the Server Thread that communicates with the specific client. The reason for holding this
connection is to be able to refer to one specific client. The following code is an example of how those
Vectors has been used.

 public void sendUsers(int CCID){
 if (mobileThreads.size()!=0){
 for (int i=0;i<mobileThreads.size();i++){

User tmpUser=((ServerThread)mobileThreads.get(i)).getUser();
 ((ServerThread)centralThreads.get(CCID)).sendUserLOGIN(tmpUser);

 }//end for
 }//end if
 }//end function

The above function is used to send information of all Mobile Clients online to a specific Central Client.
“mobileThreads” and “centralThreads” are the Vectors containing the references to the Server
Threads working on Mobile and Central Clients. In this case, the “mobileThreads” Vector is used to
read the User information of all Mobile Clients and then send them to the specific Central Client in the
“centralThreads” Vector at position “CCID”

5.2.3 Communication Implementation
Following the implementation view, created in the design phase, the communication interfaces
(“ServerClientCommunication”, “ClientServerCommunication”) were supposed to be implemented by the
running Thread of the client and the server, but this would have implied changing the Thread itself in case
of future development. Therefore, we decided to implement the two interfaces in two different classes and
have the Threads using them. By doing so we improved the flexibility of the system, if changes will be
needed to the way the system communicates the developers will only need to change the interfaces
implementing classes and the whole system will still work.

5.2.4 Communication Performance Problems
At the first release of the software, all tests has been run in a LAN environment, where the communication
speed did not allow us to notice any possible problems with the communication performance. After the first
release we tested the software in a real-life environment, where the client connects to the server using a
GPRS enabled mobile phone, the communication speed was drastically reduced but still acceptable for
small size packets communication, such as text only fields.

The problem rose once we included an Image object in the communication object. After testing the system
by sending different kind of data, we got to the conclusion that the major problem was due to the unstable
connection held by the GPRS phone.

1 SUN Java™, JDK 1.4 Java.util package

Query System

102

We think that if the connection results in errors while sending an object, the object will then be resent, and
this could be the reason of so many delays because the Objects that are sent by the system are too big, so
they have a bigger probability of resulting in errors. Therefore, we decided to split the Object sent (instance
of Result class, holding all results of a query, which can be up to 50), into smaller Objects. We sent every
field of the Object as a separate object and tested the system again. The performance of the system
improved slightly, but we believe that the reason for so little improvement is the fact that the Image fields
are still big objects. We then decided not to send the image as a full Object, but to send it as a list of bytes,
in this way the probability of having errors during the communication should be decreased, as the size of
the Object sent is much smaller. Finally, we tested the system again, but with much better results.

5.2.5 Stream Concurrent Access Problem
Another problem we meet during testing was that the Mobile Client crashed every time a Central Client
sent a message or a result to the Mobile Client, while still receiving data from its last transaction. The
problem was that the “send” methods of the ServerClientCommunication interface where concurrently
called by different Threads. Streams in Java™ are blocking, but that counts only for the single object sent,
by calling the methods of the ServerClientCommunication interface concurrently it happened that some
objects mixed with object that were part of another communication. To solve that problem we made all the
“send” methods of the ServerClientCommunication interface blocking, in this way, only one thread at the
time can send data to the client. Implementing the interface implementation class as a monitor, done in
Java™ using the “synchronized” keyword, has done the blocking functionality.

public synchronized void sendResult(Object result,

Object DBID,
Object output_connection

) throws Exception{
 .
 .
 }//end sendResult()

6. Test Set: Test Document

6.1 Introduction

6.1.1 Scope
This Test Document focuses on the Messaging System, a subsystem of the Car Tracking System.

6.2 Requirements for Test
The listing below identifies those items that have been targeted for testing.

Data Testing

Verify that correct data is retrieved from the database

Functional Testing

The Clients should be able to send queries to the Database and receive results

The Central Client should be able to send a Query Result to the Mobile Client

The system should be able to communicate with a general DBMS

User Interface Testing

The GUIs of the system should be flexible and change automatically depending on the Database
structure

Query System

103

Performance Testing

Verify response time

Configuration Testing

Verify the system works correctly in real life configuration

6.3 Test Strategy
This section presents the different kind of tests that we have planned to implement and the way they will be
run.

6.3.1 Testing Types

Data and Database Integrity Testing
Verify that correct data is retrieved from the database

Test Objective: Ensure that the result of the queries sent to the Database is consistent with the
data in the database

Technique: • Send queries from a Client application

• Send the same query manually to the DBMS

• Check that the two result are equal

Completion Criteria: Result data from the query is consistent with the data in the DBMS

Special Considerations: All functional test should be successful before running this test

Function Testing
The Clients should be able to send query to Database and receive results

Test Objective: Ensure that the Client can send the query and receive the result

Technique: Execute “User Searches” use-case, using valid and invalid data, to verify the
following:

• The expected results occur when valid data is used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: The system does not accept graphic fields as querying criteria

The Central Client should be able to send a result without request to the Mobile Client

Test Objective: Ensure that the Central Client can send a specific Query Result to the correct
chosen Mobile Client

Query System

104

Technique: Execute “Central Client Sends Query with no Request” use-case, using valid
and invalid data, to verify the following:

• The Correct results appear on the Mobile Client when valid data is
used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: None

The system should be able to communicate with a general DBMS

Test Objective: Ensure that the system can connect and communicate with a general DBMS.

Technique: Connect different DBMS to the system and verify the following:

• The system successfully connects to the DBMS

• The system can send queries to the Database and receive results

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: None

User Interface Testing
The GUIs of the system should be flexible and change automatically depending on the Database structure

Test Objective: Verify the following:

• The GUI represent correctly the information contained in the DB
Structure

• All navigation and window behaviours are correct

Technique: • Use different DB structure and check that the system responds with a
correct GUI

• Test all windows behaviour using an external person to test the GUI

Completion Criteria: Each window has been successfully verified.

Special Considerations: The GUI does not accept a graphic field as a querying criteria

Performance Profiling
Verify response time

Test Objective: Verify that system response time in not unacceptable (5 min)

Technique: Set system in real life configuration and calculate performance

Query System

105

Completion Criteria: • The performance of all communication functionalities has been
calculated

• The response time has been reduced as much as possible

Special Considerations: GPRS connection in not stable

Configuration Testing
Verify the system works correctly in real life configuration

Test Objective: Verify that the System responds correctly when set with the real life
configuration

Technique: Run all functional test in real life configuration

Completion Criteria: • All functional test has been run

• All functional test has the same response as in development
configuration

Special Considerations: None

6.4 Test Result
At the release of the Query System, all the needed JUnit™ test cases and manual tests to fulfil the
requirements mentioned in Section 6.2 were running correctly. A problem occurred regarding the Verify
response time, Section 6.3.1, but a solution was found for that, see Section 5.2.4. Other minor defects
occurred but were fixed on the fly.

Messaging System

107

Messaging System

Messaging System

108

1. Introduction
The Messaging System, the second subsystem of the Car Tracking System, allows the Mobile Users to
communicate with the Central Operator. Mobile Users from the Mobile Client application are able to send a
message to the responsible Central Operator through the use of a GUI, which allows showing all, sent and
received, messages. The Central Operator, differently then the Mobile Users, has the possibility to choose
the destination of the message. The Mobile User, in addiction, can also send messages related to query
results, which in the following section will be referred as “Action Results”.

The chapter starts by describing the most essential use case for the subsystem, other use cases can be found
in Appendix C. Thereafter we go in to details of the architecture of the subsystem in the Software
Architecture Document, following by the Implementation and the Test documents. Software requirements
specifications for the subsystem have been captured and described in the Software Requirements
Specification in the Requirements Set1.

2. Requirements Set: Use Case Specification

2.1 Mobile User Message Sending

Mobile User

(from Actors)

Send Message
(from Use Cases)

W rite Message
(from Use Cases)

Mobile Client

(from Actors)

Server

(from Actors)

Send Message

(from Use Cases)

Central Client

(f rom Acto rs)

Display Message

(f rom Use Cases)

2.1.1 Details

Description

The Mobile User has to send a message to the Central Client. He/she writes the message and
sends it through the Mobile Client. The Server receives the message and dispatches it to the
Central Client.

Basic Flow

• The Mobile User selects the messaging text area
• The Mobile User writes a message
• The Mobile Client sends the message to the Server
• The Server receives the message
• The Server sends the message to the Central Client

1 Page 64

Messaging System

109

• The Central Client receives the message
• The Central Client displays the message
• The use-case ends

Alternative Flows

1. Server is Down

An error message is displayed, asking to try again later.

2. Central Client in not on-line
An error message is displayed at the Mobile Client side, acknowledging the failure of sending
the message

Pre – Conditions
The Mobile User is logged on

Post – Conditions
A message is received and displayed at the Central Client

Special Requirements
None

Frequency
More than 10 time a day

Primary Actor
Mobile User

Secondary Actor
Server, Central Client

Secondary Use-Cases
None

3. Requirements Set: Software Requirement Specification
See Requirement Set; Software Requirements Specification1.

4. Analysis & Design Set: Software Architecture Document

4.1 Introduction

4.1.1 Scope
The scope of this Software Architecture Document is to give different views of the Messaging System, (a
subsystem of the Car Tracking System), with enough details to give the programmer all the information
needed to start the system implementation.

4.2 Architectural Representation
This document represents the architecture of the Messaging System in the form of Use-Case view, Logical
view, Deployment view and Implementation view.

1 Page 64

Messaging System

110

4.3 Use-Case View

4.3.1 Use-Case Realisations
The Use-Cases realisation can be found in Appendix C.

4.4 Logical Views

4.4.1 Analysis Model
Here we have the Logical view of the system but again we leave all details to the design of each of the
component.

CentralClient

User

+1..1

+1..m

Message

+1..1

+1..m
Server.

+1..1

+1..m

MobileClient +1..1

+1..m

+1..1

+1..m

Result
+1..1

+1..m

Action

+1..1
+1..m

+1..1

+1..m

Most of the classes and architecture of this system are similar if not the same as the ones from the Query
System. The Server class represent the server that works as a dispatcher of messages between the Mobile
Client and the Central Client. All information related to a message is held by the Message class, which is
then used by the Server to dispatch the message to the correct receiver. Both the Server and the
CentralClient class use the User class in order to identify specific MobileClient those that are online.

Of particular interest is the use of the Result class from the Query System. In this system, the Mobile User
must be able to send the result of an action related to a Query Result received from a query. The reason
why we decided to put this functionality under the messaging system, is that we treat this action as a
message, which is simply related to a Result object.

4.4.2 Design Models

Server Component

Server

receive_Message()
send_Message()
receive_Action()
send_Action()
save_Action()
save_Message()

Messaging System

111

As previously explained, the Server class is used as a dispatcher of messages between the Mobile Client
and the Central Client. Its main function is to receive messages from one of the clients, select the correct
transmission stream, and forward the message to the receiver client. The same goes for Action Results
sends by the Mobile Client. Besides the dispatching of Action Results and messages, the Server has the job
of keeping a log of all the messages and Action Results sent through the system. The log information will
be kept in a database that can be resided locally, in a remote computer, or in the same Database Server used
for the Query System.

Data Model
The diagram below shows the data-model to be applied to the database. This data-model concerns the
Message and Action classes.

Those two diagrams represent two tables that should be created in the database in order to store the log
information. However, here a problem rises, a decision has to be made, in which database those
information should be stored. Both tables have a reference to the database used in the administration
component (Sender, Receive), which might suggest that those tables should be placed in the same database.
However, only the Message table can be placed there, as the Action table has a reference to a Result from a
specific database. This should be done using a Foreign Key that represents a way to identify the object the
result is related to. For that reason this discussion is considered to be outside the scope of this project, and
should be addressed in the future Analysis & Design of the Administration Component.

Functions
N. Function Type Specification Complexity Uncertainty

1 Server.receive_Message() S N 1 1

2 Server.send_Message() S N 1 1

3 Server.receive_Action() S N 1 1

4 Server.send_Action() S N 1 1

5 Server.save_Action() U S 1 1

6 Server.same_Message() U S 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Sender
Receiver
Date
Time
Message

Message Action

Sender
Comment
Date
Time
Foreign Key

Messaging System

112

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Function Specification
See Appendix D.

Mobile Client Component

MessageGUIMainGUI

Message

Mobile Client

send_Message()
receive_Message()
send_Action()

ResultGUI

Result

Action

+1..1

+1..m +1..1

+1..m

+1..1

+1..m

The MobileClient class is used to send the messages to the CentralClient. As these Clients and the Query
System are part of the same system, we decided to integrate those two systems by using the same
MobileClient, and just add functionalities to it. For the Query System MobileClient class, there has already
been drawn a State Chart diagram, and this diagram, is in our opinion, enough to give an idea for the states
of the MobileClient class therefore we decided not to use a new diagram for the Messaging System.

Functions
N. Function Type Specification Complexity Uncertainty

1 MobileClient.send_Message() S N 1 1

2 MobileClient.receive_Message() S N 1 1

3 MobileClient.send_Action() S N 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Messaging System

113

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Central Client Component

CResultGUI

Result

CMainGUI

Central Client

send_Message()
receive_Message()
broadcast_Message()

+1..1

+1..m

CMessageGUI

Message+1..1

+1..m

The Central Client Component does not differ too much from the Mobile Client Component; it uses the
same classes and has the same functionalities. The only real differences are the functionalities for the
CentralClient class. Differently than the MobileClient class, the CentralClient class has the possibility of
choosing the receiver of the message, and it can as well broadcast the message to all the Mobile Clients
online.

Functions
N. Function Type Specification Complexity Uncertainty

1 CentralClient.send_Message() S N 1 1

2 CentralClient.receive_Message() S N 1 1

3 CentralClient.broadcast_Message() S N 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

4.5 Deployment View
See Analysis & Design Set; Software Architecture Document.

Messaging System

114

4.6 Implementation Views

4.6.1 Server Component

Server

save_Action()
save_Message()

ServerClientCommunicat ion

receive_Message()
send_Message()
receive_Action()
send_Action()

<<Interface>>

EBSCCommunicationServer Thread
<<Thread>> +1..1

+1..1

As the Server must be able to handle multiple connections, a Thread run by the Server handles each
connection. For system integration reason, we decided to use the same Thread class used in the Query
System, by adding to it more functionality. To keep the flexibility of the system all the Messaging System
functionality have been moved to the Interface implementing class, in the same way we have done for the
Query System.

4.6.2 Mobile Client Component

ClientServerCommunication

send_Message()
receive_Message()
send_Action()

<<Interface>>

ResultGUI

Action
Comment
Date
Time
Sender

MessageGUI

Result

+1..1

+1..m

Message
Text
Receiver
Sender
Date
Time

MainGUI

Mobile Client

+1..1

+1..m +1..1

+1..m

ClientThread
<<Thread>>

EBCSCommunication

Messaging System

115

In order to let the users interact with the system while messages are sent or received, we decide to create a
separate Thread that would handle the communication. To keep the flexibility of the system all
communication functionality have been transferred to the ClientServerCommunication interface. In the
same way as we did for the Server Component, we reused the classes from the Query System.

4.6.3 Central Client Component

CMainGUICResultGUI

Result
Central Client

broadcast_Message()+1..1

+1..m

CMessageGUI

Message
Text
Receiver
Sender
Date
Time

+1..1

+1..m

ClientThread
<<Thread>>

EBCSCommunication

ClientServerCommunication.

send_Message()
receive_Message()

<<Interface>>

The only difference for the Central Client Component is the “broadcast_Message()” function that has not
been moved to the ClientServerCommunication Interface for performance reason, as more detailed
description of this decision is documented in the Implementation Section,of this system.

5. Implementation Set: Implementation Document

5.1 Introduction

5.1.1 Scope
Features implemented for this system are the sending of messages between Mobile Client and Central
Client, and sending Action Results form the Mobile Client to the Central Client.

5.2 Implementation Issues

5.2.1 Message Broadcast
As previously mentioned in the Software Architecture Document of this system, the
“broadcast_Message()” function of the CentralClient class, has not been moved to the
ClientServerCommunication interface as all the other communication function, for performance reason. If
we where to broadcast a message from the Central Client we would have to go through all the Online
Mobile Clients and send the message to all of them; the message will then have to go through the Server
and then finally reach the Mobile Client.

Messaging System

116

The problem here is that between the Central Client and the Server there is only one communication
Stream, which means that the messages will be sent sequentially to the Server and each message will have
to wait for the previous one to arrive to the Server before it can be sent. If large number of Mobile Clients
were online, this would slow down the connection speed of the Central Client.

Our solution has been to send the message from the central Client to the Server with a special code for the
“Receive” attribute of the “Message” object. Every time the Server reads this special code, it will go
through all the Mobile Clients connections and send the message. The improvement in performance is
because the Server, differently than the Central Client, has a communication Stream for each Mobile Client
online, which means that the messages will be sent concurrently.

5.2.2 Send Action Result
As at this stage, things were still unclear about the actual format of the Action Result, we decided to
implement it as a message for this demo version. Basically, the Mobile Client creates a message, which
contains a textual representation of the Action Result and the related Result object. The Message is then
treated as a normal message. Once more detailed information about the Action Result Object is obtained
then this should be changed; e.g. an ActionResult class could be created holding all needed information and
the functionalities related to it.

5.3 Limitations

5.3.1 Save Messages & Action Results
The messages should be kept in a database that will register sender, receiver, date, time and message sent
through the network. As Messages and Action Results are related to Users the discussion of which database
should be used to store those information is considered to be outside the scope of this project, and should
be addressed in the future Analysis & Design of the Administration Component

6. Test Set: Test Document

6.1 Introduction

6.1.1 Scope
This Test Document focuses on the Messaging System, a subsystem of the Car Tracking System.

6.2 Requirements for Test
The listing below identifies those that have been selected as targets for testing. This list represents what
will be tested.

Functional Testing

The Mobile Clients should be able to send a message to the Central Client

The Mobile Client should be able to send an Action result to the Central Client

The Central Client should be able to send a message to a specific Mobile Client

The Central Client should be able to broadcast a message to all Mobile Clients

Configuration Testing

Verify the system works correctly in real life configuration

6.3 Test Strategy
This section presents the different kind of tests that we have planned to implement and the way they will be
run.

Messaging System

117

6.3.1 Testing Types

Function Testing
The Mobile Clients should be able to send a message to the Central Client

Test Objective: The Mobile Clients should be able to send a message to the Central Client

Technique: Execute “Mobile User message sending” use-case, using valid and invalid
data, to verify the following:

• The expected results occur when valid data is used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: On the demo version the message is broadcasted to all Central Clients

The Mobile Client should be able to send an Action Result to the Central Client

Test Objective: Ensure that the Mobile Client can send an Action Result to the Central Client
and that the Result Object associated to it is the correct one

Technique: Execute “Mobile User Action Result Sending ” use-case, using valid and
invalid data, to verify the following:

• The correct Action Result appears on the Central Client when valid
data is used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: The Result Object associated to the action is referred by the first field of the
Result (in the demo version)

The Central Client should be able to send a message to a specific Mobile Client

Test Objective: Ensure that the Central Client can send a Message to a specific Mobile Client

Technique: Execute “Central Operator Message Sending ” use-case, using valid and
invalid data, to verify the following:

• The correct message appears on the correct Mobile Client when
valid data is used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: None

Messaging System

118

The Central Client should be able to broadcast a message to all Mobile Clients

Test Objective: Ensure that the Central Client can broadcast a Message to all Mobile Clients

Technique: Execute “Central Operator Message Sending ” use-case, choosing broadcast
when choosing destination, to verify the following:

• The correct message appears on the correct Mobile Client when
valid data is used.

• The appropriate error or warning messages are displayed when
invalid data is used.

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: None

Configuration Testing
Verify the system works correctly in real life configuration

Test Objective: Verify that the System responds correctly when set with the real life
configuration

Technique: Run all functional test in real life configuration

Completion Criteria: • All functional test has been run

• All functional test has the same response as in development
configuration

Special Considerations: None

6.4 Test Result
At the release of the Messaging System, all needed JUnit™ test cases and manual tests to fulfil the
requirements mentioned in Section 6.2 were running correctly. Some minor defects came up but were fixed
on the fly.

Tracking System

119

Tracking System

Tracking System

120

1. Introduction
The third subsystem of Car Tracking System is the Tracking System. This system is designed to allow the
Central Operator to have an overview over the vehicle fleet of the company. Every vehicle is equipped with
a GPS device that, through the system, sends its position to the Central Operator, which is then able to
visualise the vehicles using a GIS. Moreover, the system allows specific objects to be displayed on the GIS,
such as buildings, and have those objects sent from the Central Operator to the Mobile Users, or received
through queries to a database.

The chapter starts by describing the most essential use case for the subsystem, other use cases can be found
in Appendix C. Thereafter we go in to details of the architecture of the subsystem in the Software
Architecture Document, following by the Implementation and the Test documents. Software requirements
specifications for the subsystem have been captured and described in the Software Requirements
Specification in the Requirements Set1.

2. Requirements Set: Use Case Specifications

2.1 Mobile Client Sends Position To Central Client

GPS Device

Send Position

Mobile Client Send Pos ition Server

Central Client

Send Position

2.1.1 Details
Description

The Mobile Client receives the position from the GPS device and sends the position to the
Central Client through the Server

1 Page 64

Tracking System

121

Basic Flow

• The GPS Device sends the position to the Mobile Client
• The Mobile Client receives the position and send it to the Server
• The Server receives the position
• The Server sends the position to the Central Client
• The Central Client receives the position
• End of the use-case

Alternative Flows

1. Server is Down

An error message is displayed, asking to try again later.

Pre – Conditions

None
Post – Conditions

The Mobile Client position is received by the Central Client
Special Requirements

None
Frequency

Every 2 seconds
Primary Actor

Mobile Client
Secondary Actor

Server, GPS Device, Central Client
Secondary Use-Cases

Display Position

3. Requirements Set: Software Requirement Specification
See Requirement Set; Software Requirements Specification1.

4. Analysis & Design Set: Software Architecture Document

4.1 Introduction

4.1.1 Scope
The scope of the Software Architecture Document is to give different views of the Tracking System, (a
subsystem of the Car Tracking System), with enough details to give the programmer all the information
needed to start the system implementation.

4.2 Architectural Representation
The architecture of the Tracking System is represented in the form of Use-Case views, Logical views,
Deployment views and Implementation views.

1 Page 64

Tracking System

122

4.3 Use-Case View

4.3.1 Use-Case Realisations
The Use-Cases realisation can be found in Appendix C.

4.4 Logical Views

4.4.1 Analysis Model
The following diagram shows the Logical view of the system; it does not have any details because this is
left to the design of each component. Following the diagram, we will give a brief description of the overall
system, explaining in a general manner the classes and the connection between them.

CentralClient

GIS

+1..1

+1..1

Server

+1..1

+1..m

MobileClient +1..1

+1..1
+1..1

+1..m

GPSDevice

+1..1

+1..1

The Tracking System makes use of the same core classes (MobileClient, CentraClient and Server)
as the two previous described systems. However, differently then the other two, this system interfaces with
a GIS system, which means that it is, basically, just a bridge between the Car Tracking System and the GIS
system in use. Information for the GIS is exchanged between the clients through the Server in the same way
it has been done for the other two systems.

Information about the position of the Mobile Client is received by a GPS device, which is represented by
the GPSDevice class. The position of the Mobile Client is then showed in the local GIS of the Mobile
Client and then successively sent through the network to the Central Client, which will then be able to track
the locations of all the Mobile Clients online.

Tracking System

123

4.4.2 Design Models

Server Component

Server

send_Position()
receive_Position()

The Server Component is used as an information exchange mean, also in this system. The position of the
Mobile Clients is received by the Server and then sent to the Central Clients. At this stage, this is the only
functionality that has been associated to the Server Component.

Functions
N. Function Type Specification Complexity Uncertainty

1 Server.receive_Position() S N 1 1

2 Server.send_Position() S N 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Mobile Client Component

GIS_GUI

GPSDevice

read_Position()

GIS

show_Map()
updateObject()
createObject()
deleteObject()

MobileClient

send_Position()+1..1

+1..1 +1..1

+1..1

MainGUI

Tracking System

124

The MobileClient is one of the two clients of this system and it is used to send the actual position of the
Mobile User to a GIS, which then displays them in a graphical manner. The GPSDevice class represents the
GPS device that sends the position of the vehicle to the Mobile Client. The GPSDevice class is used to
handle all communication between the Mobile Client application and the actual GPS device.

The GIS class represents the GIS software, which the Car Tracking System interfaces with, and is merely a
bridge between the two systems. The only real GUI of this component is the GIS_GUI, which will show
the map coming from the GIS software. The Main_GUI has been added to this diagram only to symbolise
the integration point with the Car Tracking System’s GUIs.

Functions
N. Function Type Specification Complexity Uncertainty

1 MobileClient.send_Position() S N 1 1

2 GPSDevice.read_Position() R S ? ?

3 GIS.show_Map() S S ? ?

4 GIS.updateObject() U S 1 1

5 GIS.createObject() U S 1 1

6 GIS.deleteObject() U S 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

Function Specification
See Appendix D.

Tracking System

125

Central Client Component

MainGUI

CentralClient

receive_Position()

GIS_GUI

GIS

show_Map()
updateObject()
createObject()
deleteObject()

+1..1

+1..1

The Central Client component has a connection to the GIS system in the same way as the Mobile Client,
with the difference that the Central Client does not receive the position from a GPS device; instead, it
receives the position of all Mobile Users online from the Mobile Clients themselves and displays it on the
GIS.

The GIS functions are not mentioned here, as they do not change between this and the Mobile Client
component.

Functions
N. Function Type Specification Complexity Uncertainty

1 CentralClient.receive_Position() S N 1 1

Legend

Type

S = Signal

U = Update

C = Computing

Specification

N = Name

I = Implicit

S = Specification

Complexity 1 – 5

Uncertainty 1 – 5

4.5 Deployment View
See Analysis & Design Set; Software Architecture Document.

Tracking System

126

4.6 Implementation Views

4.6.1 Server Component

Server

ServerClientCommunication

send_Position()
receive_Posit ion()

<<Interface>>

EBSCCommunicationServer Thread
<<Thread>> +1..1 +1..1

As for the other two systems, we run a thread form the Server in order to handle multiple connections. To
integrate this system to the Car Tracking System, we use the same class as the other two systems and just
add the needed functionalities. To keep the flexibility of the system all communication functionality have
been moved to the ServerClientCommunication Interface, so in case of changes in the communication
means, then only the EBSCCommunication class needs to be changed, without affecting the rest of the
system.

Tracking System

127

4.6.2 Mobile Client Component

GPSCommunication
<<Interface>>

ClientServerCommunication

send_Position()

<<Interface>>

ClientThread
<<Thread>>

EBCSCommunication

+1..1

+1..1

Thread

GIS

GPSDevice

read_Position()

MainGUI

MobileClient

send_Position()

+1..1

+1..1

GISCommunication

show_Map()
updateObject()
createObject()
deleteObject()

<<Interface>>

+1..1

+1..1

GIS_GUI

In this component the communication with the Server is the same as for the other Messaging and Query
System; a thread is run by the Mobile Client handling the communication with the Server, and all
functionality are moved to the ClientServerCommunication interface to keep the flexibility of the system.
However, of interest in this diagram is the decision of creating an interface for the communication with the
GIS System. We decided to implement it in this way in order to leave the chance of easily changing the
interfaced GIS System, for future development of the System.

The GPSDevice class has been implemented as a thread so that all the processing handling the
communication with the GPS device will be run by a different process then the main one, in order not to
slow down the Clients and to keep the interaction User/Client as smooth as possible. In other words, if the
main process handled the communication, then every time the GPS device sends the position to the
application, the main process will have to stop the current operation to handle the GPS communication.

Furthermore, we decided to create an interface for the GPS Device in order to give a guidance of the
functions used within the system. In this way, if the company decides to change the GPS device, the
developers will have a guidance of how the system interacts with the device.

Tracking System

128

4.6.3 Central Client Component

ClientThread
<<Thread>>

EBCSCommunication

+1..1

+1..1

ClientServerCommunication.

receive_Position()

<<Interface>>

GIS

MainGUI

CentralClient

receive_Position()

GIS_GUI

GISCommunication

show_Map()
updateObject()
createObject()
deleteObject()

<<Interface>>

+1..1

+1..1

All implementation comments made for the Mobile Client component apply also to the Central Client
component; therefore, we decided only to show the implementation diagram as the component
documentation.

5. Implementation Set: Implementation Document

5.1 Introduction

5.1.1 Scope
It is important to realise the scope of the demo version of the Tracking System. The demo is implemented
so that is can show the main and most important features of the system. Those features are the display of
the geographical position of a Mobile User using the GIS on the Mobile Client side, and the display of the
geographical position of all Mobile Users using the GIS on the Central Client side. Furthermore, the
Central Client is able to send and display the position of an Object, again using the GIS on the Mobile
Client side.

5.2 Implementation Issues

5.2.1 Comment
During the implementation of this subsystem, there have not been any implementation decisions of big
importance, because the whole system is basically an interface to another system and the interaction
between the systems is already set. However, of more interest are the restrictions of this demo version.

Tracking System

129

5.3 Limitations

5.3.1 GPS Communication
During the construction of this system we did not had the actual GPS device available. Therefore, we did
not have the chance to implement any real interface with the device, but in order not to stop the
implementation of the system, we used a simulation algorithm previously used by the Sidabrinis Tinklas to
test the GIS. The algorithm feeds the Mobile Client with geographical positions that give the illusion of a
moving object.

5.3.2 GIS Object Display
At this stage we did not had enough information from the User Company in order to decide how those
Object will have to be exchanged and displayed in the GIS. Our guess is that the Objects are related to the
results coming from a query to the database. As the GIS system is able to run searches based on street
names (which we think is what the User Company will use), we decided not to implement this feature at
this moment and just show the how the function works on the GIS system, manually, if the User Company
finds it necessary.

5.3.3 GIS Integration
One of the requirements set by the User Company is that the Car Tracking System should run on a single
window, which means that the GIS system should be fully integrated in the Car Tracking System. In order
to integrate the GIS System in our system we need to use some kind of component that can be used by our
system.

The Akis1 GIS system development team has developed an ActiveX® component for the GIS System,
mainly designed for Internet applications. This component could be used by our system in order to integrate
the GIS, but Java™ does not support ActiveX® components. A solution will though be to create a bridge
between Java™ and the specific ActiveX® component using C++ and Java™ Native methods.

However, as this solution will take a long time to be implemented we decide not to integrate the GIS
system for the demo version, and just keep it as a self-standing application with which our system
communicates.

6. Test Set: Test Document

6.1 Introduction

6.1.1 Scope
This Test Document focuses on the Tracking System, a subsystem of the Car Tracking System.

6.2 Requirements for Test
The listing below identifies those that have been selected as targets for testing. This list represents what
will be tested.

Data Testing

Verify that correct data is stored in the GIS System databases

Functional Testing

The Mobile Client should be able to display its geographical position in the GIS

The Central Client should be able to display all Mobile Clients geographical position in the GIS

1 Akis© V.Paliulionis

Tracking System

130

Configuration Testing

Verify the system works correctly in real life configuration

6.3 Test Strategy
This section presents the different kind of tests that we have planned to implement and the way they will be
run.

6.3.1 Testing Types

Data and Database Integrity Testing
Verify that correct data is stored in the GIS System databases

Test Objective: Ensure that the data stored in the GIS databases is consistent and correct

Technique: Execute all use-cases, to verify the following:

• The data read from the GPS device is the same as the one stored in
the GIS databases of the Mobile Client

• The data stored in the GIS databases in the Central Client is the same
as the data from all online Mobile Client’s GIS databases

Completion Criteria: Read data from the GPS is consistent with the data in the DBMS

Special Considerations: All functional test should be successful before running this test

Function Testing
The Mobile Client should be able to display its geographical position in the GIS

Test Objective: The Mobile Client should be able to display its geographical position in the
GIS

Technique: Execute “Display Position” use-case, while reading the position from the GPS
device, and verify the following:

• The Mobile Client position is displayed in the GIS

• The Mobile Client geographical position is correct

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: On the demo version, it is not possible to verify the geographical position,
because the demo only uses a simulation and not real data from the GPS
device.

Tracking System

131

The Central Client should be able to display all Mobile Clients geographical position in the GIS

Test Objective: Ensure that the Central Client is able to display all Mobile Clients on the GIS

Technique: Execute “Mobile Client Sends position to Central Client” use-case, to verify
the following:

• The Correct Mobile Client is displayed in the GIS

• All Online Mobile Clients are displayed in the GIS

• All Mobile Clients geographical position is correct

Completion Criteria: • All planned tests have been executed.

• All identified defects have been corrected or documented.

Special Considerations: On the demo version, it is not possible to verify the geographical position,
because the demo only uses a simulation and not real data from the GPS
device.

Configuration Testing
Verify the system works correctly in real life configuration

Test Objective: Verify that the System responds correctly when set with the real life
configuration

Technique: Run all functional test in real life configuration

Completion Criteria: • All functional test has been run

• All functional test has the same response as in development
configuration

Special Considerations: None

6.4 Test Result
At the release of the Tracking System, all needed JUnit™ test cases and manual tests to fulfil the
requirements mentioned in section 6.2 were running correctly. Some minor defects came up but were fixed
on the fly.

Deployment Set

133

Deployment Set

Deployment Set

134

1. Introduction
There comes a time where your children leave home, it is never an easy transaction. That is what the
Deployment Set covers, handing our baby, in this case the product and the related documents, over to
Sidabrinis Tinklas for further development. In order to make this transaction smoother we provided a
couple of documents to them.

First the Deployment Document, where we describe what it is exactly we are handing over, both files and
documents, and also an installation and configuration guide for the product, and last but not least a list of
known errors and problematic features of the system. Then we make suggestions on further development of
the system in the Demo Development Proposal document.

2. Deployment Document
See Appendix I.

3. Demo Development Proposal

3.1 Introduction

3.1.1 Purpose
This document presents a proposal for future development of the demo version of the Car Tracking System.
It is intended to capture and convey the significant changes that we think should be made to the system.

3.1.2 Scope
The scope of this document is the final release, made by The Jacks, of the demo version Car Tracking
System.

3.1.3 Overview
We describe the present problematic of the demo version, and based on those we present a proposal of next
possible steps of the system development.

3.2 Present Demo problematic

3.2.1 Server Implementation
In the present version of the demo, the server is implemented as a stand-alone application, which means
that the user must run the server before the system can be used. This implies that a user must login in on the
server machine and stay logged on until the server is shut down.

3.2.2 Connection Handling
Connection failure between client and server, and between server and database is not handled. Connection
failures cause the clients to lose connection and log off the system. In the worst cases the clients and the
server crash.

Communication Opening
The Clients main class handles the attempt to connection to the Server. This should be refactored, moving
the connection opening to the ClientServerCommunication interface. In this way the flexibility of
the System will improved, as all communications would be handled by the interface. At present time the
connection is attempted before the application GUI is loaded, causing the clients to crash if the connection
fails.

Deployment Set

135

3.2.3 Connection Establishment
The connection to the ISP, in case of connection without LAN, is not automatically handled by the system.
The user has to manually use the remote network connection, and run the system once the connection is
established.

3.2.4 GIS Data Source
The connection to the GIS is hard coded in the system and it is using an ODBC bridge to connect to the
GIS database. Therefore, the client is bound to ODBC and Microsoft Windows® systems.

3.3 Proposals for Future Development of the Demo
We decide to divide the proposal for future development of the demo into two parts: proposals for guided
demonstrations and proposals for self-guided demonstrations.

3.3.1 Proposals for Guided Demonstrations
When we talk about guided demonstrations we, we refer to demonstrations that take place in the
Development Environment, where a developer leads the customer through the demonstration and is there to
assist at all time.

Improve GUI
As most of the basic functionalities have been discovered, we think it will be good to start focusing on the
appearance of the system. As the users are to be novice computer users, and due to the limited working
environment, they have, then we think would be wise to shift the focus towards the GUI and try to define
the basic GUI design before the system becomes more complex.

GIS Integration to Later Stages
The integration of the GIS to the Car Tracking System requires a number of decisions to be taken and to
remain stable; decisions such as which GIS software is to be integrated, and the looks of it in the Car
Tracking System. Therefore, we think that the integration could be postponed to a later stage, when the
GUI design has been almost stabilised and the GIS software has been chosen.

Use of Realistic Data on the Database
The database used at in this demo, contains random data that is often redundant. To give a better
impression to the User Company and to have a more realistic demonstration, the data in the database should
be replaced with some more realistic ones (e.g. buildings might be assigned to existing addresses).

Implement Image on Demand
During the development of the demo, we noticed a performance problem when the System transfers large
images through the GPRS device. A proposed solution of this problem was the implementation of the
Image on demand feature. This feature allows the User to see that an image is connected to a query result
and gives the possibility of downloading the picture if needed.

Implement Basic Authentication
It would be a good idea to start implementing the basic features of Authentication of Users. The Client
application should also be implemented so that it will switch between Mobile and Central Client depending
on the user that logs-in.

Keep Configuration on a Text File
As requirements are still not stable, and more are to come, we think it will be a good idea to keep the
configuration of the system on a text file, and implement the administration component of the system in a
later stage.

Deployment Set

136

3.3.2 Proposals for Self-Guided Demonstrations
Another way of demonstrating the system would be to hand it over to the user company and allow them to
install it in their environment for evaluation. The system has to be very stable, as this kind of demonstration
would take place without the continuously assistance of the developer.

Server Implementation
Our idea is to hand the potential user companies the software for the Clients, and to keep the Server
running in a server computer in the Development Environment. Every user company will be able to connect
to the server via different ports that will be hard coded in the client software. At the developer site an
instance of the server will be run for each of the companies using a different port number for each of them.
The reason for doing so is so that the user companies do not have to deal with any configuration or
installation of the Server, which requires certain knowledge of the system.

However, to make the user companies able to connect to the server at anytime, the server should run as a
service and not as an application. To do so, the server application will have to be changed to a server object
with methods that can be invocated remotely. There is a way to do so with Java™ by using RMI
technology.

Connection Handling
As the demo will be handed to a user company and to be run in their environment, it must be made sure that
connection failure are well handled by the system and that eventual system failures are automatically
notified to the developer team.

Integrate GIS System
The demo software should contain most of the features and functionality of the system and it should be
easy for the company to use. Therefore, the GIS should, at this stage, be integrated to the system.

Database Connection
To which database to connect to, should be left to the user company to decide, it could either be to the
Testing database of the developer team or to a database of the company.

Keep Configuration on a Text File
As only the client part of the system is handed to the user company, the configuration can be left on a text
file.

4. Conclusion
This was not the most interesting part of the development, but something that had to be done, in order to
create a smooth transaction of the system. With out the Deployment Document the future developers would
already be a bit lost, cause it explains what artefacts come with the product and how install and configure it.

Then we provided them with our suggestion of the next steps in the development; we are in better position
to see that now, as we have been working with the system and with the users, than some new developers
that are just coming to the system. However, due to the reason that this product is to be handed into the
hand of future developers but not users then we had to modify the documents a lot to make them suit the
need their audience.

Epilogue

137

Epilogue

Epilogue

138

1. Evaluation

1.1 The Environment

1.1.1 Our Stay In Lithuania
The stay in Lithuania turned out to be one of the greatest experiences we have had. Our kind colleagues at
work, and the friendly people we met during our stay there, have made this period in our lives
unforgettable. We found Lithuanians, very friendly always willing to help, and open-minded. Though the
project did not give us a lot of space for travelling, due to its strict timeframe, we still got the taste of the
Lithuanian life. We lived in Karoliniskes, a suburb of Vilnius, were we could see how the real life in
Lithuania is and how older and lesser-developed parts of Vilnius look like. On the other side by working in
the centre we could see the impact of the growth in their economy, visualising in new buildings and in
general reconstruction of the infrastructure of Vilnius, giving us the idea of Lithuania as a young and fast
growing country.

The language, especially in the suburbs, became a little problem, but nothing that could not be solved by
gestures. The only real problem with the language was at the start, when we had to find a place to stay.
Thanks to our friends Ignas and Audrius, former exchange students at Roskilde Business College, we were
able to translate the ads, advertising apartments for rent, in the newspapers. Their help was extremely
valuable, also when our landlady tried to engage us in conversations.

1.1.2 Working With Sidabrinis Tinklas
Sidabrinis Tinklas offered us far more than we expected. We had the chance to work directly in the
company’s environment; we had our own desks and our own computers. We had access to all of their
hardware and software resources, and furthermore we had access to their library. All our colleagues were
open and willing to assist us when we ran into troubles. Sidabrinis Tinklas really gave us the feeling that
we were a part of their team, inviting us to meetings and to social events.

1.1.3 Working With The User Company
The user company had almost no direct contact with us during the initial stage of the project. All the
communication went through our contact person at Sidabrinis Tinklas by the means of emails and phone
calls. Later on in the project, we had some direct contact with them during the demonstrations of the
system; there we were able to have a face-to-face conversation with user companies contact person.
Though we did not experience any long delays in getting information from them, then we reckon that if the
contact with them would have been more direct and frequent then we would have been able to clarify and
gather more specific software requirements for the system.

1.1.4 The Task
One of the biggest fears we had, before our contact with Sidabrinis Tinklas, was that the task that they
would give us would not fit with all the aspect of a 5th semester project or our personal interests.
Fortunately enough, the task we got really sparked our interests and had very few constrains tied to it,
leaving many important decisions to us. Perfect for a practical oriented project, which we had in mind.

We are a very practical oriented team but still with a good background and knowledge of the theory behind
the practices, allowing us therefore to combine the two sides together in this report in an efficient manner.
We though think that a team with a strong theoretical background would have had problems with this
project, as it was very important for Sidabrinis Tinklas to get a working demo of the system. Our
suggestion, for teams that would like to do their main thesis abroad, in Lithuania or in other foreign
country, is to have an early contact with the company they are to work with, and to establish the what is
expected of them and what the task is beforehand.

Epilogue

139

1.1.5 The Teamwork
Beside our expectations, the teamwork went without any major problems. During the process all tasks that
were possible to divided between the team members, fell automatically in the hands of the member with the
greatest experience in that specific area, related to the task. Hjörtur, who had more experience of theoretical
research and documentation, took most of the tasks related to the actual writing of the report (e.g. editing,
rephrasing consideration etc.); while Dario, with a more practical experience, took over most practical tasks
such as drawing diagrams, and make researches for better implementations.

The team discussed the most critical parts of the system, and once the decision was made, the tasks were
again divided between us. Sometimes the blind believe that one’s opinion was right, became a problem
especially when our opinions were contradicting; but on the other hand we think that the criticism we put
on each other’s work helped us in the process of making a better product.

1.2 The Process

1.2.1 The Use of RUP®/XP
Tailoring the RUP® framework was not easy job, but we believe that once this was done properly, RUP®
perfectly fitted the project on all its phases. RUP® is a very broad framework that almost covers the whole
software development life-cycle; it contains a broad number of tools, practices, and techniques that can be
used. Trying to produce the entire mentioned artefact in RUP® would be impossible for a small project of
our size. However, RUP® comes with good guidelines on how tailor the process and on how to choose the
relevant artefacts for a specific project. Furthermore, RUP® provides the users also with many different
examples.

Through those examples and the RUP® guidelines, we were able to select a number of relevant artefacts
for our project, which all turned out to be used during the process. The only document that turned out to be
of little value for us was the Business Case1, which has not been used since the first draft as there was need
for business analysis in this project as we were given a specific task by Sidabrinis Tinklas to solve.

Though RUP® has all those artefacts we still found it necessary to add some new artefacts which we
created specifically for this project, and modified others to suit our project, mainly in order to limit the
redundancies of information. This shows how no methodology can perfectly fit one project, but that a
flexible methodology like RUP® can easily be modelled to do so.

We were able to combine selected practices of XP with RUP® without any problems. RUP® is mostly
oriented in the process that has to be followed in building a system, and gives some suggestion on what are
the best practices that can be used during the process, but it almost never ties the process to any specific
practices. Therefore, it was no problem using the chosen XP practices within the process framework of
RUP®. As a matter of fact, few weeks before the end of our project, Rational Software Corporation® the
owner of RUP®, introduced a XP plug-in to the RUP® framework for the ease of combining RUP® and
XP together.

1.2.2 The iterative process
This was our first experience of using a proper iterative process, if we exclude a very small project on our
3rd semester of only 2 weeks. Initially we felt a little uncomfortable or insecure about designing and
implementing one subsystem at a time because we feared that we would have problems integrating them
into the final demo, but we were wrong. Once the general architecture of the system was in place, then we
encountered no problems doing so. During the first iteration we were stunned by the number of artefacts
that we had to produce, but once the first version of them were done then it was only a matter of small
additions and changes that had to be done to them in the following iterations. During the iterative process
we often had to use the same artefacts repeatedly, these revisits helped us in finding mistakes, finding new
requirements and generally in keeping the documents up-to-date.

1 Page 56

Epilogue

140

1.2.3 The XP practices
As previously stated, we encountered no problems combining some selected XP practices into the RUP®
framework. The XP practices we selected to use were implementation practices, and they fitted perfectly to
our project. The continuous integration gave us the possibility of reviewing the system at all times, and it
also gave us the ability to always demonstrate the whole demo to the user company instead of maybe only a
single subsystem. By doing so, we received much more input from them because they would then
concentrate on the whole system, also on parts that they had actually reviewed earlier. Therefore giving us
comments on things that sometimes had slipped their attention during previous demonstrations.

Even though it felt a bit strange at first, then we have to say that pair programming was also a success. It
kept us focused on producing reusable and quality codes. While the “driver”, the one with the keyboard,
concentrated on making a method work, then the other team member would think of possible problems or
mistake.

Again, as we used an iterative process, then refactoring came as a natural practice. We went through the
implementation of the same classes over and over again, every time trying to remove redundancy and
generally trying to improve the code to better fit the ideal architecture.

Test before coding is one of the XP practices that fascinated us the most, but also the one that we were not
able to cope with. We found it very hard to think of test cases before knowing what methods that we were
actually going to implement. It is though our believe that this handicap could be over come by experience.
However, an alternative approach that we think could work well is to have the “passenger”, the one sitting
without the keyboard, thinking and writing the test cases for the specific method that the driver is
implementing simultaneously.

1.3 The Product

1.3.1 The Demo
After series of changes and a number of proposed solutions, the user company and us finally agreed upon
architecture that today is basis of the system. It seems like the chosen architecture fits perfectly to the needs
of the system, by allowing the user company keep a certain level of security between the system and their
confidential databases, furthermore giving us the facility of changing parts and components of it with great
ease.

By having all the configuration functionality within the Server component, we were able to reflect all the
configuration changes to all the clients, without the need to go in and make changes on each one of them.
The simplicity of the protocol used, and the use of Java™ Stream, allowed us to easily change and manage
the flow of information and their content.

Creating a flexible system, was one of the main goals of our project, and in our opinion, has been achieved.
The use of programmable interfaces in the communication between the components has made them quiet
independent. Therefore, if any changes are made to one of the components, then these changes will not
affect the other components, as long as the changes are compatible with the interfaces.

Another thing supporting the flexibility of the system is the use of a text file to describe the structure of the
database. This allows the user company to use the system without having to disclose the actual structure of
their database to outsiders of their company. Once the system will be finalised, then the user company will
only have to give the correct database structure to the system, and it will then automatically adjust to the
new database.

The Quality Range described on page 62, describe the quality criteria of the final system, but here we show
only the ones that are relevant to the demo version. With the table below, we decided to show how our
product fulfils the quality range set at the start of the project.

Epilogue

141

Criteria Quality Range Achievement

Efficiency The efficiency of the system it is important
because the system handles confidential data

that should be transferred correctly.

Thanks to the continuous testing process,
we can say that the functions used in the

demo are correct and efficient.

Testable Testing is an important part of any system, it
will not be possible to ensure any efficiency if

the system could not be tested.

Using JUnit™ as testing tool, the system
was implemented with the idea of been

testable.

Flexibility Flexibility is one of the most important sides
of this system. The system should be able to
be configured to different kind DB servers

with the least number of changes.

Using the text file based configuration for
the database, we have been able to

connect the demo to any DBMS of which
there exists a JDBC1 driver for.

Reusability As previously explained in the Flexibility
Quality, this system is very likely to be reused
and connect to other DB servers. Therefore,
particular attention should be paid at design

and implementation phases.

The system has been implemented using
Java™ interfaces, which allowed us to

create a component-based system where
each component is independent.

Portability Portability seems not to be a very important
part of this system, but as the system is to be
designed to be flexible, some thought about

portability could be made, especially at
implementation time.

Using Java™ to implement our system,
we automatically fulfilled the portability
criteria. Though we decided to test this

and we could successfully have the server
running on a Linux machine and two

clients running on Windows® machines.

Beyond our initial expectations, we were able to implement a working demo of the final system, covering
all the three subsystems. The demo served its purpose of presenting the user company the full potential of
the final product. After having evaluated the demo, they decided to invest into further development of the
system and to buy special hardware (e.g. car computers, GPS devices etc.).

1.3.2 The Report
The objective of our report was to create a document which would in details describe the produced system,
and at the same time show the process of that development. As our project was very product oriented we
found it easier to describe the product than the process, and at the start, we had some problems because we
figure out that none of the process had really been documented. Therefore, we had to undergo a major
review of all artefacts, and modified some of them to aid in describing that process.

We found it particularly hard to build the report in a clear and readable way. The structure of it is based
upon RUP® and its sets, where each set contains related RUP® documents that we used. The RUP®
documents we produced were very specification oriented, and even though we modified them to include
some process related discussions, it still was hard to keep a “red thread” going through it. Therefore, we
had the idea of having the initial part of the report discussing the general side of the system and then have a
more specification oriented second part, where we go deeper into the three subsystems. In this way, the
initial part of the report will give an overview of the process and of the general system, while the second
part will be more product oriented and show the outcome of the process.

1 Sun Microsystems

Epilogue

142

We are very satisfied with the product specification part of the report. The document presents a full
Software Requirement Specification of the system, and the Software Architecture Document presents the
design of the system, including discussions of important design decisions. Furthermore, the Implementation
document presents the reader with a list of important implementation decision and problems that occurred
during the building of the system. Finally the Deployment document further specifies the single elements of
the system handed to the company, such as list of classes and files and installation notes, there you can also
find a proposal for further development of the demo.

The report contains everything a future developer needs to get a good understanding, not only of the demo
but also of the whole system. It fulfils our initial goal of producing a system specification of the system for
IT professionals, and it also meets the academic need of explaining the process and decisions made through
out the project.

2. Conclusion
Here we will answer the questions we asked in the beginning of the report in the projects Problem
Definition1. There are neither right nor wrong answers to these questions; however we try to substantiate
our answers with references into our experience with the project. We divided the questions into practical
and theoretical questions.

Practical:

• Is it possible to use a demo version of a system to attract costumers?

Well it is clear that this is the case. The product produced during this project is a proof of that, the potential
user of the system evaluated the demo version of the Car Tracking System and as stated in Evaluation2
decided to go ahead with the development of the system and has decided to purchase needed hardware for
the next phase of the development. Therefore, we can conclude that if done properly then a demo version of
a program can, in a very short time, attract potential costumers.

• Can a customised system also become a “shrink-wrapped” product?

Again, the project and its product speak for themselves. We listened to the requirements of the potential
user, and all their requirements were documented in the Software Requirements Specification3 and some
even implemented in the demo version. However, we never lost the aim of making this system flexible; it is
platform independent and can connect to any DBMS that a JDBC4 driver exists for. So in fact, we have a
product that suits both the initial company and other companies with similar needs.

• Can two datamatician students go abroad and work with a local company as a part of their main

thesis?

This one is a bit harder to answer, as the success of the main thesis, in our eyes, depends on the grade we
get for it, and that we have not received yet, but we fully believe we have done a very good and thorough
job. However, looking at it from another point of view, we can say that two datamatician students are able
to go abroad and work with a local company in order to produce a good system, as we have stated in above
questions.

1 Page 19
2 Page 142
3 Page 64
4 Sun Microsystems

Epilogue

143

So, we can conclude that this is doable but is it feasible? We do not believe so. There are just to many
factors that can go wrong and we are talking about the main thesis of the studies, a very important final
chapter of the education. We had an advantage in the beginning of the project, we both had a lot of
international experience before it, we had lived in four different countries each and therefore used to adapt
to new circumstances.

We were very lucky with the company we worked for, the project scope suited the timeframe, the
teamwork went well etc. etc. However you are in a different country, far away from your teachers and
project supervisor, you are ALONE. Some will say that this is not a problem in today’s society, with the
easy of emails, but it does not help at all in a project like this, it requires deep discussions. There are simply
to many things that can go wrong for us to recommend students to go aboard for their main thesis.

• How well are we prepared to handle methods/tools/techniques/technologies outside the curriculum

of our studies?

There were couple of things along the way that we had never encountered prior to this project, e.g.
RUP®/XP, testing, GPS, GPRS, XML, GIS, etc. etc. However these were no hindrance for the success of
the project, sure the studying of new things stole some time that could have been used in developing the
system a little further, but due to the broad general knowledge we have from our four prior semesters, we
were able to study and put into practice new things quickly and efficiently.

However, a rose is never without a thorn, the one thing that we experienced troubles with, was the use of
JUnit™ and the process of designing and writing tests, as we mentioned in our Test Se1t.

Theoretical:

• Does the chosen methodology suit the scope and size of our project?

Yes and no. If we would have taken RUP®/XP straight out of the box and applied it to this project, we
would never have had accomplished what we have today. But by configuring them to our and the projects
needs we stand where we are today with a successful product.

The configured version of RUP®/XP, we used, aided us in producing the necessary documents for future
developers and in order of producing a quality demo. It also supported the academic part of the project as
we could use many of the produced documents here in this report with very little modifications; they in fact
form the basis of the report.

• How well does the methodology cover the project management of our project?

Again, the way we configured the methodologies was to suit the scope and size of the project. As we were
only two developers in the group and working very closely together we did not need a big overhead for the
project management aspect of it.

The produced documents and management tools we used gave us a good overview and control over the
project. Furthermore, they provided ST with a good overview over what we were doing and what were our
next steps.

• How well does the methodology cover the documentation of our project?

As we stated in the beginning of our report, we diverted from using pure XP on the project on the grounds
of the documentation part of it. Combining it with a tailored version of RUP®, proofed to provide us with
all necessary documents. It was a hard process deciding which documents were relevant and which were
not. It is our believe that we travelled as lightly, concerning the documents, as possible, considering the
project.

1 Page 89

Epilogue

144

It was very important for us to be able to document the product in a proper way so it would ease the work
and understanding of future developers of the system. We believe we have done so, and along the way
produced a report with the focus on the product itself but also on the process of getting there. Therefore, we
must conclude that the documentation aspect of the methodologies fulfils the need of the project.

• Does the methodology cover the whole lifecycle of our project?

The methodologies we follow are Software Development methodologies, and are not intended to support
anything else, just things that are relevant in the process of developing software. They cover, without a
doubt, the whole lifecycle of the practical part of the project but when it comes to the academic part it fails.
This is due to the nature of the academic part were we go from A, choosing a methodology, to Z, evaluating
and concluding on the project. Furthermore, they do not cover the detailed evaluation of the processes as
needed for the academic part.

Therefore, the answer is simply no it does not cover the whole lifecycle of our project.

• Is it necessary to tailor the chosen methodology to our project and how easy is it to do so?

As we mentioned earlier we did not follow the chosen methodologies blindly. We did, and in fact, we had
to, configure them to our and our projects needs. Especially since, we combined two methodologies that
overlap each other.

Doing so was not such an easy task, mainly because of the reason that we had never worked with either of
them. However, we managed to go through them and mould them to our likings. Maybe we are wrong in
saying that it was not an easy task, rather we should say that it was a time-consuming task, cause we had to
go thoroughly through both of methodologies.

• Does the methodology give the developed system the necessary support it needs to go into further

development after the project finishes?

Before we can answer this question, we have to speculate what is it that the developed system needs to go
into further development? First, of all something that gives an overview over what the system is supposed
to do and what problem it is supposed to solve. Then the architecture of the developed system needs to be
clear. Furthermore, how and why it is implemented in the way it has been done.

Our combined methodologies covered all this, suggesting the use of a Vision document, a Software
Requirements Specification, a Software Architecture document and an Implementation document for future
developers. And a lot of other material that aids them in understanding the developed system, and the needs
of the whole system. Last but not least, it requires a Deployment document listing what files and documents
are relate to the system and how to use the produced system. Therefore, we can say without hesitation that
the combined methodologies provide a good environment for future development of the system.

• How easy is it to follow the methodology?

RUP® has very specific guidelines of how to work, what activities and which artefacts to produce. Very
easy to follow once configured to your needs. Has great templates for most of the documents suggested by
the methodology, very easy to follow and to tailor to your needs. In general an easy methodology to follow.

XP on the other hand is vaguer in its descriptions of activities and artefacts, e.g. they suggest test
everything that needs to be tested, but never say what is it that needs to be tested, and they say produce the
artefacts you need, but leave you to decide which ones you need. So we found it a little harder to follow
XP, than RUP®, in some ways, however the part of XP that we intergraded with RUP®, were maybe easier
to follow than some other practices of XP, except the testing part of it as we stated earlier in Section 1.2.3.

To conclude we can say that it was generally easy for us to follow the methodologies in the way that we
had configured them.

Epilogue

145

• Is the support and tools provided with the methodology adequate?

XP does not come with any support or tools, all is though not lost because there is a lot of information on
the internet about it and couple of books have written about it as well. This turned out to be enough for us
and for the few practises we extracted from XP.

RUP® on the other hand has plenty of support and tools available. It is also a commercial commodity;
unlike XP then the RUP® framework is sold to its users. It comes with a very detailed electronic
description of everything that is related to the framework and users have the ability to use online support
and to buy further software tools to use with RUP®.

So the initial question does not really fit in our situation as XP is not provided by anyone, you cannot “get
it” anywhere, so to speak. If we look only at the RUP® part then, yes the support and tools provided by
RUP® are indeed adequate. However, as we mentioned above about XP, there was no lack of available
information about it, adequate for our small project at least.

3. Final Conclusion
MISSION ACOMPLISHED! We managed to produce a demo version of the system that convinced the
potential user of the system to go ahead with the production of a full system. Along side, this we also
managed to produce a quality academic report with focus on the product specification. Our partners at
Sidabrinis Tinklas were very satisfied with the project, the user company expressed their satisfaction with
the product, and last but not least we, The Jacks, are extremely satisfied with the final outcome and the over
all process.

From this project, we take with us a bundle of knowledge and experience that will come in handy when we
enter the “real” world.

Appendices

147

Appendices

Appendices

II

Table of Contents for the Appendices
Table of Contents for the Appendices II

Appendix A VI

1. Abbreviations VI

Appendix B VII

1. Iteration Plans VII
1.1 Introduction VII

1.1.1 Purpose VII
1.2 Plan for Iteration 0 VII

1.2.1 Duration VII
1.2.2 Overview VII
1.2.3 Deliverable Documents VII
1.2.4 Deliverable Releases VII
1.2.5 Milestones VIII

1.3 Plan for Iteration 1 IX
1.3.1 Duration IX
1.3.2 Overview IX
1.3.3 Deliverable Documents IX
1.3.4 Deliverable Releases IX
1.3.5 Milestones IX

1.4 Plan for Iteration 2 XI
1.4.1 Duration XI
1.4.2 Overview XII
1.4.3 Deliverable Documents XII
1.4.4 Deliverable Releases XII
1.4.5 Milestones XII

1.5 Plan for Iteration 3 XIII
1.5.1 Duration XIII
1.5.2 Overview XIV
1.5.3 Deliverable Documents XIV
1.5.4 Deliverable Releases XIV
1.5.5 Milestones XIV

1.6 Plan for Iteration 4 XVI
1.6.1 Duration XVI
1.6.2 Overview XVI
1.6.3 Deliverable Documents XVI
1.6.4 Deliverable Releases XVI
1.6.5 Milestones XVII

1.7 Plan for Iteration 5 XVIII
1.7.1 Duration XVIII
1.7.2 Overview XVIII
1.7.3 Deliverable Documents XIX
1.7.4 Deliverable Releases XIX
1.7.5 Milestones XIX

Appendices

III

Appendix C XXI

1. Query System: Use Case Specifications XXI
1.1 Generate GUI XXI

1.1.1 Details XXI
1.2 User Searches XXII

1.2.1 Details XXII
1.3 Server Queries The Database Server XXIV

1.3.1 Details XXIV
1.4 Central Operator Sends Query With No Request XXV

1.4.1 Details XXV

Appendix D XXVI

1. Query System: Software Architecture Document XXVI
1.1 Server Component XXVI

1.1.1 Function Specification XXVI
1.2 Mobile Client Component XXVII

1.2.1 Function Specification XXVII
1.3 Central Client Component XXVIII

1.3.1 Function Specification XXVIII

Appendix E XXIX

1. Messaging System: Use Case Specifications XXIX
1.1 Mobile User Message Sending XXIX

1.1.1 Details XXIX
1.2 Central Operator Message sending XXX

1.2.1 Details XXX
1.3 Mobile User Action Result Sending XXXII

1.3.1 Details XXXII

Appendix F XXXIV

1. Messaging System: Software Architecture Document XXXIV
1.1 Server Component XXXIV

1.1.1 Function Specification XXXIV

Appendix G XXXV

1. Tracking System: Use Case Specifications XXXV
1.1 Mobile Client Sends Position To Central Client XXXV

1.1.1 Details XXXV
1.2 Display Position XXXVI

1.2.1 Details XXXVI
1.3 Central Client Sends An Object XXXVII

1.3.1 Details XXXVII

Appendix H XXXIX

1. Messaging System: Software Architecture Document XXXIX
1.1 Mobile Client Component XXXIX

1.1.1 Function Specification XXXIX

Appendices

IV

Appendix I XL

1. Deployment Document XL
1.1 Introduction XL

1.1.1 Purpose XL
1.1.2 Scope XL
1.1.3 Overview XL

1.2 The Deployment Unit Description XL
1.2.1 Inventory of Materials XL
1.2.2 Inventory of Software Contents XLI

1.3 Installation And Configuration Instructions XLV
1.3.1 System Requirement XLV
1.3.2 Installation XLV
1.3.3 Run And Configure The System XLV

1.4 Known Errors and Problematic Features XLVI
1.4.1 NullPointerException XLVI
1.4.2 Exception Thrown From The Tracking System XLVI
1.4.3 SQL Error XLVII

Appendix J XLVIII

1. The Protocol XLVIII

Appendix K XLIX

1. Effort Sheets XLIX

Appendix L LII

1. Evaluation Meeting 1 LII
1.1 Introduction LII

1.1.1 Purpose LII
1.1.2 Date and Time LII
1.1.3 Venue LII
1.1.4 Participants LII

1.2 Actions LII
1.2.1 Documents Reviewed LII
1.2.2 Documents to be Revised LII
1.2.3 Next Steps LII

2. Evaluation Meeting 2 LIII
2.1 Introduction LIII

2.1.1 Purpose LIII
2.1.2 Date and Time LIII
2.1.3 Venue LIII
2.1.4 Participants LIII

2.2 Actions LIII
2.2.1 Documents Reviewed LIII
2.2.2 Documents to be Revised LIII
2.2.3 Next Steps LIII

3. Evaluation Meeting 3 LIV
3.1 Introduction LIV

3.1.1 Purpose LIV
3.1.2 Date and Time LIV

Appendices

V

3.1.3 Venue LIV
3.1.4 Participants LIV

3.2 Actions LIV
3.2.1 Documents Reviewed LIV
3.2.2 Next Steps LIV

3.3 Notes LIV
4. Meeting Between ST and EB LIV
5. Meeting With ST & EB LV

Appendix M LVII

1. Bibliography LVII
2. Webography LVII
3. Documents and White Papers LVIII

Appendices

VI

Appendix A

1. Abbreviations
Abbreviation Meaning

ASP Active Server Pages

CSS Cascading Style Sheets

DB Database

DBMS Database Management
System

DTD Document Type Definition

GIS Geographical Information
System

GPS General Positioning
System

GUI Graphical User Interface

IP Internet Protocol

LAN Local Area Network

Msg Message

PC Personal Computer

RDB Rational Database

RDBMS Rational Database
Management System

RUP® Rational Unified Process

SAD Software Architecture
Document

SQL Structured Query Language

SRS Software Requirement
Specification

TCP Transmission Control
Protocol

URL Uniform Resource Locator

XML eXtensible Mark-up
Language

XP eXtreme Programming

XPath XML Path Language

XSL eXtensible Style Language

Appendices

VII

Appendix B

1. Iteration Plans

1.1 Introduction

1.1.1 Purpose
The purpose of this document is to keep track of the planned activity, and to keep a valuable resource of
knowledge for similar projects in the future.

1.2 Plan for Iteration 0

1.2.1 Duration
12th of August – 16th of August

1.2.2 Overview

1.2.3 Deliverable Documents
• Vision Document

• Business Case

• Software Development Plan

• Query System “Solution Options”

• System Architecture Proposal for User Company

• Development Case

• Next Iteration Plan

1.2.4 Deliverable Releases
None

ID Name Duration
1 Project Management 5 days?
2 Develop Software Development Plan 1 day?
3 Monitor & Control Project 4 days
4 Plan Next Iteration 1 day?
5 Evaluate Scope and Risk 2 days
6 M1 - Establishment 0 days
7 Requirments 5 days
8 Manage changing Requirment 5 days
9 Analysis & Design 5 days
10 Performe Architectural Analysis 2 days
11 Perform Architecturel Design 3 days
12 M2 - Architecture Design Document 0 days
13 M3 - Query System Proposal 0 days
14 Configuratio & Change Management 5 days
15 Prepare configuration plan 1 day
16 Manage Releases 4 days

08.16

08.16
08.16

S M T W T F S
Sun Aug 11 Mon Aug 12 Tue Aug 13 Wed Aug 14 Thu Aug 15 Fri Aug 16 Sat Aug 17

Appendices

VIII

1.2.5 Milestones

Milestone: M1-Establishment Date: 16/08/2002
Description:

At this stage, the project should have finished its initial stage. During the stage the following
should have been considered: risks and how to avoid them, planning, is this project of interest to
the user company, is there a common vision of the system with all involved parties.

Deliverables:

• Risk List Document

• Software Development Plan

• Iteration Plans

• Business Case

• Vision Document

• Development Case

Evaluation Criteria:

Agreement that the right sets of requirements have been captured and that there is a shared
understanding of these requirements. In addition, an agreement that the schedule estimates,
priorities, risks, and development process is appropriate. All known risks, at the time, have been
identified and a mitigation strategy exists for each, where applying.

Milestone: M2-Architectural Design Date: 16/08/2002
Description:

An overall design of the architecture should be delivered at this point. This document is
necessary for the continuation of the project.

Deliverables:

System Architecture Design Document

Evaluation Criteria:

The document should contain the proposed solution for the architectural structure emphasising
on how long it will take to add a database, and the time for implementation.

Milestone: M3- Query System Proposal Date: 16/08/2002
Description:

At this stage a document should be released to the User Company to propose the system

Deliverables:

Query System, Solution Options <1.0> for User Company

Evaluation Criteria:

The Architectural design should include the basic architecture of the system. The document
should include a UML model of the system, and list all the possible architectures that could be
used, the one proposed and a brief explanation of the reason it has been chosen.

Appendices

IX

1.3 Plan for Iteration 1

1.3.1 Duration
19th of August – 9th of September

1.3.2 Overview

1.3.3 Deliverable Documents
• System Architecture Document

• Test Units

• Iteration 2 Plan

• Software Requirements Specification For Car Tracking System

• Software Requirements Specification For Query System

• Software Requirements Specification For Messaging System

1.3.4 Deliverable Releases
Query Interface that allows a mobile client to connect to a central server through GPRS connection and
allows him/her to send direct SQL queries and receive results. No user interface at this stage.

1.3.5 Milestones

Milestone: M4-Software Architecture
 Document

Date: 30/08/2002

Description:

A first release of the Software Architecture Document should be released, in order to give a
basis for the construction phase.

ID Task Name Duration
1 Project Management 16 days?
2 Develop Software Architecture Documen 4 days
3 Moditor & Control Project 16 days
4 Plan Next Iteration 1 day?
5 Evaluate Scope & Risks 6 days
6 M4 - Software Architecture Document 0 days
7 M5 - Iteration2 Plan 0 days
8 Analysis & Design 10 days
9 Find Use Cases 2 days
10 Define Logical View 2 days
11 Define Implementation Model 8 days
12 M9 – Software Requirements Specificatio 0 days
13 M6 - Software Architecture Document 0 days
14 Implementation 9 days
15 Prepare Test Units 4 days
16 Implement Units 7 days
17 Test Code 7 days
18 Integrate Code 7 days
19 Test System 7 days
20 M7 - Test Units 0 days
21 M8 - DB Interface Units 0 days
22 Configuration & Change Management 16 days
23 Manage Releases 16 days
24 Requirments 16 days
25 Manage Requirment Changes 16 days

08.30
09.09

09.06
09.09

08.30
09.06

S M T W T F S S M T W T F S S M T W T F S S M T
'02 Aug 18 '02 Aug 25 '02 Sep 01 '02 Sep 08

Appendices

X

Deliverables:

SAD – Software Architecture Document

Evaluation Criteria:

The Document should include all the use case view and logical view of the system, in the form
of UML diagrams.

Milestone: M5 – Iteration 2 Plan Date: 09/09/2002
Description:

At this stage, a detailed plan for the next iteration should be created.

Deliverables:

Iteration Plans Document

Evaluation Criteria:

The Iteration Plans Document should be updated and should include a detailed plan for iteration
2.

Milestone: M6 – Software Architecture
 Document

Date: 09/09/2002

Description:

At this stage, the Software Architecture Document should be concluded, for the part regarding
the Database Interface for the Query System.

Deliverables:

Software Architecture Document

Evaluation Criteria:

The Software Architecture Document should include use case, logical and implementation view
of the Database interface part of the Query System.

Milestone: M7 – Test Units Date: 30/08/2002
Description:

Test units should be ready at this stage. Those units will be used to test the code and the system.

Deliverables:

Test Units

Evaluation Criteria:

A list of test classes made using JUnit™ is ready to be used during testing phases.

Milestone: M8 – DB Interface Units Date: 06/09/2002
Description:

DB Interface Units are ready to be integrated in the system

Appendices

XI

Deliverables:

DB Interface Classes

Evaluation Criteria:

Java™ Implemented Units should be ready and well tested. JUnit™ tests should give a 100%
correctness result, and so should the integration test.

Milestone: M9 – Software
Requirements Specification

Date: 06/09/2002

Description:

All known requirements of the Car Tracking System should be documented in a SRS document.
A more detailed SRS documents should be ready for the Query and Messaging Systems.

Deliverables:

SRS For The Car Tracking System

SRS For The Query System

SRS For The Messaging System

Evaluation Criteria:

The documents should be approved by our Quality Group

1.4 Plan for Iteration 2

1.4.1 Duration
9th of September – 17th of September

Appendices

XII

1.4.2 Overview

ID Task Name Duration
1 Project Management 8 days
2 Monitor & Control Project 8 days
3 Plan Next Iteration 2 days
4 Assess Iteration 1 day
5 Re-evaluate Scope & Risks 8 days
6 M10 - Iteration 3 Plan 0 days
7 Requirements 8 days
8 Manage Changing Requirements 8 days
9 Analysis & Design 8 days
10 Review SAD 8 days
11 Implementation 7 days
12 Implement Units 7 days
13 Integrate Code 7 days
14 Test 7 days
15 Prepare Test Units 7 days
16 Implement Test Units 7 days
17 Test Code 7 days
18 M11 - Test Units 0 days
19 M12 - Query System 0 days
20 Environment 8 days
21 Support Enviroment 8 days
22 Configuration & Change Management 8 days
23 Change and update Documents 8 days
24 Manage Releases 2 days
25 M13 - All Documents Updated 0 days

09.17

09.17
09.17

09.17

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed
p 07 Mon Sep 09 Wed Sep 11 Fri Sep 13 Sun Sep 15 Tue Sep 17

1.4.3 Deliverable Documents

• Test Units
• Iteration 3 Plan

1.4.4 Deliverable Releases
The Query System where the mobile user is able to send queries to the database and get results displayed
on the screen. He/she can then look through 20 latest results. The central operator is able to do the same
and pass the result to the mobile users if needed. The central operator can also see all connected mobile
users.

1.4.5 Milestones

Milestone: M10 – Iteration 3 Plan Date: 17/09/2002
Description:

At this stage, a detailed plan for the next iteration should have been created.

Deliverables:

Iteration Plans Document

Evaluation Criteria:

The Iteration Plans Document should be updated and should include a detailed plan for iteration
3.

Appendices

XIII

Milestone: M11 – Test Units Date: 17/09/2002
Description:

All test units for the Query System should be ready at this stage.

Deliverables:

Test Units

Evaluation Criteria:

Test classes for every unit of the Query System, that can be tested with JUnit™ are ready.

Milestone: M12 – Query System Date: 17/09/2002
Description:

The Query System with user interfaces, both for the central operator and the mobile user, is
ready

Deliverables:

The Query System with all source codes

Evaluation Criteria:

The system has to meet the criteria set in section 1.4.4 and approved by the Quality Committee.

Milestone: M13 – All Documents
Updated

Date: 17/09/2002

Description:

All documents that have been produced during the project are to be updated reflecting a current
situation of the project.

Deliverables:

Updated versions of all documents mentioned in all prior Milestones

Evaluation Criteria:

A consistency is kept through out the project documents.

1.5 Plan for Iteration 3

1.5.1 Duration
17th of September – 7th of October

Appendices

XIV

1.5.2 Overview
ID Task Name Duration
1 Project Management 16 days
2 Monitor & Control Project 16 days
3 Plan Next Iteration 6 days
4 Assess Iteration 1 day
5 Re-evaluate Scope & Risks 16 days
6 M14 - Iteration 4 Plan 0 days
7 Requirements 16 days
8 Manage Changing Requirements 16 days
9 Analysis & Design 8 days
10 Develop Software Architecture Document 8 days
11 Define Implementation Model 1 day
12 Define Logical View 1 day
13 M15 - SAD 0 days
14 Implementation 10 days
15 Implementation doc for Query System 3 days
16 Refactoring of Query System 3 days
17 Implement Units 5 days
18 GUI 5 days
19 Send/Receive Msg. 3 days
20 Send To A Specified Mobile User 3 days
21 Send Action Result 1 day
22 Integrate Code 1 day
23 Test 11 days?
24 Testing doc for Query System 3 days?
25 Prepare Test Units 6 days?
26 Implement Test Units 6 days?
27 Test Code 6 days?
28 M16 - Test Units 0 days
29 M17 - Messaging System 0 days
30 M18 - Query/Messaging System 0 days
31 Environment 16 days
32 Support Environment 16 days
33 Configuration & Change Management 16 days?
34 Change and update Documents 16 days
35 Manage Releases 1 day?

10.07

09.30

09.30
09.30
09.30

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue
ep 15 Tue Sep 17 Thu Sep 19 Sat Sep 21 Mon Sep 23 Wed Sep 25 Fri Sep 27 Sun Sep 29 Tue Oct 01 Thu Oct 03 Sat Oct 05 Mon Oct 07

1.5.3 Deliverable Documents
• Test Units
• Iteration 4 Plan
• Software Architecture Document For Messaging System

1.5.4 Deliverable Releases
The Messaging System where the mobile user is able to send/receive messages to/from the central operator.
All messages from the current session time is kept in memory and accessible to the user. The central
operator can choose to which mobile user he/she wants to send messages to or can broadcast a message to
all mobile users. All communications between all the mobile users and the central operator are displayed on
the screen of the central operator. In addition to the normal messaging system then the mobile user is able
to send Action Results related to a specific query result to the central operator, and this is then displayed on
the screen of the central operator.

1.5.5 Milestones

Milestone: M14 – Iteration 4 Plan Date: 07/09/2002
Description:

At this stage, a detailed plan for the next iteration should have been created.

Deliverables:

Iteration Plans Document

Evaluation Criteria:

The Iteration Plans Document should be updated and should include a detailed plan for iteration
4.

Appendices

XV

Milestone: M15 - Software Architecture
 Document

Date: 30/09/2002

Description:

The Software Architecture Document for the Messaging System should be finalised

Deliverables:

SAD – Software Architecture Document

Evaluation Criteria:

The Software Architecture Document should include use case, data model, logical and
implementation view of the Messaging System.

Milestone: M16 – Test Units Date: 30/09/2002
Description:

All test units for the Messaging System should be ready at this stage.

Deliverables:

Test Units

Evaluation Criteria:

Test classes for every unit of the Messaging System, that can be tested with JUnit™ are ready.

Milestone: M17 – Messaging System Date: 30/09/2002
Description:

The Messaging System with user interfaces, both for the central operator and the mobile user, is
ready

Deliverables:

The Messaging System with all source codes

Evaluation Criteria:

The system has to meet the criteria set in Section 1.5.4 and approved by the Quality Committee.

Milestone: M18 – Query/Messaging
System

Date: 30/09/2002

Description:

The Query/Messaging System with the user interfaces, both for the central operator and the
mobile user is ready.

Deliverables:

The Query/Messaging System with all its source code.

Evaluation Criteria:

An integrated version of the Query and the Messaging system with a common main GUI.

Appendices

XVI

1.6 Plan for Iteration 4

1.6.1 Duration
7th of October – 14th of October

1.6.2 Overview

ID Task Name Duration
1 Project Management 6 days
2 Monitor & Control Project 6 days
3 Plan Next Iteration 1 day
4 Assess Iteration 1 day
5 Re-evaluate Scope & Risks 6 days
6 M23 - Iteration 5 Plan 0 days
7 Requirements 6 days
8 Manage Changing Requirements 6 days
9 Analysis & Design 6 days
10 Develop Software Architecture Document 6 days
11 Define Implementation Model 3 days
12 Define Logical View 3 days
13 M19 - SAD 0 days
14 Implementation 5 days
15 Implement Units 5 days
16 Mobile Client GIS display 2 days
17 Central Client GIS display 2 days
18 Refactoring 5 days
19 Integrate Code 5 days
20 Test 5 days
21 Prepare Test Units 5 days
22 Implement Test Units 5 days
23 Test Code 5 days
24 M20 - Test Units 0 days
25 M21 - Tracking System 0 days
26 M22 - The Car Tracking System 0 days
27 Environment 6 days
28 Support Environment 6 days
29 Configuration & Change Management 6 days
30 Change and update Documents 6 days
31 Manage Releases 6 days

10.14

10.14

10.11
10.11
10.11

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue
t 05 Mon Oct 07 Wed Oct 09 Fri Oct 11 Sun Oct 13 Tue Oc

1.6.3 Deliverable Documents
• Test Units
• Iteration 5 Plan
• Software Architecture Document For the Tracking System

1.6.4 Deliverable Releases
The Mobile User can see his/her own location on the AKIS1 system. The Central Operator can see the
location of all Mobile Users on the AKIS1 system on his/her screen. However, because of absent of the
GPS device we will work only with computer generated data regarding the locations of the vehicles.

1 Akis®, V. Paliulionis

Appendices

XVII

1.6.5 Milestones

Milestone: M19 - Software Architecture
 Document

Date: 14/10/2002

Description:

The Software Architecture Document for the Tracking System should be finalised

Deliverables:

SAD – Software Architecture Document

Evaluation Criteria:

The Software Architecture Document should include use case, data model, logical and
implementation view of the Tracking System.

Milestone: M20 – Test Units Date: 11/10/2002
Description:

All test units for the Tracking System should be ready at this stage.

Deliverables:

Test Units

Evaluation Criteria:

Test classes for every unit of the Tracking System, that can be tested with JUnit™ are ready.

Milestone: M21 – Tracking System Date: 11/10/2002
Description:

The Tracking System is ready

Deliverables:

The Tracking System with all source codes

Evaluation Criteria:

The system has to meet the criteria set in section 1.6.4 and approved by the Quality Committee.

Milestone: M22 – The Car Tracking
System

Date: 11/10/2002

Description:

The Car Tracking System with the user interfaces, both for the central operator and the mobile
user is ready, and communicates as needed with the AKIS1 system.

1 Akis®, V. Paliulionis

Appendices

XVIII

Deliverables:

The Car Tracking System with all its source code.

Evaluation Criteria:

An integrated version of the Car Tracking System with a main GUI and running AKIS1 parallel
to it in order to display the positions of the cars.

Milestone: M23 – Iteration 5 Plan Date: 14/10/2002
Description:

At this stage, a detailed plan for the next iteration should have been created.

Deliverables:

Iteration Plans Document

Evaluation Criteria:

The Iteration Plans Document should be updated and should include a detailed plan for iteration
5.

1.7 Plan for Iteration 5

1.7.1 Duration
14th of October – 18th of October

1.7.2 Overview

ID Task Name Duration
1 Project Management 5 days
2 Monitor & Control Project 5 days
3 Assess Iteration 1 day
4 Re-evaluate Scope & Risks 5 days
5 Close-Out Project 1 day
6 Requirements 5 days
7 Manage Changing Requirements 5 days
8 Analysis and Design 5 days
9 Refine Architecture 5 days

10 Implementation 2 days
11 Database Drivers Configurable 2 days
12 Deployment 5 days
13 Plan Deployment 5 days
14 Develop Deployment Document 5 days
15 M24 - Deployment Document 0 days
16 Environment 5 days
17 Support Environment 5 days
18 Configuration & Change Management 5 days
19 Change and update Documents 5 days
20 Manage Releases 5 days
21 M25 - Product Related Documents 0 days

10.18

10.18

Sun Mon Tue Wed Thu Fri Sat
Sun Oct 13 Tue Oct 15 Thu Oct 17 Sat Oct

1 Akis®, V. Paliulionis

Appendices

XIX

1.7.3 Deliverable Documents
• Deployment Document
• All prior product related documents mentioned in prior Iteration Plans

1.7.4 Deliverable Releases
A system with all the functionalities mentioned in prior Iteration Plans.

1.7.5 Milestones

Milestone: M24 – Deployment
Document

Date: 18/10/2002

Description:

The Deployment Document for the Car Tracking System should be finalised

Deliverables:

Deployment Document

Evaluation Criteria:

The Deployment Document should include a list of documents and files that are part of the
deployment, an installation guide, guide for launching the applications for the Car Tracking
System. It should also list all known errors and problematic features of the system.

Milestone: M25 – Product Related
Documents

Date: 18/10/2002

Description:

All product related documents for the Car Tracking System should be finalised and up-to-date

Deliverables:

• Business Case

• Vision Document

• Software Requirements Specification

• General System Architecture

• Software Architecture Document; a general one and the for each subsystem

• Use Case Specifications for each subsystem

• Implementation Document for each subsystem

• Test Document for each subsystem

• Deployment Document

Evaluation Criteria:

All these documents should be finalised and up-to-date ready to be deployed to Sidabrinis
Tinklas.

Appendices

XX

Milestone: M26 – The Car Tracking
System

Date: 18/10/2002

Description:

The Car Tracking System demo is ready along with Java™ documentations of it.

Deliverables:

The source code of the Car Tracking System including its Java™ comments.

Evaluation Criteria:

A final version of the Car Tracking System from us, with Java™ comments for all the classes.

Appendices

XXI

Appendix C

1. Query System: Use Case Specifications

1.1 Generate GUI

Receive DB Structure

(from Use Cases)

Central Client
Mobile Client

(from Actors)

Prepare Quering Criteria
(from Use Cases)

Display GUI

(f rom Use Ca ses)

Quering Interface

(from Actors)

1.1.1 Details

Description

The Query Interface generates a GUI from the information given by the Central/Mobile Client.
The information is created from the database structure and passed to the Central/Mobile Client.

Basic Flow

• The user selects a database to search in
• The Central/Mobile Client receives the DB Structure
• The Central/Mobile Client fills-in the info for searching GUI criteria
• Query Interface reads info
• Query Interface creates the GUI
• The Use-Case ends

Alternative Flows

2. Structure Invalid

The DB structure passed to the Central/Mobile Client in not a valid structure. A
message displaying the fatal error is displayed. The Query System closes.

Pre – Conditions
None

Post – Conditions
A Graphical User Interface is created suiting the DB structure

Special Requirements
None

Appendices

XXII

Frequency
Every time the query window is opened

Primary Actor
Querying Interface

Secondary Actor
Central/Mobile Client

Secondary Use-Cases
None

1.2 User Searches

Server

(from Actors)

Central Operator
Mobile User
(from Actors)

Send Query
(from Use Cases)

Send Result

(from Use Cases)

Enters Query
(from Use Cases)

Central Client
Mobile Client

(from Actors)

Display Result
(from Use Cases)

1.2.1 Details
Description

The user needs information from the database. He/She enters in the search criteria and presses
“Search”. The query is formulated and sent to the server. The result(s) will then be sent back
and displayed on the users screen.

Appendices

XXIII

Basic Flow

• The user enters in the search criteria
• The user presses “Search”
• The query is passed to the Central/Mobile Client
• The Central/Mobile Client sends the query to the Server
• The Central/Mobile Client receives the result(s) from the Server
• The result(s) is/are displayed
• The user presses close
• The Use-Case ends

Alternative Flows

1. Invalid criteria

An error message appears telling the user that an invalid search value was entered.
The user then has the possibility to re-enter the search criteria.

2. No matches

A message appears telling that no matches were found; the user can then re-formulate
the query.

3. Too many matches

A message appears telling the user that too many matches are for the entered search
criteria. The user gets the chance to narrow hi/her search.

4. The Server is down

A message appears telling the user the problem and asking him/her t try again later.

Pre – Conditions
The user is logged on the system and has chosen the query system from the main menu.

Post – Conditions
The result(s) of the query is/are displayed

Special Requirements
None

Frequency
More than 10 times a day

Primary Actor
Central and Mobile Client

Secondary Actor
Server

Secondary Use-Cases
Server Queries The Database Server

Appendices

XXIV

1.3 Server Queries The Database Server

DB Server

(from Actors)

Send Query
(from Use Cases)

Server

(f rom Actors)

Send Result
(from Use Cases)

1.3.1 Details

Description

The server receives a query from either the Central or the Mobile Client and forwards the query
to and receives results from the Database server

Basic Flow

• The Central/Mobile Client send a query to the server, see Use Case User Searches 1.2
• The Server forwards the query to the Database Server
• The Database Server sends back the result(s) from the query
• The Server receives the result(s) and forwards it to the Central/Mobile Client, see Use Case

User Searches 1.2
• The use-case ends.

Alternative Flows

1. The Database Server is down

The main server gets a error message and forwards it to the Central/Mobile Client

Pre – Conditions
Query has been sent from the Central/Mobil Client

Post – Conditions
The main server gets all the results asked for

Special Requirements
None

Frequency
More than 50 time a day

Primary Actor
Server

Secondary Actor
Database server, Central/Mobile client

Secondary Use-Cases
None

Appendices

XXV

1.4 Central Operator Sends Query With No Request

Central Operator

(from Actors)

Choose Descination

(from Use Cases)

Central Client

(f ro m Actors)

Send Result

(from Use Cases)
Server

(from Actors)

1.4.1 Details
Description

The Central Operator wishes to send a query result that is already displayed on the screen of the
Central Operator to a specific client

Basic Flow
• Central Operator chooses a client destination
• Central Client sends the message to the server
• The use-case ends.

Alternative Flows
1. Communication Drops

An error message is displayed and shows the connection problem.

Pre – Conditions
• The Central Operator is logged on
• The Central Operator has the required Query result already displayed

Post – Conditions

The Query Result is displayed at the Mobile Users screen
Special Requirements

None
Frequency

Less than 50 times a day
Primary Actor

Central Operator
Secondary Actor

Central Client
Secondary Use-Cases

User Searches, Server Queries The Database Server.

Appendices

XXVI

Appendix D

1. Query System: Software Architecture Document

1.1 Server Component

1.1.1 Function Specification
Name Server.validateDBStructure()

Input Database Object

Output Boolean

Algorithm
Do{

Read line from file;
If (line is not empty){

Read token;
In case token is:

“<TABLE>”{
ok;
}

“TABLENAME”{
if (TABLE tag is open){

read next token;
if (token exist) ok
else error;
}

}
“</TABLE>”{

if (No fields declared) error;
if (No tablename declared) error;
if (Table tag is open) ok;
}

“<FIELD>”{
if (Table tag has been opened) ok;
else error;
}

“</FIELD>”{
if (Field tag has not been opened) error;
if (Name, Type and Searchable don’t exist)
 error;
else ok;
}

“NAME”{
if (Field tag has been opened){

read next token;
if (token is empty) error;
else ok:
}

}
“TYPE”{

Appendices

XXVII

if (Field tag has been opened){
read next token;
if (token is empty) error;
else {

if (token valid) ok
else ok
}

}
}

“SEARCHEABLE”{
if (Field tag has been opened){

read next token;
if (token is empty) error;
else ok:
}

}

}

 }
 while (no more line on text file)
 if (only one table has been defined AND the table tag is closed) ok;
 else error;

Name Server.translateQuery()

Input Query Object

Output SQL Query

Algorithm String query = “SELECT * FROM ”
Append tablename to query
Append “ WHERE ” to query

For (each search criteria inserted)

Append field_name to query
Append search criteria(“=” or “LIKE”)
Append field_value to query

End For loop

Return query

1.2 Mobile Client Component

1.2.1 Function Specification
Name QueryGUI.createQuery()

Input Search criteria from the GUI

Output Query Object

Appendices

XXVIII

Specification Save every searched field with search criteria and value in the Query object. When
the Query Object is created, the database, where the search has been made, must be
passed to the Query Object.

1.3 Central Client Component

1.3.1 Function Specification
Name ResultGUI.sendResult()

Input Mobile Client

Output Result

Specification The Result and the Mobile Client data are sent to the Server, which will then
dispatch the Result to the Mobile Client Application.

Appendices

XXIX

Appendix E

1. Messaging System: Use Case Specifications

1.1 Mobile User Message Sending

Mobile User

(from Actors)

Send Message
(from Use Cases)

W rite Message
(from Use Cases)

Mobile Client

(from Actors)

Server

(from Actors)

Send Message

(from Use Cases)

Central Client

(f rom Acto rs)

Display Message

(f rom Use Cases)

1.1.1 Details

Description

The Mobile User has to send a message to the Central Client. He/she writes the message and
sends it through the Mobile Client. The Server receives the message and dispatches it to the
Central Client.

Basic Flow
• The Mobile User selects the messaging text area
• The Mobile User writes a message
• The Mobile Client sends the message to the Server
• The Server receives the message
• The Server sends the message to the Central Client
• The Central Client receives the message
• The Central Client displays the message
• The use-case ends

Alternative Flows

3. Server is Down

An error message is displayed, asking to try again later.

4. Central Client in not on-line
An error message is displayed at the Mobile Client side, acknowledging the failure of sending
the message

Pre – Conditions
The Mobile User is logged on

Appendices

XXX

Post – Conditions
A message is received and displayed at the Central Client

Special Requirements
None

Frequency
More than 10 time a day

Primary Actor
Mobile User

Secondary Actor
Server, Central Client

Secondary Use-Cases
None

1.2 Central Operator Message sending

Send Message

(from Use Cases)

Central Client

(from Actors)

Write Message
(from Use Cases)

Choose Descination
(from Use Cases)

Central Operator

(from Actors)

Server

(from Actors)

Send Message
(from Use Cases)

Display Message
(from Use Cases)

Mobile Client

(from A ctors)

1.2.1 Details
Description

The Central Operator writes a message and sends it to a specific client or broadcast it. The
Mobile Client receives the message and displays it.

Appendices

XXXI

Basic Flow

• Central Operator chooses the destination (client / broadcast)
• The text area activates
• Central Operator writes the message
• Central Client sends the message to the Server
• Server sends the message to the specific Mobile Client or to all
• Mobile Client(s) receive(s) the message
• Mobile Client display the message
• The use-case ends

Alternative Flows

1. Communication Drops

An error message is displayed and shows the connection problem

2. Server is down
An error message is displayed at the Central Client side, acknowledging the failure of sending
the message

Pre – Conditions
The Central Operator is logged on

Post – Conditions
A message is displayed at the Mobile Client

Special Requirements
None

Frequency
More than 20 times a day

Primary Actor
Central Operator

Secondary Actor
Server, Mobile Client

Secondary Use-Cases
None

Appendices

XXXII

1.3 Mobile User Action Result Sending

Mobile User

(f rom Actors)

Select Action Result
(from Use Cases)

Mobile Client

(f rom Actors)

Send Act ion Result
(from Use Cases)

Server

(from Actors)

Send Action Result

(from Use Cases)

Central Client

(from Actors)

Display Message
(from Use Cases)

1.3.1 Details

Description

The Mobile User has to send an Action Result to the Central Client. The Mobile User selects
the Action Result and sends it through the Mobile Client. The Server receives the message and
sends it to the Central Client

Basic Flow

• The Mobile User selects the Action Result
• The Mobile Client sends the Action Result to the Server
• The Server Receive the Action Result
• The Server sends the Action Result to the Central Client
• The Central Client receives the Action Result
• The Central Client displays the Action Result
• The use-case ends

Alternative Flows

1. Server is Down

An error message is displayed, asking to try again later.

2. Central Client in not on-line
An error message is displayed at the Mobile Client side, acknowledging the failure of sending
the message

Pre – Conditions
The Mobile User is Logged on

Post – Conditions
A message is received and displayed at the Central Client

Special Requirements
None

Appendices

XXXIII

Frequency
More than 10 time a day

Primary Actor
Mobile User

Secondary Actor
Server, Central Client

Secondary Use-Cases
None

Appendices

XXXIV

Appendix F

1. Messaging System: Software Architecture Document

1.1 Server Component

1.1.1 Function Specification
Name Server.save_Action()

Input The Action Object

Output Updated Database

Algorithm The function is not inside the scope of the demo version therefore we will not
present the algorithm for it

Name Server.save_Message()

Input The Message Object

Output Updated Database

Algorithm The function is not inside the scope of the demo version therefore we will not
present the algorithm for it

Appendices

XXXV

Appendix G

1. Tracking System: Use Case Specifications

1.1 Mobile Client Sends Position To Central Client

GPS Device

Send Position

Mobile Client Send Pos ition Server

Central Client

Send Position

1.1.1 Details
Description

The Mobile Client receives the position from the GPS device and sends the position to the
Central Client through the Server

Basic Flow

• The GPS Device sends the position to the Mobile Client
• The Mobile Client receives the position and send it to the Server
• The Server receives the position
• The Server sends the position to the Central Client
• The Central Client receives the position
• End of the use-case

Alternative Flows

1. Server is Down

An error message is displayed, asking to try again later.

Appendices

XXXVI

Pre – Conditions
None

Post – Conditions
The Mobile Client position is received by the Central Client

Special Requirements
None

Frequency
Every 2 seconds

Primary Actor
Mobile Client

Secondary Actor
Server, GPS Device, Central Client

Secondary Use-Cases
Display Position

1.2 Display Position

 Central Client
Mobile Client

Pass Position

Display Object GIS

1.2.1 Details

Description

The Mobile/Central Client passes the Position of the Object to the GIS, which will then display
the Object

Basic Flow

• The Mobile/Central Client passes the Object’s position to the GIS
• The GIS receives the Object’s position
• The GIS displays the Object
• End of the use-case

Alternative Flows

None
Pre – Conditions

The Mobile/Central Client has received an Object’s position
Post – Conditions

The Object is displayed

Appendices

XXXVII

Special Requirements
None

Frequency
Every 2 seconds

Primary Actor
Mobile Client/Central Client

Secondary Actor
GIS

Secondary Use-Cases
None

1.3 Central Client Sends An Object

Mobile Client

Send Object

ServerSend Object

Central Operator

Central Client

Choose Destination

Select Object

1.3.1 Details
Description

The Central Operator selects an Object to be sent to a Mobile User; the Object is then sent and
displayed at the Mobile Client

Basic Flow

• The Central Operator selects the Object to send
• The Central Operator chooses the Destination
• The Central Client sends the Object to the Server
• The Server dispatches the Object to the destination Mobile Client
• The Mobile Client receives the Object
• End of the use-case

Appendices

XXXVIII

Alternative Flows

1. Server is Down

An error message is displayed, asking to try again later.

Pre – Conditions
None

Post – Conditions
The Object is displayed using the GIS on the Mobile Client side

Special Requirements
None

Frequency
More than 5 times a day

Primary Actor
Central Operator

Secondary Actor
Server, Mobile Client, Central Client

Secondary Use-Cases
Display Position

Appendices

XXXIX

Appendix H

1. Messaging System: Software Architecture Document

1.1 Mobile Client Component

1.1.1 Function Specification
Name GPSDevice.read_Position()

Input None

Output The Position read by from the GPS Device

Algorithm Specification of this function is left for future development, as the actual device
was not available at this stage.

Name GIS.show_Map()

Input None

Output Updated Map

Algorithm The integration of the GIS system into the Car Tracking System is left for future
development; therefore, the specification of this function has not been made.

Name GIS.updateObject() ; GIS.createObject(); GIS.deleteObejct();

Input A GIS Object

Output Updated GIS database

Algorithm All of these functions are used to insert, update and delete records from the
database file “Objektai.dbf” of the GIS. This file is used as communication mean
with the GIS software. The Objektai table is designed as following:

The field used as primary key is the “NAME”, while “LON” represents the
longitudinal coordinate, and “LAT” the latitudinal coordinate of the Object.

NAME LON LAT

Appendices

XL

Appendix I

1. Deployment Document

1.1 Introduction

1.1.1 Purpose
The purpose of the Deployment Document is to provide an overview of what comes with the hand over of
the project, both software and documents.

1.1.2 Scope
The scope is the Car Tracking System Project as a whole. It is should be of value for future developers, and
users of the demo version.

1.1.3 Overview
First, we will list out what is included in the deployment unit, which is handed over to Sidabrinis Tinklas
that includes both the software and the documentations. Then we will cover the installation and
configuration instructions, explaining everything that is needed to run the demo version itself. Finally we
discuss the errors and other problematic features of the demo, know at release time.

1.2 The Deployment Unit Description

1.2.1 Inventory of Materials

Documents

No. Name Version Format
1. Business Case 1.1 Word Document (*.doc)

2. Demo Development Proposal 1.1 Word Document (*.doc)

3. Deployment Document 1.3 Word Document (*.doc)

4. Development Case 3.0 Word Document (*.doc)

5. General System Architecture 1.0 Word Document (*.doc)

6. Implementation Document 1.0 Word Document (*.doc)

7. Iteration Assessments 4.0 Word Document (*.doc)

8. Iteration Plans 4.0 Word Document (*.doc)

9. Query System Design Proposals 2.0 Word Document (*.doc)

10. Risk List 1.4 Word Document (*.doc)

11. Software Architecture Document, General 2.0 Word Document (*.doc)

12. Software Architecture Document, Messaging
System

1.1 Word Document (*.doc)

13. Software Architecture Document, Query System 2.2 Word Document (*.doc)

14. Software Architecture Document, Tracking System 1.2 Word Document (*.doc)

15. Software Development Plan 3.0 Word Document (*.doc)

Appendices

XLI

No. Name Version Format
16. Software Requirement Specification 1.8 Word Document (*.doc)

17. Test Document For Messaging System 1.0 Word Document (*.doc)

18. Test Document For Query System 1.0 Word Document (*.doc)

19. Test Document For Tracking System 1.0 Word Document (*.doc)

20. Use Case Specifications 3.4 Word Document (*.doc)

21. Vision Document 3.2 Word Document (*.doc)

Models

No. Name Format
1. Analysis_model_Message Rational Rose® (*.MDL)

2. Analysis_model_Query Rational Rose® (*.MDL)

3. Analysis_Model_Tracking_Sys Rational Rose® (*.MDL)

4. Architecture Rational Rose® (*.MDL)

5. Design_model_query Rational Rose® (*.MDL)

6. Design_model_tracking_sys Rational Rose® (*.MDL)

7. General Architecture Rational Rose® (*.MDL)

8. Implementation_Model_Message Rational Rose® (*.MDL)

9. Implementation_Model_Query Rational Rose® (*.MDL)

10. Implementation_model_tracking_sys Rational Rose® (*.MDL)

11. Tracking_System_Use_cases Rational Rose® (*.MDL)

Software

No. Name Format
1. centralclient Executable File

(*.exe)

2. Installation Text file (*.txt)

3. mobileclient Executable File
(*.exe)

4. server Executable File
(*.exe)

5. Source Zip file (*.zip)

6. Test Zip file (*.zip)

1.2.2 Inventory of Software Contents

Server.exe

No. Name Format
1. config Data file (*.dat)

Appendices

XLII

No. Name Format
2. database Data file (*.dat)

3. DBStructure Text file (*.txt)

4. mysql-connector-
2.0.14-bin

Java™ Archive
File (*.jar)

5. ServConf Initialisation
File (*.ini)

6. Server Java™ Archive
File (*.jar)

Remarks

• mysql-connector-2.0.14-bin.jar is a JDBC1 driver used only for testing

• Server.jar contains the class files needed to run the server but the list of all the Java™ files from
which these files were made can be seen in 2.2.5

Centralclient.exe

No. Name Format
1. Back24 Graphic

Interchange
Format (*.gif)

2. CentralClient Java™ Archive
File (*.jar)

3. Forward24 Graphic
Interchange
Format (*.gif)

Remarks

• The centralclient.exe also contains needed files to run the Akis2 GIS Demo

• CentralClient.jar contains the class files needed to run the server but the list of all the Java™ files
from which these files were made can be seen on page XLIII.

Mobileclient.exe

No. Name Format
1. Back24 Graphic

Interchange
Format (*.gif)

2. Forward24 Graphic
Interchange
Format (*.gif)

1 Sun Microsystems
2 Akis© V.Paliulionis

Appendices

XLIII

No. Name Format
3. MobileClient Java™ Archive

File (*.jar)

Remarks

• The mobileclient.exe also contains needed files to run the Akis1 GIS Demo

• CentralClient.jar contains the class files needed to run the server but the list of all the Java™ files
from which these files were made can be seen on page XLIII.

Installation.txt

No. Name Format
1. Installation Text file (*.txt)

Source.zip

1 Akis© V.Paliulionis

No. Name Format
1. Action Java file (*.Java)

2. CentralClient Java file (*.Java)

3. Client Java file (*.Java)

4. ClientServerCommun
ication

Java file (*.Java)

5. CMainGUI Java file (*.Java)

6. CMessageGUI Java file (*.Java)

7. Config Java file (*.Java)

8. Coordinate Java file (*.Java)

9. CResultGUI Java file (*.Java)

10. CsearchPanel Java file (*.Java)

11. CTS_Server Java file (*.Java)

12. Database Java file (*.Java)

13. DBServerCommunica
tion

Java file (*.Java)

14. DBStructure Java file (*.Java)

15. DBStructure1 Java file (*.Java)

16. EBConnection Java file (*.Java)

17. EBCSCommunication Java file (*.Java)

18. EBSCCommunication Java file (*.Java)

19. Field Java file (*.Java)

20. GIS Java file (*.Java)

No. Name Format
21. GISCommunication Java file (*.Java)

22. GISObject Java file (*.Java)

23. GPSCommunication Java file (*.Java)

24. GPSDevice Java file (*.Java)

25. Info Java file (*.Java)

26. InvalidStructureExce
ption

Java file (*.Java)

27. MainGUI Java file (*.Java)

28. Message Java file (*.Java)

29. MessageGUI Java file (*.Java)

30. MobileClient Java file (*.Java)

31. MobileClientThread Java file (*.Java)

32. NotEnoughParameter
Exception

Java file (*.Java)

33. OnLineUsersGUI Java file (*.Java)

34. Query Java file (*.Java)

35. QueryField Java file (*.Java)

36. QueryGUI Java file (*.Java)

37. Result Java file (*.Java)

38. ResultCache Java file (*.Java)

39. ResultField Java file (*.Java)

40. ResultGUI Java file (*.Java)

Appendices

XLIV

No. Name Format
41. ResultInfo Java file (*.Java)

42. ScrollablePicture Java file (*.Java)

43. SDatabase Java file (*.Java)

44. SearchPanel Java file (*.Java)

45. Server Java file (*.Java)

46. ServerClientCommun
ication

Java file (*.Java)

No. Name Format
47. ServerThread Java file (*.Java)

48. SImage Java file (*.Java)

49. SysConst Java file (*.Java)

50. Table Java file (*.Java)

51. User Java file (*.Java)

52. Users Java file (*.Java)

Test.zip
No. Name Format

1. CTSAllTests Java file(*.Java)

2. DatabaseTest Java file (*.Java)

3. EBConnectionTest Java file (*.Java)

4. FieldTest Java file (*.Java)

5. MessageTest Java file (*.Java)

6. ResultTest Java file (*.Java)

7. ServerTest Java file (*.Java)

8. TableTest Java file (*.Java)

9. DBStructure Text file (*.txt)

10. DBStructure1 Text file (*.txt)

11. DBStructure_test1 Text file (*.txt)

12. DBStructure_test2 Text file (*.txt)

13. DBStructure_test3 Text file (*.txt)

14. DBStructure_test4 Text file (*.txt)

15. DBStructure_test5 Text file (*.txt)

16. DBStructure_test6 Text file (*.txt)

17. DBStructure_test7 Text file (*.txt)

18. DBStructure_test8 Text file (*.txt)

19. DBStructure_test9 Text file (*.txt)

20. DBStructure_test10 Text file (*.txt)

21. DBStructure_test11 Text file (*.txt)

22. DBStructure_test12 Text file (*.txt)

23. DBStructure_test13 Text file (*.txt)

24. Read.me Text file (*.txt)

Appendices

XLV

1.3 Installation And Configuration Instructions

1.3.1 System Requirement
• Java™ SDK 1.4.0 must be installed

• The CLASSPATH must be a be to reach the installation directories

1.3.2 Installation

Server
• Choose or create the directory that will hold the Server

• Extract the Server.zip file in the selected directory

• Configure the server using the ServConf.ini file - see Server configuration at 1.3.3

Central Client
• Choose or create the directory that will hold the Central Client

• Extract the CentralClient.zip file in the selected directory

• Create a Data Source for the GIS System under “System DSN”

o Data Source Name must be “GIS_Object “

o Data Source Driver must be “Microsoft Driver for Visual FoxPro”

o Data Source Database type must be set to “Free table directory”

o Working Directory must be the [the_Central_Client_Directory]/Akis GIS
Demo/VILNIUS

Mobile Client
• Choose or create the directory that will hold the Mobile Client

• Extract the MobileClient.zip file in the selected directory

• Create a Data Source for the GIS System under “System DSN”

o Data Source Name must be “GIS_Object”

o Data Source Driver must be “Microsoft Driver for Visual FoxPro”

o Data Source Database type must be set to “Free table directory”

o Working Directory must be the [the_Mobile_Client_Directory]/Akis GIS
Demo/VILNIUS

1.3.3 Run And Configure The System

The Server
All configuration parameter of the Server are in the ServConf.ini file, to configure the Server it is only
needed to change the value of the parameters and restart the server with the '-lc' option

• Run the server:

Java™ -jar Server.jar

• Run the server with a new configuration:

Java™ -jar Server.jar -lc

Appendices

XLVI

The ServConf.ini

• filename

The name and path of the file containing the database structure e.g. “DBStructure.txt”

• dbDriver

The driver class for JDBC1 e.g. “sun.jdbc.odbc.JdbcOdbcDriver”

• dbURL

The URL or path of the database e.g. “jdbc:odbc:EKM”

• dbName

The name of the database to be used e.g. “EKM”

• username

username to access the database e.g. “dario64”

• password

The password to access the database e.g. “darion65”

Note:

The username and password are the only fields that can be left without value.

The Mobile Client
• Run the mobile client:

Java™ -jar MobileClient.jar [User Name] [server IP address]

 [User Name]: Used to identify the client, make sure it is unique

 [server IP address]: The IP address where the server is running for local connection
127.0.0.1 can be used

The Central Client
• Run the central client:

Java™ -jar CentralClient.jar [server IP address]

 [server IP address]: The IP address where the server is running for local connection
127.0.0.1 can be used

1.4 Known Errors and Problematic Features

1.4.1 NullPointerException
Occasionally, when the Mobile Client application is run, a “NullPointerException” is thrown at the Server
side. The Exception though does not cause any system failure.

1.4.2 Exception Thrown From The Tracking System
When the Central Client is closed before the Mobile Clients an exception is thrown at the Mobile Client
and at the Server side, but the system seems to work anyway.

1 Sun Microsystems

Appendices

XLVII

1.4.3 SQL Error
In EBConncetion class, in the translateQuery(…); method, the query created makes a select
query to a table, but as it is working with a DBMS it will have to specify the database on which to work on.
To do this then we send a “USE database_name” SQL sentence. This will though not work on DBMS that
does not accept this command (e.g. Microsoft Access®).

Appendices

XLVIII

Appendix J

1. The Protocol
The follow info table describes the protocol used for the transmission of data between the clients and the
server.

Command Token Comment Expected Data

1 Send a query request One Query object
2 Receive a result object Mix of ResultField objects and Images.

Commands:
 4: A new row of fields
 5: An image stream is coming
 3: The transmission end
Note:
 Images are sent byte by byte,
 starting with the number of
 bytes that will be sent.

3 Start client shutdown procedure None
4 Send Database Structure One Database object
5 Notify that a client logged in One User object
6 Send Client Information One Info object
7 Notify that User logged out One User object
8 Send a message One Message object

10 Send the car position One GISObject object

Appendices

XLIX

Appendix K
1. Effort Sheets

Name: Dario Pacino Project: Car Tracking System Week ending: 18/08/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1
Finalise Business Case

Document
0,5 0,5 Nil

2
Write Software

development plan
3,0

3 Plan Project Phases 1,0 1,0 Nil
4 Plan First Iteration 1,0 1,0 Nil
5 Study Architecture 1,0 1,0 Nil

6
Define Advantages and

Disadvantages of
Architecture structure

 2,0 2,0 Nil

7 Choose Architecture 1,0 1,0 Nil
8 Make Use Case 1,0 1,0 Nil

9
Update Software

Development Plan
 1,0 1,0 Nil

10
Study System Possible

Solutions
 4,0 4,0 Nil

11 Meeting 0,5 0,5 Nil
12 Prepare Iteration 1 plan 1,0 1,0 1,0

13
Prepare Solutions

Document
 4,0 4,0 Nil

Name: Hjortur Scheving Project: Car Tracking System Week ending: 18/08/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1 Review Documents 1.5
2 Meeting 0.5 0.5 Nil

3
Evaluation Meeting

Document
 0.5 0.5 Nil

4 Creating Templates 1
5 Editing Documents 4.5 5 5 14.5 ?

Name: Dario Pacino Project: Car Tracking System Week ending: 25/08/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1 Prepare Iteration 1 Plan 1.0 2.0 Nil
2 Editing 4.0 4.0 Nil
3 Meeting 0.5 0.5 Nil
4 Report Structure 1.0 1.0 Nil

5
Write System

Architecture Chapter for
Report

 2.0 2.0 Nil

6
Write Risk List Task

For Report
 1.0 1.0 Nil

Appendices

L

Name: Hjortur Scheving Project: Car Tracking System Week ending: 25/08/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1
Software Development

Plan
8 1

2 Meeting 1 0.1
3 Organising hard copies 1
4 Problem Formulation 2 1
5 Report Structure 1
6 Research Methodologies 2 2 3 4 2
7 Write Methodologies 2
8 Editing Report 2 2

9
Writing For Report,

Software D.P.
 2

10
Write For Report,

Vision, Business Case
 1

Name: Dario Pacino Project: Car Tracking System Week ending: 01/09/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1
Use-case Spec. for

Query Sys
3 3 Nil

2 SRS for Query Sys 4 4 Nil
3 Use-Cases for Msg. Sys 3 3 Nil
4 SRS for Msg. Sys 3 3 Nil
5 Update Risk List 1 1 Nil

6
Fix Quality Range on

Vision
 1.0 1 Nil

7 Fix Layers text 0.5 0.5 Nil
8 Fix SRSs 1.5 1.5 Nil
9 Make Logical View 2.5 2.5 Nil

10 Make GUI Skaches 3.0 1.0 4.0 Nil
11 Define Architecture 1.0 3.0
12 Revise SRS for USER 3.0 3.0 Nil

13
Analysis & Design

section 1
 6.0 1.0 7.0 Nil

Name: Hjortur Scheving Project: Car Tracking System Week ending: 01/09/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1
Putting RUP® Doc into

the report
 11 1 2 14 On going

2
Building the new report

structure and layout
2 1 5 1 9 Nil

3 Meetings 1 0.5 1.5

4
Problem Formulation,

update
5 5 Nil

5 Logical View 1 1
6 Report, adding SRS 2 2
7 Report Editing 2 1 1 4 On going
8 Development Case 2 7 9 8
9 GUI Sketches 1 1 On Going

10 Iteration 0 Assessment 2 2 1

Appendices

LI

Name: Dario Pacino Project: Car Tracking System Week ending: 08/09/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1 Modify SAD 2.5 2.5 Nil

Name: Hjortur Scheving Project: Car Tracking System Week ending: 08/09/2002
No Task Mon Tue Wed Thu Fri Sat Sun Total To Go

1 New SRS – General 0.5 Nil

2
New SRS – Query

System
1 Nil

3
New SRS – Messaging

System
1 Nil

4 Iteration 0 Assessment 1 Nil

Appendices

LII

Appendix L

1. Evaluation Meeting 1

1.1 Introduction

1.1.1 Purpose
To get Quality Group’s evaluation of documents presented (see Documents Reviewed). And discuss the
next steps of the project.

1.1.2 Date and Time
14th of August 2002, 10.30-11.00

1.1.3 Venue
Sidabrinis Tinklas, meeting room

1.1.4 Participants
 Giedrius Slivinskas
 Dario Pacino
 Hjortur Scheving

1.2 Actions

1.2.1 Documents Reviewed
• Vision Draft
• Business Case <1.0>
• Software Development Plan <1.0>
• System Architecture <1.0>
• Risk List <1.0>
• General Plan Draft
• Iteration 0 – Plan Draft

1.2.2 Documents to be Revised
• Software Development Plan <1.0>

o Clarify deliverables
• Risk List <1.0>

o Practical Risks – minor changes

1.2.3 Next Steps
• Iteration 1 – Plan
• Query System Options document

o Covering the options we have with the Query system, with special focus on how to;
• receive DB structure
• implement interface from the DB structure
• generate queries from the interface
• displaying the results

o The evaluation criteria for the options listed in the document should be;
• How long will it take to add new DB to the system?
• How long will it take to implement?
• How well will it satisfy the customer’s needs?

• Query System Proposal document

Appendices

LIII

o Covering the proposed solution from the Option document in a short, direct way. To be
handed to the user company

• Interface Specification

2. Evaluation Meeting 2

2.1 Introduction

2.1.1 Purpose
To get Quality Group’s evaluation of documents presented (see Documents Reviewed). And discuss the
next steps of the project.

2.1.2 Date and Time
19th of August 2002, 14.00-15.00

2.1.3 Venue
Sidabrinis Tinklas, meeting room

2.1.4 Participants
 Giedrius Slivinskas
 Dario Pacino
 Hjortur Scheving

2.2 Actions

2.2.1 Documents Reviewed
• Iteration Plan <2.0>
• Query System Solution Options (hand written copy)

2.2.2 Documents to be Revised
• Iteration Plan <2.0>

o A more detailed plan
• Query System Solution Options

o Fix time estimates
o Add and modify ad- and disadvantages

2.2.3 Next Steps
• Query System Project Proposal document

o Listing
• The SQL solution
• The XML solution
• Discussing for both solutions:

• Ad- and disadvantages
• How long does it take to add a DB for the User
• Constrains
• Etc.

• Software Requirements Specification

Appendices

LIV

3. Evaluation Meeting 3

3.1 Introduction

3.1.1 Purpose
To go over a meeting that Giedrius had with the user company and clarify a few uncertain requirements.
And discuss the next steps of the project.

3.1.2 Date and Time
18th of August 2002, 14.00-15.00

3.1.3 Venue
Sidabrinis Tinklas, meeting room

3.1.4 Participants
 Giedrius Slivinskas
 Dario Pacino
 Hjortur Scheving

3.2 Actions

3.2.1 Documents Reviewed
• EKMRTPTO002_0100_meeting_notes_EB_20020827.doc

3.2.2 Next Steps
• As listed in the EKMRTPTO002_0100_meeting_notes_EB_20020827.doc

3.3 Notes
The following was discussed:

• Action Results: actions related to objects

• HTTP Server: has to be implemented by the development team

• Authentication control: needs to be address during the prototype

• Keyboards: Should be given some thought, specially when designing the GUI as a keyboard
screen may be displayed in the GUI

4. Meeting Between ST and EB

Meeting notes
2002 08 27 @ EB
Participants: Giedrius Slivinskas (ST), Alius Sadeckas (EB)

Software development phases and steps:

Phase I – Query system

1. Mobile users send queries to the central system and receive feedback.
2. Mobile users send action results to the central system, e.g., describe what happened (the result may be

a selected option from the list or a field with user input)
3. Central system sends query answers to mobile users without request; the answer is displayed on the

client application.
4. Central system sends messages to mobile users
5. Mobile users send messages to the central system

Appendices

LV

Phase II – GIS
1. Mobile users send their GPS positions to the central system. The central system displays these

positions on a GIS system.
2. Mobile user sees his/her positions on a car GIS system.
3. Central system sends positions of selected objects (cars, houses, etc.) to mobile users. (Should be

configurable at the central system.) The objects are displayed on a car GIS system.
Phase III – Integration of the query system part and the GIS part

[The resulting client application GUI could be two windows displayed at the same time: one for the
messages part, the other for the GIS part. A query window may be an additional pop-up window at the top]

Architecture/hardware issues:

7. The system consists of a client application, an HTTP server and a DB server.
8. XML should be used for communication between the HTTP server and the client.
9. SQL should be used for communication between the DB server and the HTTP server. (DB server may,

or may not, be able to deliver query result in XML.)
10. Intranet will probably be used (but the system should also work using the Internet).
11. The client program should be designed so that it could be used by a keyboard with minimum number

of keys (perhaps only number and functional keys; letter keys could be displayed on the screen).
12. Tests will be done using a regular laptop. If the project goes well, EB may decide to buy a special car

computer.

5. Meeting With ST & EB

Meeting notes
2002 09 24 @ ST
Participants: Giedrius Slivinskas, Andrius Dienys, Dario Pacino, Hjortur Scheving (ST), Alius Sadeckas (EB)

Demonstration of the current version
Comments from EB:

1. Each application should be in one window, occupying the whole screen.
2. Mobile user should see a log of his actions (e.g., ‘query sent’, ‘result received’, etc.; when the action is

clicked, he/she should see the query or the result)
3. If central operator sends a query result to a mobile user, he/she should see if the result is received or not.
4. A progress bar with result percentages would be helpful.
5. Images can be downloaded after separate request.
6. Mobile-user and central-operator applications could be the same (if an authentification mechanism with

different user roles is provided)

Software requirements specification

The specification will be further developed to address new requirements.
EB will send comments about the current version.

Next steps

1. Hardware – ST contacts Propac AB to see if it possible to rent a car computer
2. Further development of the system

a. The query system (messaging)
b. The GPS system (first demo version)
c. Improvement of graphical user interface
d. Connecting the system to the EB demo database
e. User authentification

3. Demonstration strategy for Infobalt will be discussed later.

Appendices

LVI

Preliminary date for the next demo: 2nd/3rd week of October (the demo should feature some of the functionality
given in Next Step 2).

Next steps:

1. ST prepares a software requirement specification for the query system part (to be reviewed by EB).
2. ST prepares sketches for GUI (to be reviewed by EB).
3. ST starts developing the query system part

a. Test with HTTP and DB servers at ST
b. Test with HTTP and DB servers at EB

Notes for the query system part:
1. Example table with static objects can be used. 10 fields, one of them displays graphical information.

The table structure is delivered as text file in SQL or other format (listing the fields and their types).
2. GUI should be as simple as possible.
3. The system should have authentification control. Mobile users should log into the system, and the

operator at the central computer should see users who are online (and select them for sending
information, see Stage I, Step 4 or Stage II, Step 3).

Appendices

LVII

Appendix M

1. Bibliography
1. Object Oriented Analysis & Design

Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, Jan Stage

2. Java™ Server & Servlets
Rossback & Schireiber
Published by Addison-Wesley
ISBN 0-201-67491-2

3. Project Management for Information Systems, 3rd Edition
James Cadle & Donald Yeates
Published by Pearson Education
ISBN 0-273-65145-5

4. The Java™ Programming Language, 3rd Edition
Ken Arnold, James Gosling, David Holmes
Published by Addison-Wesley
ISBN 0-201-70433-1

5. Professional XML (Programmer to Programmer), 2nd Edition
Mark Birbeck (Editor), Nikola Ozu, Jon Duckett, Andrew Watt, st Mohr, Oli Gauti Gudmundsson, Jon
Duckett, Andrew Watt, Stephen Mohr, Kevin Williams, Oli Gauti Gudmundsson, Raja Mani, Daniel
Marcus, Peter Kobak, Evan Lenz, Mark Birbeck, Brian Hickey, Zoran Zaev, Steven Livingstone, Jonathan
Pinnock, Keith Visco
Published by Wrox Press Inc
ISBN 1-861-00505-9

6. The Rational Unified Process: An Introduction (2nd Edition)

Philippe Kruchten
Published by Addison-Wesley Pub Co
ISBN 0-201-70710-1

7. Extreme Programming Explained: Embrace Change
Kent Beck
Published by Addison-Wesley Pub Co
ISBN 0-201-61641-6

8. Planning Extreme Programming
Kent Beck, Martin Fowler
Addison-Wesley Pub Co
ISBN 0-201-71091-9

2. Webography
1. ASP Resource Index

http://www.aspin.com/

2. About GPRS
http://www.ericsson.com/mobilityworld/sub/open/infrastructure/gprs/index.html?PU=gprs

Appendices

LVIII

3. Network Programming with J2ME Wireless Devices

http://www.wirelessdevnet.com/channels/Java™/features/j2me_http.phtml

4. Extensible Markup Language
http://www.xmlfiles.com/

5. Java™ Resources

http://Java™.sun.com
http://www.Java™almanac.com

6. Methodology recourses
http://www.rational.com
http://www.agilemodeling.com/essays/agileModelingRUP®.htm
http://www.therationaledge.com/
http://www.greenmountain.nu/
http://members.aol.com/humansandt/crystal/clear/
http://www.softwarereality.com/lifecycle/xp/
http://www.martinfowler.com/articles/newMethodology.html

 http://www.agilemanifesto.org
http://www.extremeprogramming.org

3. Documents and White Papers
1. Lessons Learned Practicing Agile Development

Uttam Narsu and Liz Barnett

2. The Rational Approach to Automated Testing
A Rational Software White Paper

3. Applying Requirements Management with Use Cases
Roger Oberg, Leslee Probasco, and Maria Ericsson

4. Tailoring the Rational Unified Process, a Lightweight Process Development Case
ICONIX Software Engineering, Inc. and General Information Systems Technology, Inc.

5. Use Case Management with Rational Rose® and Rational RequisitePro
A Rational Software White Paper

6. Getting the Most Out of an Automated Test Tool

 Laura Lee Rose

7. RUP®/XP Guidelines: Pair Programming
A Rational Software White Paper

8. Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme Programming
A Rational Software White Paper

9. RUP® Framework, support documents and tools

Rational Software Corporation

Appendices

LIX

10. RUP®/XP Guidelines: Test-first Design and Refactoring
Robert C. Martin
Object Mentor Inc.
Rational Software White Paper

11. Avoiding the Death Spiral in Software Development
Steve MacCarthy, Freddie Mac

12. A Comparison of RUP® and XP
John Smith
Rational Software White Paper

