
Project Registry Report

Vilma Rudžionytė , Viktoras Čiumanovas ,

Darius Damalakas , Martynas Kriaučiūnas

November 8, 2005

Contents

1 Introduction to Project Report 1

1.1 Company Analysis . 1

1.1.1 Company Background . 1

1.1.2 Problem . 1

1.1.3 Project Constraints and Terms 2

1.2 Resources . 2

1.2.1 Place and Time . 2

1.2.2 Hardware . 2

1.2.3 Software . 2

1.2.4 Human Resources . 2

1.2.5 Project Adviser . 3

1.2.6 Customer Contact Person 4

1.3 Project Report Structure . 4

2 Iteration 1 – Inception phase (17 08 – 22 08) 5

2.1 Iteration Goals and Objectives 5

2.1.1 Methodology Choice . 5

2.1.2 Agreeing on Development Case 7

2.1.3 Initiating Project . 8

2.1.4 Artifact Templates . 8

2.1.5 Risk Assessment . 9

2.1.6 Risk Management Strategy 9

2.1.7 Role Assignment . 10

2.1.8 Teamwork Contract . 10

2.1.9 Company and Team Contract 10

CONTENTS ii

2.1.10 Software Development Plan 11

2.1.11 Phase Plan . 12

2.1.12 Iteration Management Plan 13

2.2 Requirements and UI Prototype 13

2.3 Development . 13

2.4 Testing . 14

2.5 Iteration Assessment . 14

2.5.1 Are the Goals Met? . 14

2.5.2 Reevaluate Risks . 14

2.6 Next Iteration Planning . 14

3 Iteration 2 (23 08 – 30 08) 16

3.1 Iteration Goals and Objectives 16

3.1.1 Doing Domain Model . 16

3.1.2 Doing Use Case Collection 17

3.2 Development . 17

3.2.1 Build Two Use Cases . 17

3.2.2 Initial Database Usage Strategy 18

3.3 Testing . 18

3.4 Iteration Assessment . 18

3.4.1 Are the Goals Met? . 18

3.4.2 Reevaluate Risks . 18

3.5 Next Iteration Planning . 19

3.6 Goals . 19

4 Iteration 3 (31 08 – 13 09) 21

4.1 Iteration Goals and Objectives 21

4.1.1 Iteration Planning Problems 22

4.2 Requirements and UI Prototype 24

4.2.1 UI Navigation Diagram 24

4.3 Development . 24

4.4 Testing . 25

4.5 Iteration Assessment . 25

4.5.1 Are the Goals Met? . 25

CONTENTS iii

5 Iteration 4 (14 09 – 28 09) 26

5.1 Iteration Goals and Objectives 26

5.1.1 Phase Plan Change . 26

5.2 Development . 27

5.2.1 Database Architecture . 27

5.2.2 System Architecture . 28

5.2.3 Test Plan . 29

5.3 Testing . 30

5.4 Iteration Assessment . 30

5.4.1 Are the Goals Met? . 30

5.5 Next Iteration Planning . 30

6 Iteration 5 (29 09 – 29 10) 33

6.1 Iteration Goals and Objectives 33

6.2 Requirements and UI Prototype 33

6.3 Development . 34

6.3.1 Database Subsystem . 34

6.3.2 Filtering . 34

6.4 Testing . 35

6.5 Iteration Assessment . 35

6.5.1 Are the Goals Met? . 35

7 Requirements 37

7.1 Introduction to Requirements . 37

7.2 First Step - Domain Model . 37

7.3 One Important Mistake . 39

7.4 Use Cases . 39

7.4.1 Purpose . 40

7.4.2 Collecting Use Cases . 40

7.5 Encountered Problems . 41

7.6 User Navigation . 41

7.7 User Interface Requirements . 42

7.8 System Prototype Requirements 42

7.9 Final Iteration Requirements . 43

CONTENTS iv

8 User Interface 44

8.1 User Interface . 44

8.1.1 User Interface Goals . 44

8.1.2 Web Elements Functionality 45

8.1.3 Building User Interface 46

8.2 Cascading Style Sheets . 48

8.3 CSS Evaluation . 49

8.3.1 CSS Choice . 49

8.3.2 User Interface Evaluation 49

8.4 Conclusion . 51

9 Implementation 54

9.1 Building Implementation Queue 54

9.1.1 Development Risks . 54

9.1.2 Use Case Prioritization 55

9.1.3 Building Final Development Queue 55

9.2 Database Design . 56

9.2.1 Problem . 56

9.2.2 Possible Solutions . 56

9.2.3 Our Choice . 58

9.3 The Page Life Cycle . 58

9.4 Dynamic vs Static . 61

9.5 Building two Functional Prototypes 63

9.6 Darius Prototype – Nano Pages 63

9.6.1 Prototype Goals . 63

9.6.2 Explained . 64

9.6.3 Class Diagram . 64

9.6.4 Advantages of this Prototype 67

9.6.5 Disadvantages of this Prototype 67

9.7 Martynas Prototype . 67

9.7.1 Prototype Goals . 67

9.7.2 Limitations of ASP.Net 67

9.7.3 Design . 68

9.7.4 Advantages of this Prototype 69

CONTENTS v

9.7.5 Disadvantages of this Prototype 69

9.8 Prototype Choice . 70

9.9 Building Arklys Injections . 70

9.9.1 How to Prepare the Page to Use DymacicContent 71

9.9.2 How to Add or Remove DynamicContent 72

9.9.3 How to Create DynamicContent Web User Control 73

9.9.4 Problems Creating Arklys Injections 73

9.10 Improvements to System . 75

9.10.1 New DBFillers and Improved Controllers 75

9.10.2 FilterDropDownList . 76

9.10.3 FilterTextBox and DatePicker 76

9.11 Final System Design . 76

9.11.1 Package View . 76

9.11.2 Project File Structure . 79

10 Testing 83

10.1 Introduction . 83

10.2 Purpose of Testing . 83

10.3 Test Types . 84

10.3.1 Unit Testing . 84

10.3.2 User Interface Testing . 86

A Iteration 1 – 17 08 - 22 08 Inception Phase 88

A.1 Goals . 88

A.2 Objectives . 88

A.3 Work Orders . 89

A.4 Iteration Assessment . 89

A.4.1 IterationSummary . 89

B Iteration 2 – 23 08 - 30 08 Elaboration Phase 91

B.1 Goals . 91

B.2 Objectives . 91

B.3 Iteration Assessment . 91

B.3.1 Iteration Summary . 91

CONTENTS vi

C Iteration 3 – 31 08 - 13 09 95

C.1 Goals . 95

C.2 Objectives . 95

C.3 Iteration Assessment . 95

C.3.1 IterationSummary . 95

D Iteration 4 – 14 09 - 28 09 99

D.1 Goals . 99

D.2 Objectives . 99

D.3 Iteration Assessment . 99

D.3.1 IterationSummary . 99

E Iteration 5 – 29 09 - 28 10 Construction Phase 102

E.1 Iteration Goals and Objectives 102

E.2 Requirements and UI Prototype 102

E.3 Development . 103

E.3.1 Database Subsystem . 103

E.3.2 Filtering . 103

E.4 Testing . 104

E.5 Iteration Assessment . 105

E.5.1 Are the Goals Met? . 105

F Iteration Management Plan 106

F.1 Introduction . 106

F.2 Document Holder . 106

F.3 Iteration Timing . 106

F.4 Iteration Plan Structure . 107

F.5 Iteration Evaluation and Assessment 107

G Software Development Plan 109

G.1 Deliverables . 109

G.1.1 Supplementary Specification 110

G.1.2 Use Case Specification . 110

G.1.3 User Interface Specification 110

G.1.4 Software Architecture Document 110

CONTENTS vii

G.1.5 Test Plan . 110

G.1.6 Initial Prototype . 110

G.1.7 Functional Prototype . 110

G.1.8 Operational System . 111

G.1.9 Deployment Tools . 111

G.2 Human Resources . 111

G.2.1 Team Structure . 111

G.2.2 Team Capabilities . 111

G.2.3 Roles and Responsibilities 111

G.3 Project Planning . 112

G.3.1 Phase Plan . 112

G.3.2 Iteration Plans . 112

G.3.3 Project Plan . 113

G.4 Technical Process Plans and Guidelines 114

G.4.1 Iteration Management . 114

H Risk Management Strategy 116

H.1 Introduction . 116

H.2 Document Holder . 116

H.3 What is a Risk . 116

H.4 Specifying a Risk . 117

H.5 Risk Management Strategy . 117

I Project Management Risk List 119

I.1 Introduction . 119

I.2 Document Holder . 119

I.3 Risk List . 119

I.3.1 Mis-conceived or Undefined Project Scope 119

I.3.2 Low-risk Tasks go First 120

J Glossary 122

J.1 Document Holder . 122

J.2 Glossary . 122

CONTENTS viii

K Development Risk List 123

K.1 Introduction . 123

K.2 Document Holder . 123

K.3 Risk List . 123

K.3.1 Lack of .Net Knowledge 123

K.3.2 Inappropriate Database Design 124

L Software Architecture 125

L.1 Introduction . 125

L.2 Document Holder . 125

L.3 Architectural Goals . 125

L.3.1 Main Components . 126

L.3.2 Database . 126

L.3.3 Web Application . 128

M Supplementary Specification 131

M.1 Introduction . 131

M.2 Document Holder . 131

M.3 Requirements . 131

M.3.1 Development Environment 131

M.3.2 Persistency . 131

M.3.3 User Interface . 132

M.3.4 Security . 132

M.3.5 Accurateness . 132

M.4 Functional Requirements . 132

M.4.1 Data Versioning / History 132

M.4.2 Multi-attachment Ability 133

M.4.3 Filtering Boxes in Datagrid 133

N Use Case Specification 134

N.1 Introduction . 134

N.2 Document Holder . 134

N.3 Domain Model Diagram . 134

N.4 Business Logic . 134

CONTENTS ix

N.4.1 Task Creation Cycle . 134

N.5 Use Case Template . 135

N.6 UC1: Insert Project . 136

N.7 UC2: Log Into System . 136

N.8 UC3: Insert Task . 137

N.9 UC4: View Projects . 137

N.10 UC5: View Project In Detail . 138

N.11 UC6: View Events . 138

N.12 UC7: View Event in Detail . 139

N.13 UC8: View Task in Detail . 139

N.14 UC9: Edit Task . 139

N.15 UC10: View Tasks . 140

N.16 UC11: View My Approvals . 140

N.17 UC12: Approve Task . 140

N.18 UC13: Delete Task . 141

N.19 UC14: Delete Project . 141

N.20 UC15: Edit Project . 141

N.21 UC16: Delete Event . 142

N.22 UC17: Edit Event . 142

N.23 UC19: Filter . 143

O Company, School and Team Contract 144

P Development Case 146

Q Test Plan 155

Q.1 Introduction . 155

Q.2 Document Holder . 155

Q.3 Types of Tests . 155

Q.3.1 Functional Tests . 155

Q.3.2 User Interface Tests . 156

Q.3.3 Security Testing . 157

R Team Contract 158

R.1 Purpose of this Document . 158

CONTENTS x

R.2 What is the Goal for the Team Work (What is to be Delivered

to Who) . 158

R.3 Team Members . 159

R.4 Resources Available for the Team and Assessment of Strengths

and Weaknesses . 159

R.5 Work Organisation . 159

R.6 What is the Goal for Team Work 159

R.7 Technical Resources Available . 162

R.8 Software . 162

R.9 Hardware . 162

R.10 Working Place . 162

R.11 Risks . 162

S XP versus UP a Methodology Comparison Study Work 164

S.1 Introduction . 164

S.2 Philosophy . 164

S.2.1 Paradigm . 165

S.2.2 Objectives . 165

S.2.3 Domain . 165

S.2.4 Target . 166

S.3 Model . 166

S.4 Techniques and Tools . 166

S.4.1 UP Techniques . 166

S.4.2 UP Tools . 167

S.4.3 XP Techniques . 167

S.4.4 XP Tools . 167

S.5 Scope . 168

S.6 Outputs . 169

S.6.1 Introduction . 169

S.6.2 UP Outputs . 170

S.7 Practice . 171

S.7.1 Background . 171

S.7.2 User Base . 171

S.7.3 Participants . 171

CONTENTS xi

S.7.4 UP Participants . 171

S.7.5 XP Participants . 171

S.8 Product . 172

S.8.1 UP Products . 172

S.8.2 XP Products . 172

S.9 Conclusion . 172

S.10 References . 174

T Project Registry Source 176

T.1 Pages . 176

T.1.1 BatchView Pages . 179

T.1.2 Insert Pages . 219

T.1.3 Edit Pages . 251

T.1.4 DetailView Pages . 259

T.1.5 Administrator Pages . 265

T.2 Users Management . 267

T.3 Common Library . 317

T.4 Custom Controls . 324

T.5 Tests . 332

Chapter 1

Introduction to Project

Report

1.1 Company Analysis

1.1.1 Company Background

“Blue Bridge” (later BB) is a big IT company, which possess big part of Lithuanian

Information Technology market. The company is doing projects from various

areas of IT.

“Project Registry” is an information system, which purpose is to manage

companies human resources among many projects.

1.1.2 Problem

Our task in BB is to develop a new version of “Project Register” system. The

system collects information about all projects, their tasks, assigned hours for ex-

ecution, employees, and project/department managers in the company. “Project

Register” can also provide statistical information, which helps manage the com-

pany’s resource usage.

1.2 Resources 2

1.1.3 Project Constraints and Terms

The project will be carried out in agreement with the following constraints and

terms:

Time: 2.5 months (from 17 of August to 31 of October),

Human resources: 4 team members.

System: Must be developed using ASP.NET and C#.

Main requirement: Usability.

1.2 Resources

1.2.1 Place and Time

The team was given a small room in companies office and was allowed to work

any time from Mondays to Fridays in the office.

1.2.2 Hardware

BB provided the team with two stationary PCs with internet connection in the

office. The other two team members had their own laptops. All computers were

connected to intranet.

1.2.3 Software

The company also provided us with:

Software: MSDN Library, Visual Studio.NET Enterprise Architect 2003, SQL

Server 2000 and MS Project;

Old System: BB made a copy of an old system and gave us access to it through

web interface with administrator privileges.

1.2.4 Human Resources

The team consists of four team members (see table 1.1).

We are probably the best team and here are our weaknesses and strengths:

1.2 Resources 3

Name Telephone E-mail

Vilma Rudžionytė +37060068449 vilma.rudzionyte@gmail.com

Martynas Kriaučiūnas +37067002732 martynask@gmail.com

Viktoras Čiumanovas +37067485615 viktoras.ciumanovas@gmail.com

Darius Damalakas +37060246428 darius.damalakas@gmail.com

Table 1.1: Team Members

Name Good Traits Bad Traits

Vilma Rudžionytė Raises teams morale 200% Does not program,

changes often study

programs

Martynas

Kriaučiūnas

Very structural thinking,

Good at addressing tech-

nical problems, overcomes

obstacles alone

Takes too much jobs at a

time

Viktoras

Čiumanovas

Keen on broadening his

knowledge, Talkative,

Open-hearted

Spends too much time on

contemplation on his tasks

Darius Damalakas Easily reacts to any kind

of changes, Finds solu-

tions alone,

Can’t work steady for

a long time, not always

able to accept other peo-

ple with their good and

bad sides, under-estimates

own limits and abilities

Table 1.2: Team Capabilities

1.2.5 Project Adviser

Our project adviser is Michael Claudius:

Name e-mail Phone number

Michael Claudius claudius@rhs.dk +4588523331

As we are doing our project outside Denmark, we are only able to commu-

nicate via e-mail or internet telephony. This was an obstacle to communicate

1.3 Project Report Structure 4

often and productively. However, no other better alternatives were found.

1.2.6 Customer Contact Person

Name Telephone E-mail

Andrius Dienys +370 699 97017 Andrius.Dienys@bluebridge.lt

Dalius Mašalas +370 685 41445 Dalius.Masalas@bluebridge.lt

1.3 Project Report Structure

Our project report is divided into chapters. The first five chapters discuss the

project in perspective of time. Each of the first chapter is dedicated for only

one iteration.

Subsequent chapters are related to one or two similar practices, showing in-

detail what was happening in the project in particular area.ening in the project

in particular area.

Requirements: This chapter discusses what decisions were made and thoughts

contemplated about collecting and eliciting requirements.

User Interface Prototype and Evaluation: User Interface related activi-

ties encompass prototype building and evaluation, as well as communi-

cation with customer.

Implementation: Chapter focuses on discussing what problems occurred whilst

implementing the system and what solutions were applied. The chapter

is concerned only about technical aspects of implementation.

Testing: This chapter focuses on discussing what problems occurred during

the code preparing for testing and they were solved.

Chapter 2

Iteration 1 – Inception

phase (17 08 – 22 08)

2.1 Iteration Goals and Objectives

Inception phase in our project was dedicated for getting used to new environ-

ment, get acquainted with company, install and find any necessary software and

agree on development case.

The goals were to:

1. Agree On Methodology

2. Agree On Development Case

3. Initiate Project

2.1.1 Methodology Choice

One of the most important things in the project – Methodology choice. So in

this section we will discuss:

• Goals of methodology

• Requirements for a methodology

2.1 Iteration Goals and Objectives 6

Methodologies Goals

“In software engineering and project management, a methodology is a codified

set of practices (sometimes accompanied by training materials, formal educa-

tional programs, worksheets, and diagramming tools) that may be repeatably

carried out to produce software. Software engineering methodologies span many

disciplines, including project management, analysis, specification, design, cod-

ing, testing, and quality assurance. All of the methodologies guiding this field

are collations of all of these disciplines.”1

In addition, a methodology should specify the training needs of the user of

the methodology. So, why we need methodology? Here we can identify three

categories of rationale:

1. A better end product – naturally we wanted to have a good system (prod-

uct). For this reason we had to compare the results of using different

methodologies.

2. A better development process – productivity is enhanced with the use of

a methodology; that is, we can either build system faster, given specific

resources or use fewer resources to achieve the same result.

3. A standardized process – needs of having a common approach throughout

an organization; More integrated system can result (easily change from

project to project without retraining).

So, the main goal of the methodology is to help control projects writing.

Requirements for the Methodology

We have chosen methodology according to requirements from the company and

our group.

• Company – from the beginning was important requirement: to use an

iterative process.

• Our team – The team insisted on going deeper into RUP, opposing that the

previous semester project was following XBreed, a well integrated solution

between Scrum and XP.
1http://en.wikipedia.org/wiki/Methodology (project management)

2.1 Iteration Goals and Objectives 7

In the 3rd semester we have studied comparison of methodology issues.

There are a lot of methodologies and also there are criterias that might be

considered in assessing methodologies: rules, simplicity, validity of design, doc-

umentation standards, etc.

XP and UP are well-known methodologies. Furthermore, they are very

different. The comparison of these two methodologies is in Appendix S

Conclusion

After compare methodologies, we decided to use UP methodology since:

• We have to use iterations

• We need take more care of the project

2.1.2 Agreeing on Development Case

Establishing Development Case

Development case describes the software-development process for a project. As

defined in RUP, the development case captures the tailored process for the

individual project.

Project manager, in communication with the team, made a development

case in a form of simple presentation document. The goal was to agree on what

artifacts and which activities are essential throughout the project.

The development case is included in appendix P

Development Case Lessons

“Road to hell is full of good intentions” – a saying which fits perfectly our

situation.

The intentions of development case were good, but whomever did this devel-

opment case, lacked a big deal of competency and experience to do so at least

satisfactorily.

The goal of the document was from the beginning unfeasible. That is plainly

visible (now, after we experienced it on our own skin), by simply looking and

estimating our project. RUP, essentially, is not suited for small projects, the

number of people should be no less than 10, or the time of the project should be

2.1 Iteration Goals and Objectives 8

as long so as to the project could actually run the intended processes. Now, in

project like ours the number of artifacts should be manageable and maintainable.

However, we chose to do approximately two or three documents for each person.

What is more, these documents were considered to be used “internally” in the

team, which ultimately proves that this was not ever going to be working.

So the lesson is that it is essential to walk on the pathway which goes on

the mountain peak and not to fall down. The pathway is the most harmonious

choice from the following sayings:

• Do the work which actually does the job and not the ones which makes

you go circles.

• Control the process and make it predictable.

In our case, we did the many artifacts, and not the things, which actually

bring value to the customer.

2.1.3 Initiating Project

To initiate the project we had to agree on artifacts to be produced. We took the

list of documents from our development case (P). We had to prepare template for

the following items: Risk List, Risk Management Plan, Software Development

Plan, Use Case Model, Supplementary Specification, Team Contract, Test Plan.

Risk assessment, role assignment, risk management and iteration manage-

ment plans are all integral activities in this phase.

Teamwork Contract is a means of transferring each members responsibility

to a formal level.

For Project Management had to develop iteration and phase plans.

2.1.4 Artifact Templates

Every document must have an introduction and document holder clause. The

first one describes what is the main purpose of the document. This was neces-

sary, as the number of managed document was high. The second states who is

responsible for managing that document. Very good for blaming somebody for

anything.

2.1 Iteration Goals and Objectives 9

2.1.5 Risk Assessment

In the establishment of the project phase the most important thing is to estab-

lish a project in a way, that it allocates resources in the best way and assigns

responsibilities for correct people.

Having incompetent people doing irrelevant job, soon will conclude in a

project going havoc. And people without resources will simply soon be perform-

ing a play, with the audience either acting together, or resisting and blaming of

doing inappropriate and inadequate job.

Thus in the first place what is necessary to do is to:

1. Define roles to ensure that proper responsibility area is given for each team

member (as much as possible)

2. Sign group work contract to establish strict (but broad, for the members

could play well) rules and define limits and constraints.

3. Assign authority and resources to make process possible to be flexible and

organized.

4. Define The process evaluation procedure.

2.1.6 Risk Management Strategy

Risk management strategy was defined in a document “Risk Management Strat-

egy” (H).

The goal of the document was to agree in team on how all the risks will be

managed during the project.

This document emphasized, that we agreed to separate project manage-

ments risks aside from development risks and that these will be held and deal

separately.

The document also explained how an identified risk must be documented.

It noted, that to clearly identify the risk, the member must write the name and

description of the risk, severity and probability, risk status, risk manager and

the mitigation strategy to be used.

2.1 Iteration Goals and Objectives 10

2.1.7 Role Assignment

Role assignment, ideally, should reflect the inner values of the team member.

This belief is based on our personally experienced facts that human beings are

more than machines and we are in need of not only energy of matter (such as

food), but energy of many forms, including sleep, and, more important, anything

else, which could be grouped to term “psycho-energy”. This term encompasses

everything, which we can not observe scientifically, but of which we can be

assured by simply examining our own experiences.

As for example lets consider a small team (say, 4 to 5 members), and two

situations. One is where team members are in light-weight atmosphere, full of

good mood, and full of freedom, where team members feel free to express their

identity in many ways. Another situation is where team members are closed,

for they do not feel free to express theirselves in ways they feel is right to do so.

The situations are very in contrast, and the reader can easily ascertain what

will be the results if had any similar experience. Will the team overcome easily

obstacles, and how well any process will be carried out is naturally dependent

not only on resources and assigned roles, but how do they fit their personalities.

The roles in our team were not defined artificially, i.e. the team naturally

observed and noted that one member is more prone to prompt action, the others

are more prone to anger, and the third one is natural idler.

The table Team Roles 2.1 shows member role assignment.

2.1.8 Teamwork Contract

In the beginning we have created Team Contract. It helped assigned and define

team roles and makes all members more responsible. All Team Contract is

placed in Appendix R

2.1.9 Company and Team Contract

One of the important things was also to make contract between company, our

team and school. This creates guarantee for the company that we do not leave

the project before the end of the project. Also it guarantees that the project

will be done completely. The contract is placed in Appendix O.

2.1 Iteration Goals and Objectives 11

Name Main Role

Vilma Rudžionytė User Interface Evaluation, Project Report Designs

and evaluates UI

Description She has done UI design in 3rd semester. She easily

copes with small-scope tasks, but easily bumps into

dead-ends when given more abstract tasks. Needs

strong guidance

Martynas Kriaučiūnas Software Architect: Responsible for setting and

assessing architectural analysis, defining reuse strat-

egy and leading Design and Implementation Work

flow

Description He has outstanding experience in designing software

and building reusable architectures. 4 years of ex-

perience with real world projects. Critical thinking

(some times too much). Structural thinking

Viktoras Čiumanovas User Interface Design: Responsible for building

UI prototype and communicating with customers

Description He has experience in designing software and build-

ing reusable architectures. Critical thinking. He has

experience in interaction with customers.

Darius Damalakas Project Manager, Process Engineer Responsible for

guiding the project and ensuring everybody agrees

on the working methods

Description He has outstanding experience in designing software

and building reusable architectures. 4 years of ex-

perience with real world projects. Critical thinking

(some times too much). Structural thinking

Table 2.1: Team Roles

2.1.10 Software Development Plan

For captured our roles and responsibilities, phase plan and iteration plans, a

software development plan. This is one of the key artifacts, as defined by our

development case. SDP is the starting point for anybody to search for informa-

2.1 Iteration Goals and Objectives 12

tion about the project.

Phase Planning

In the beginning we optimistically planned to divide project into two phases, or

even two related projects. One part would focus on porting the system to .Net

architecture, and this we were considering to finish till 21st October. The last

week we left out unplanned.

You can see our phase plan in table 2.2

2.1.11 Phase Plan

The project is going to be developed through 17 08 2005 to 31 10 2005. This

time was split into four phases.

Date Phase Name Phase goals

18 08 2005 –

22 08 2005

Inception Establish project and agree on

development case

23 08 2005 –

28 09 2005

Elaboration collect requirements, define user

interface, define architectural de-

sign, implement an architectural

prototype

29 09 2005 –

21 10 2005

Construction I Build an operation system, test

system

21 10 2005 –

31 10 2005

to be planned later . . .

31 10 2005 –

07 11 2005

to be planned later . . .

Table 2.2: Phase Plan

Project Planning

Immediately, we were thinking of making iterations very short, so we could gain

more control over them, by simply doing more evaluation and more planning.

2.2 Requirements and UI Prototype 13

Thus, we were planning to do more than six iterations. One for inception phase,

three for elaboration and two or three for construction.

2.1.12 Iteration Management Plan

Iteration management plan solved problems of how to manage each iteration,

how to write iteration plans and how to do iteration evaluations.

The plan stressed that iteration planning comes on Tuesdays participating

all team members, and that meetings with customer occur on Wednesdays.

Plan iteration management also defined iteration plan structure. Each it-

eration must define its goals and objectives, where goals can be understood as

high-level objectives.

What is most important, this document described how the process of iter-

ation evaluation must go. It emphasized, that during iteration evaluation not

only the goals and objectives must be achieved, but also that iteration must be

documented and summarized. This would help us collect information about our

project and use it for learning.

2.2 Requirements and UI Prototype

In this activity, all team members intensively were using the system to get used

to it and know what is going on and how it works. Aside from this, no other

important decision were made or performed.

2.3 Development

As what concerns the development area, the team was preparing working places

by installing various software. There also arise some problems with ASP.NET

installation on laptops. It was solved further iterations. There were some

problems with communication among computers: they were invisible from each

other. This problem was also solved later.

2.4 Testing 14

2.4 Testing

Not performed in this iteration

2.5 Iteration Assessment

In iteration end, we had an iteration assessment. The iteration assessment was

conducted as was defined in our Iteration Management Plan (F.5).

For the 1st iteration, the iteration evaluation is included in appendix A.4.

2.5.1 Are the Goals Met?

Our goals were three-fold: to Agree On Methodology, Agree On Development

Case and Initiate Project.

Methodology was discussed in section 2.1.1. Later, the methodology was

tailored to our specific project by building a development case, section P.

Project initiation was a multi-task, composed of many activities, such prepar-

ing contracts both between team members (Team Contract 2.1.8), and a three-

sided contract between team, company, and the school (2.1.9). We also did

requirement management strategy, risk assessment, created risk management

strategy, assigned roles and made project planning, which resulted in both the

phase plan, and the next iteration plan (2.6).

2.5.2 Reevaluate Risks

All risks have been identified in this iteration.

2.6 Next Iteration Planning

Next, second iteration was considered to go to the next phase – elaboration. It

would last from 23rd of august to 30th of august.

Initially, we planned this iteration to achieve these goals:

1. Establish a good base for requirements

2. Build an initial implementation prototype

2.6 Next Iteration Planning 15

More precisely, we intended to collect use cases, build domain model and try

to program first use case (UC1) Create New Project and UC3 Edit Project web

pages, of course, with only basic functionality. A requirement for implementa-

tion was that the system must already collect data from a database.

The iteration plan is included in appendix B.

Chapter 3

Iteration 2 (23 08 – 30 08)

3.1 Iteration Goals and Objectives

The main goals of iteration 2 were to:

• Collect more use cases,

• Build domain model,

• Implement two use cases,

• Develop Database usage strategy.

3.1.1 Doing Domain Model

The initial domain model captured the most important aspects of the domain

of problem. It is shown in figure 3.1. We did it mainly looking at the demo

system we had, and transferred the most important concepts to diagram.

There were a lot of disputes about the notation of diagram, but finally we

agreed, that domain model will show:

• Real world classes with their attributes and attribute types,

• Multiplicity between class relationships,

• Any inheritance relationships exist.

Such a domain model established a correct understanding of the system

between members.

3.2 Development 17

Figure 3.1: Domain Model

3.1.2 Doing Use Case Collection

Use case collection was performed during meetings of team and customers. The

collected information (which was written down during meetings), afterwords

was added to iteration evaluation phase. Here is a sample of what we collected.

The full list can bee found in Iteration 2 Evaluation section in appendix B.3.1.

3.2 Development

3.2.1 Build Two Use Cases

The goals in the development were to build first use case UC1: Create New

Project and UC3: Edit Project use cases. The requirements was that the system

would already connect to database and show data from it.

Doing this task we faced with a severe problem of lack of .Net knowledge.

The team had to study intensively .Net platform features and C# language.

Soon, before iteration end we succeeded in connecting to database, making

3.3 Testing 18

the two use cases with very small functionality. We also found out how to do

sorting of data in datagrid, how to do edit pages, and how to insert many control

in one single data grid cell.

3.2.2 Initial Database Usage Strategy

Another goal was to develop a database usage strategy. This database usage

strategy was discussed with Dalius Mašalas a few times and a good initial draft

was established already in this iteration. It was finished in next iteration, and

you can see it in appendix L.3.2.

3.3 Testing

Not performed in this iteration.

3.4 Iteration Assessment

In this iteration we have discussed about use case collection and building. As

was mentioned in iteration gaols, we have done Domain model and discussed it.

3.4.1 Are the Goals Met?

The objectives were to create domain model (N.3). Domain model enabled us

to understand the problem domain equally between all members.

Initial Database Schema was made and it was communicated with Dalius

Mašalas for approval. We prioritized our development tasks (9.1.3).

Initial software architecture document was created. Prototype is now con-

necting to database and shows data from it.

3.4.2 Reevaluate Risks

There are many risks in every project, and thus one must evaluate carefully

them. Performing any actions the first thing must always keep in his mind and

be conscious about it is not to over do things and exaggerate them and not to

omit them too much.

3.5 Next Iteration Planning 19

Being conscious about it, the most severe and important to document and

note risks that we consider are these:

• Mis-conceived or undefined project scope

The team has agreed to port the existing system to .NET platform until

1st of October. The problems is how to evaluate, when the project is

successfully ported. What functionality must be present and which not?

Which functions are considered as “add–on” functions and will be tackled

in Construction phase II (see project phase plan G.3.1). What about bug

penetration? Must the port be completely bug-free? Is this feasible at

all?

3.5 Next Iteration Planning

According to our iteration management plan, we planned our next iteration as

we did earlier: iteration is one week length and do the most riskiest tasks first.

This way, all team concluded on the following next iteration goals:

3.6 Goals

1. To generate an architecture, and build a proof of concept, if feasible

2. To look at alternate solutions (Ajax)

3. To master C#

However, this plan was evaluated not as we expected by our customers. They

suggested to concentrate more on system requirements collecting and old system

understanding.

Summary of meeting with the company

• Do we have to implement Administration feature in the system during

first construction phase? YES.

• Do we have to implement various reports (Ataskaitos) in the system during

the first construction phase? NO, not necessarily.

3.6 Goals 20

• Do we have to implement multi-file attachment feature during the first

construction phase? NO, not necessarily.

• In Administration− >Personal Workers Information is “Work” column.

Who manages this column: Administrator or the system counts it dy-

namically ? Administrator. It is important value, by which system knows

to show worker in employee lists or not.

Chapter 4

Iteration 3 (31 08 – 13 09)

4.1 Iteration Goals and Objectives

Our initial iteration goals were very focused on learning C# and how to im-

plement one or another feature. However, this was very unacceptable by our

customers.

They criticized us for focusing on not the right tasks. They argued this by

pin-pointing our “progress” in customer requirement collection. By the start of

September, we had done very little to collect and understand user requirements.

We had conducted interviews with customer, but the Use Case Specification

document was not reviewed by customers at all.

Therefore, we changed our iteration plan, and developed a new one. Now

we have an old, obsolete iteration plan, and a new one (appendix C).

The new revised iteration plan included more focused activities on collecting

user requirements:

• Collect user requirements,

• Develop system prototype.

The tasks in iteration 3 were:

• Complete a User Interface Specification: for each of 19 pages build a

window with visual studio and insert the screen shot of that page into UI

specification.

4.1 Iteration Goals and Objectives 22

This, after discussion in team, was agreed to be irrelevant for our project.

More important would be to do User Interface Prototype with some rapid

development tools.

• Build a SAD. This includes generating DB schema, producing class dia-

grams, system sequence diagrams, package diagram and writing program-

ming guidelines (such as how to use DB).

• Build DB scripts. DB scripts should create all tables, add all constraints

and all relationships into database.

• Build Use Case Specifications. This includes defining and detailing all

currently known 17 use cases. Use cases must be of deliverable quality to

the customer. Any important vocabulary (such as who is employee and

who is project manager) must be defined in glossary.

• Build Core package, Permission, ProjectBuilder. This includes build-

ing a NanoBuilder, NanoPageLoader, BBPage classes, CBProjectDetail

and NanoProjectBuilder and NanoMyProjectBuilder 9.6.

4.1.1 Iteration Planning Problems

Mis-conceived Scope

We had a problem with iteration planning of mis-conceiving the nature of it-

eration. During project establishment, we discussed the question of how long

should the iteration be? There were two opinions: one was to make iterations

length for one week, for the sake of increased flexibility. The other was to make

it longer, and at least two weeks length, putting as an argument a notion that

the act of planning an iteration would take a lot of time if we had only a week

for each iteration.

The group decision was to do one week iterations, which later proved itself

to our project manager, that one week is simply insufficiently low. Having one

week iterations is more to a control check-points than to an iteration. The team

had a discussion and project manager politely excused for his dismal failure to

control the project and decided to have two weeks length iterations from now

on.

4.1 Iteration Goals and Objectives 23

Poor Task Assignment

The poor task assignment problem was very intense during the beginning of

project, since the project manager tried to plan and assign all tasks fine-grained.

This was partly due to mis-conceivement of the nature of an iteration. As an

example see table 4.1 which shows objectives of an old iteration 3.

The objectives are very unspecific and unclear, vague. More to it, they do

not result in any tangible artifact, only part of in best case.

This suggests two things: either the iteration must be longer and objectives

must result in one or another product, or this is simply a task list, which is for

our small project way too much fain-grained.

Objective Worker

Fill SAD architectural goals section Martynas Kriaučiūnas

Evaluate Risk: less time for program-

ming

Darius Damalakas , Vilma

Rudžionytė

Generate a framework idea and build a

proof of concept solution

Martynas Kriaučiūnas , Viktoras

Čiumanovas

Look at system permission models and

revise DB schema

Martynas Kriaučiūnas

Table 4.1: Obsolete Iteration 3 Objectives

Lessons Learned

The lessons learned are outlined in the following list:

• An iteration is more than a check-point, and it is less than a milestone. If

check points are for checking are we on the right track, milestones strictly

define our goals and time limits, then iterations are just right in the middle

between these two.

• Iterations should produce tangible defined products. If they can be mea-

sured, even the better.

• The iteration length varies greatly from project to project. To do it right,

one must evaluate (based on his/her experience) the size of the project

4.2 Requirements and UI Prototype 24

and the number of people working on it, and note that iteration is not a

milestone nor a check-point, and it must produce tangible products.

• The plan for the iteration is the one that is specifically made for it. It

should not be too detailed, nor it should be too abstract. We have check-

points and milestones for such plans.

4.2 Requirements and UI Prototype

4.2.1 UI Navigation Diagram

In order to agree on how many pages and what are they and what are naviga-

tional directions, we built an User Interface Navigation diagram. The diagram

is shown in figure 4.1.

Figure 4.1: UI Navigation

4.3 Development

In iteration 3 development was very intense. Darius built his own “Nano Pages”

architectural prototype, and later on (pressed by Darius) Martynas built his. A

prototype should be understood in this case as a one or two days implementation

work, which outlines the main ideas of how the system should be built and how

should it operate.

4.4 Testing 25

To build two different prototypes was a necessity. The main factor was that

Martynas was not satisfied with Darius’s solution. This dissatisfaction, as we

can now observe, arouse from il-structured solution. However, on the other

hand, Martynas, by that time could tell no way how to do it good.

Eventually, Martynas’s prototype was built and chosen, as his solution had

an initial structure. Later, it was enhanced with features, that were lacked

compared to Darius solution. This is discussed in detail in section 9.8;

4.4 Testing

Not done in this iteration.

4.5 Iteration Assessment

4.5.1 Are the Goals Met?

Iteration 3 was concerned about building two user prototypes. These were done

and are discussed in 9.6 and in 9.7.

Summary of meeting with the company

• Is it preferable, that for every attached file would be possible to specify a

file type? - YES. It must be a list of structured titles, such “Agreement”,

“Analysis Result”, etc.

• Do we need to create individual table with “My Events” information as is

done with “My Projects” and “My Tasks”? - No, it is not needed, since

there are not so many events. Who can perform all actions with events?

- Project Manager, Department Manager and Employee who creates an

event.

• Suggestion: During the project: 2005 09 07, User Interface prototype re-

view

• Do we have to implement the Back button in the system, since it is im-

plemented in browser too? - It is not necessary. If you be able to ensure

good system functionality without Back button you may skip it.

Chapter 5

Iteration 4 (14 09 – 28 09)

5.1 Iteration Goals and Objectives

1. To create best Use case solution and finish with them,

2. Establish the following documents:

• Database architecture,

• System architecture,

• Test Plan,

• Use Case.

3. Transfer partial User Interface on the system (e.g. shift, align, etc.) and

to run system prototype for the clients and other users.

5.1.1 Phase Plan Change

Analysing our progress and looking ahead we encountered our phase plan to be

out-of-sync with the actual situation.

The project was not going as expected, and our belief we would finish the

system before the end of project end time did not prove out.

We chose the simplest solution above all. As we are limited by time, and

constrained by our knowledges, we lowered our commitments to customers and

re-estimated our capability. The new phase plan was developed as shown in

table 5.2

5.2 Development 27

To make Database architecture documents Martynas Kriaučiūnas

System architecture Martynas Kriaučiūnas

Make Test plan Viktoras Čiumanovas and Mar-

tynas Kriaučiūnas

Finish Use case and make documentation Darius Damalakas , Vilma

Rudžionytė

Continue System core programing Martynas Kriaučiūnas and Dar-

ius Damalakas

Make User interface Viktoras Čiumanovas and Vilma

Rudžionytė

Make Initial prototype for testing Martynas Kriaučiūnas

Table 5.1: Iteration 4 Objectives

Date Phase Name Phase goals

18 08 2005 –

22 08 2005

Inception Establish project and agree on

development case

23 08 2005 –

28 09 2005

Elaboration collect requirements, define user

interface, define architectural de-

sign, implement an architectural

prototype

29 09 2005 –

31 10 2005

Construction Build an operation system, test

system

Table 5.2: Phase Plan

5.2 Development

5.2.1 Database Architecture

Because there is a lot of complex (e.g. maintaining relations between data,

filtering it etc.) work done with various data in the system, it was decided to

use a Database for storing persistent data.

Usually database architecture is done by adding relation and some extra

fields to a system domain model. In our case it was a bit more difficult because

there were a requirement to store history. For storing history three possible

5.2 Development 28

strategies has been proposed for the client.

Log a Field Change. Using this strategy a change of a field is logged storing

its old and new values in an external database table.

Duplicating Entries. Using this strategy if a table row is changed it is dupli-

cated regardless one or more fields are altered.

Split Tables. This strategy is similar to previous one. The difference is that

all tables are divided into two. The first one holds data which does not

change or changes are not logged. In the second table data which has to

be logged is stored. This table is managed the same like in the second

strategy.

Advantages and disadvantages of the strategies are evaluated in chapter 9.2.

After analysing possible strategies it was decided to take the second one. It

was considered the best, because it brings biggest advantages, least disadvan-

tages, is easy to understand and implement.

5.2.2 System Architecture

The initial architecture for the system was made during this iteration.

In last few iterations we were learning intensively ASP.NET and trying to

make something working (e.g. connect to a database, insert record, etc.).

Darius and Martynas had two different opinions how to design the system.

Since it was difficult to compare advantages and disadvantages of both variants

it was decided to implement few user pages using using both approaches (Darius

and Martynas did it) and take better looking one.

Darius’ System Design – Nano Pages

The system was divided into the following components: BBPageLoader, Code-

Behind (CB), NanoBuilder and PermissionManager.

BBPageLoader acts as mediator, who controls the building process of web

pages.

CodeBehind component classes together with .aspx files constitutes the web

pages. NanoPageLoader intercepts the load routine of web pages, and then

dictates the building process.

5.2 Development 29

NanoBuilder, on request of BBPageLoader, “builds” the web pages. “Build-

ing” actually means modifying and configuring web pages, and not building

those from scratch. This is done this way because the goal is to mix the dy-

namic building and visual design.

PermissionManager simply acts as a service provider. All it cares about is

user identity and permissions.

Martynas’ System Design

When making prototype, Martynas was concerning on code reusing and MVC

(i.e. Model, View, Control) architecture. He considered these requirements to

be most important:

• User interface must be designed visually (at least major part of it).

• Reduce duplication of code. It is very important, because copy & paste

is the source of most bugs since you often forget to fix some places when

refactoring.

The system was divided into the following components: DataBaseControllers

(did the work concerning data loading, saving, versioning. . .) – logics, and Pages

– view part. View part were structured further into: BatchView, Edit, View.

Conclusion

We chose to stick to Martynas prototype because of his good structuring of files.

Darius prototype maybe had system separation into different modules, but that

was not reflected in the prototype on how the system was divided into physical

files. This would have had a significant impact of how the team would work,

thus Martynas prototype was considered as a better one.

Read more about each prototype in chapter 9.5.

5.2.3 Test Plan

The test plan contains information about the purpose and goals of testing within

the project. Additionally, the test plan identifies the strategies to be used to

implement and execute testing and resources needed.

The test plan was made and such areas for testing were distinguished:

5.3 Testing 30

• functional – ensure proper functionality, including navigation, data entry,

processing, and retrieval.

• user interface – ensure that the User Interface provides the user with the

appropriate access and navigation through the functions and all the pages

have a common style.

• security – ensure that only those users granted access to the system are

capable of accessing the system.

5.3 Testing

Not in this iteration

5.4 Iteration Assessment

5.4.1 Are the Goals Met?

User interface prototype already contains 5 of 20 pages, which are agreed and

approved by the customer.

Software architecture document L now clearly defines the architectural goals

and the overall system design. Database architecture was negotiated with Dalius

Mašalas and written down.

5.5 Next Iteration Planning

In our final iteration we were able to roughly estimate and calculate how much

work we will be able to do till the end of our project.

We counted and estimated, that to project finish we will be able to do the

following:

• Build 5 Batch View pages. Each page would take one day of programming.

• Build 5 Insert–Edit pages. Each page taking 0.7 days to program.

• Build 5 View Details page, for each page taking 1 day.

5.5 Next Iteration Planning 31

Counting all pages, we found that it would 17 days to do all these tasks. We

are two programmers in the group, and work only half a day for the project, so,

starting from 5th of October, we would finish on 28th of October.

However, this would happen if all would go as planned. If taken into account

that:

• We need to do testing as well,

• Write Project Report,

• And some pages would take more time to implement than expected due

to their complexity (for ex. some pages will require Java Script program-

ming),

we do not have enough time to finish everything on time. Therefore, we low-

ered the number of pages and committed to build 4 Batch View pages (Batch

Employee View, Batch Event View, Batch Project View and BatchTask view),

build 4 insert–edit pages (Insert Employee, Insert Event, Insert Project, Insert

Task) and build only one View page: View Project. This decision was made

considering most difficult to implement pages do first and easiest last.

Our final commitment to customers looks like this: From 5th of October to

29th of October build 4 BatchView pages, 4 Insert–Edit, and 1 View Page.

Final assessment meeting will be held on November 2nd (Wednesday).

Summary of meeting with the company

• Suggestion during the project :2005 09 14, User Interface prototype review

• It is preferable to implement the Task insertion form like line (something

like in Excel).

• The User must have possibility to choose how many Task insertion fields

he/she would like to see (i.e. 10, 15, 20 etc.).

• Suggestion: During the project: 2005 09 21, User Interface prototype re-

view

• The Task column in Projects table can be some images, since it would save

some place and would be more understandable. It is better to implement

5.5 Next Iteration Planning 32

the column Project finished with words (Yes/No) or some images, instead

with check boxes.

• Team members must add two new columns into Projects’ table: Defined

project hours and used project hours. Those columns must be placed after

End date columns.

Chapter 6

Iteration 5 (29 09 – 29 10)

In iteration 5 the planned was remade for the last time and we committed to

do the job till the end of our project.

6.1 Iteration Goals and Objectives

1. Implement system,

2. Improve User Interface prototype,

3. Write project report.

Implement Task Insert page Darius Damalakas

Implement filtering Martynas Kriaučiūnas and Darius Damalakas

Make User Interface prototype Viktoras Čiumanovas and Vilma Rudžionytė

Table 6.1: Iteration 5 Objectives

6.2 Requirements and UI Prototype

According to our customer, User Interface is most important part of this project.

So at this iteration a lot of work was done making and tuning user interface.

The highest priority was given to Insert Task page, because it was used very

often and was inconvenient. The requirement was to make task inserting as fast

6.3 Development 34

as possible. So the page was made similar to a Microsoft Excel Spread Sheet

and it was made that few tasks could be inserted at once.

In this iteration was agreed on a common design of Batch View and In-

sert/Edit/View pages.

All the designing was made using CSS (Cascading Style Sheet) technology,

so it was easily applied on the real system.

More about User Interface design is written in chapter 8.1.

6.3 Development

In the last iteration system design was made and the development was started

using it. During the development process we realised that system architecture

was not good enough and it was changed.

6.3.1 Database Subsystem

First of all Database Controllers were split into Database Fillers and Database

Controllers. The task for Database Fillers was only to fill a table with data.

The need of them came up when we realized that few Database Controllers

(old ones) need to fill in the same data (e.g. most pages required data about

projects), so we decided to reduce duplication of code by extracting parts of

it into Database Fillers. Database Controllers made was responsible only for

inserting new records and updating existing ones.

6.3.2 Filtering

When designing User Interface prototype, there was a request to add filtering

fields above each column and it was required that filters would work while

navigating through pages.

Filters influenced system architecture as well, because it system had to load

filters on page load and gather data according to them.

It was decided to store filtering rules in browsing Session. To implement

data filtering successfully, we had to create our own custom web controls:

• FilterDropDownList – This control was an extension to a normal drop

6.4 Testing 35

down list, except it had a few new attributes: FilterOperation, Filter-

ColumnName, DefaultValueID and DefaultValueText.

• FilterTextBox – This control was an extension to a normal text box, except

it had a few new attributes: FilterOperation, FilterColumnName.

6.4 Testing

In this iteration testing was started.

Our testing process was done according to guidelines stated in document

“Test Plan” Q. It was planned to have such tests:

• functional – ensure proper functionality, including navigation, data entry,

processing, and retrieval.

• user interface – ensure that the User Interface provides the user with the

appropriate access and navigation through the functions and all the pages

have a common style.

• security – ensure that only those users granted access to the system are

capable of accessing the system.

Security testing has not been done, because only few security features has

been implemented till the end of the project.

In the beginning constant refactoring often resulted in non functional system

which bothered other team members. After implementing unit tests, a developer

could easily check if everything worked correctly before committing changes to

the main repository.

We benefited a lot from testing, because bugs were caught faster and we

were always sure that the system is always well functioning.

More about testing is written in chapter 10.

6.5 Iteration Assessment

6.5.1 Are the Goals Met?

The goal of this iteration was agree on User Interface design and build the

system with 4 Batch View pages, 4 Insert – Edit pages and 1 View Details

6.5 Iteration Assessment 36

page.

Because we were short in time (the system appeared to be bigger then in

the beginning of the project), we did not succeed in implementing the whole

system. We made proof of concepts – implemented at least a single page of each

different type.

Chapter 7

Requirements

7.1 Introduction to Requirements

The main requirement, which our team had to perform during the project, was

to copy the existing system from ASP to ASP.NET. The existing system was

given us as a white box. We had a demo version of existing system. So our

team was possible to try and test it, but no code was given. Indeed, the old

system code would not be useful for us, because ASP.NET differs from ASP.

The second most important requirement for our team was the systems us-

ability. It means that we had to put more attention on system user-friendliness.

Our team expected that this requirement would be ensured by viewing the demo

system, but later we admit it was not enough (look at section 7.3).

These two requirements were our main guidelines during all project and

other upcoming requirements were relative with those two.

In the beginning of project (during first iteration) we admitted that it would

be easier to manage requirements if we separate them in functional and non-

functional requirements.

7.2 First Step - Domain Model

During the second iteration our team explored demo system and collected infor-

mation required for domain model building. Since we knew the existing system

not so well it was quite difficult to acknowledge all system’s attributes and de-

7.2 First Step - Domain Model 38

tails, but finally we made it. After that we assembled all data together and

produced the system’s domain model (look at figure 7.1).

Figure 7.1: Domain Model

From Domain model we see the logical structure of the system.

Each project has many attributes, such as its name, size and start–end dates.

Also, each project has a project manager, can have many events and many tasks.

An event example could be a steering committee meeting, or anything else,

which is not a task, but occurs in a project life cycle. A task is an assignment

for a specific employee.

Project manager together with Department manager are specializations of

employees. The difference between ordinary employee and managers are:

1. Project manager can create projects

2. Project is possible to commit inserted tasks

3. Department managers are possible to commit inserted tasks, which belong

to that department projects.

7.3 One Important Mistake 39

Ordinary employees can only insert tasks and edit them, create new projects

(and become managers for that project).

A task is allocated in relation to a project for an employee. A tasks is

characterized by specific set of attributes, such name, priority, begin – end

dates and others.

7.3 One Important Mistake

We thought that it would be enough to collect requirements from demo system.

In time we noticed that it is not enough to gather requirements only from given

system, but it was also important to communicate closely with our customers.

Every week, usually on Wednesdays, we had meetings with our customers. In

the beginning of the project during the meetings we just shortly presented what

we have done without clear meeting content. Our customers were dissatisfied

with that. So they provided some requirements for further meetings:

• There has to be one spokesman (one of team members), which would

represent team’s progress

• It is preferred to send meeting’s program to the customers.

• The meeting’s content have to cover three parts:

1. What is done after last meeting

2. What is projects progress at that time.

3. What is estimated to do till next meeting

• There has to be a person, who would write customers answers to our

questions

7.4 Use Cases

The next step was use cases development. They covered big part of functional

requirements and described main work flow of developed system.

7.4 Use Cases 40

7.4.1 Purpose

Use Case specification is usually created as a part of system requirements.

As the name implies, Use Cases are mainly intended to describe how users

communicate with a system. As long as the main requirement for our system is

usability, Use Cases are essential for us and requires exclusive attention.

Gathering Use Cases, it is very important to specify not only the the actual

story how the user is using the system, but also to find out, how often it is

performed. When designing a system, tasks which are performed most often

should be simplified as much as possible, so they would take as less time as

possible to complete them.

7.4.2 Collecting Use Cases

The process of collecting Use Cases was not very difficult for us, because most

of them we could specify by observing an existing system.

Before collecting use cases, we made an use case template (all template is

in appendix N.5.

Access Rights – in this section it is stated who can execute this use case.

Preconditions – in this section other conditions are stated which have to be

full filled in order to be able to execute the task.

Postcondition – a description of changes, actions which happen if the use case

is completed successfully.

Basic Flow – a successful story of how the user uses the system.

Task Insert

In our system Task Insert use case was emphasized among others. This case

is very important for Blue Bridge, because project managers usually have to

assign 10 or more tasks at once to team members.

In the old version of the system user has to insert tasks one-by-one: fill all

fields for a task, submit it and then pick Insert Task again. Second drawback of

the old system is that there is a framework, which creates insert window with

7.5 Encountered Problems 41

all possible fields. The problem is that in Insert Task some fields are irrelevant

and has to be only in Edit mode.

In the new version, Task Insert window will look like an Excel Sheet and a

user will be able to quickly navigate using Tab button between fields and fill in

many tasks a time. Second improvement is that we were able to get rid of some

unnecessary fields which were in the old version of the system.

7.5 Encountered Problems

This stage took longer. There was a couple of reasons for that:

• The team was not consistent of agreeing what actually constitutes a use

case, and what style should it reflect, despite we had a template. Thus we

spent too much time arguing how to do it than actually doing it.

• Our customer were busy, and we missed the time when they were ready

to spend time with us.

7.6 User Navigation

To clearly understand the user navigation between pages, we made user navi-

gation diagram (see figure 7.2).

Figure 7.2: UI Navigation

7.7 User Interface Requirements 42

7.7 User Interface Requirements

This requirements gathering stage was mostly dependent from customers. Since

our customers were IT systems Development Company, they understood and

caught our mistakes well and gave us many suggestions.

To build user interface prototype we put more effort than we actually planned

to. There was a coupel of reasons for that:

• In the beginning, we planned it to take one or two iterations. Actually, it

took much more.

• User Interface prototype building was assigned for one team member. It

was a difficult task for him, but other team members did not put sufficient

effort to help him.

• Lack of experience in interface design area

7.8 System Prototype Requirements

This project development stage was planed to being implemented during 3rd

iteration. This part of development process was parallel to UI prototype re-

quirements gathering. It means we had spread our time in two parts to manage

both works at one time. It was quite difficult, since UI interface required fre-

quent reviews and meetings with customers. On the other hand we had also

to collect system requirements and implement them. Fortunately, to collect re-

quirements for system prototype it was quiet enough of demo system and earlier

gathered requirements. There was not so big need to organize many meetings

with customer.

During the 3rd iteration from domain model and collected use cases we

already had even two suggestions for system prototype. Then we rebuild both

of them and produce a new and better one, which covered both prototypes. the

customers also got us some suggestions and soon after required changes they

had agreed with our system prototype.

During the 4th iteration we build and test our system prototype. Though

UI prototype was not finished at that time but it was not so much time left

for divided work. So, during that iteration was decided to combine system

7.9 Final Iteration Requirements 43

prototype with UI prototype and continue work when all project parts would

be performed in one place.

At the beginning of 5th iteration the system prototype and UI prototype

(though was implemented not all planed requirements) was finished and started

all system development IN ONE.

7.9 Final Iteration Requirements

This iteration took most time in comparing with others. There was no need

spread this iteration in two shorter ones, since our team knew most part of

system requirements. We knew clear what we have to do:

• There was some holes in system security and rights providing

• The UI was also not so perfect

• The Real system users data were also not ported on our system

• Many smaller things, which was our headache

We also knew we have not so much time. Since all our situation was much clear

now we were possible to predict how much time we will need. The predicted

result was not such we expected in the beginning of the project: There was 160

hours lack. So it was made decision that it is better to port real data in the

system with some mismatches than fix some small mismatches, holes and made

UI very good.

Final result of our work was quiet good, I think, since we implemented the

main part of our requirements (80 % of all). There left holes and mismatches,

but from students point of view we got much expiriance and done wath we

could.

The main lesson: “Experience is like path to somewhere, you can look back

and see what you done wrong, but if you want go further you must put next

step. No one knows if it be right step, but if you want learn walk you must

go.”

Chapter 8

User Interface

8.1 User Interface

During the 3rd Iteration, we start creating User Interface prototype(UI). And

the purpose of this section is to introduce with our User Interface prototype:

• Why we need UI prototype – 8.1.1

• UI elements and guidelines – 8.1.2

• Creation of UI prototype – 8.1.3

• UI prototype evaluation – 8.3.2

8.1.1 User Interface Goals

According to our customer, User Interface is most important part of this project.

The main idea to create User Interface is to give a look at the system and

get the feedback, which would help to understand mistakes and bad design early

enough to resolve the problems easily. The problems we can find with the help

of User Interface prototype might be from choosing inappropriate colors for web,

wrong navigation between pages to even omitted system functionality.

In the beginning we start studying how to create nice looking UI. The main

task was to analyze Web Design elements.

8.1 User Interface 45

8.1.2 Web Elements Functionality

It is one thing to create a set of web pages, it is another thing entirely to make

a good looking, cohesive and well-designed set of web pages. To realize User

Interface, we must know what Web design elements are and how to use them.

We start with collecting Web elements guidelines, study them and chose

the best for our project. Down the page we show some guidelines, which are

important in UI creation and realization.

Web Design Guidelines

1. Capitalize the first letter of only the first word of a list item, a list box

item, check box labels, and radio button labels.

2. All Web pages should be structured for ease of comprehension. This in-

cludes putting items on the page in an order that reflects their relative

importance. Pages should be long enough to adequately convey the infor-

mation, but not so long that excessive scrolling becomes a problem.

3. Clearly differentiate navigation elements from one another, but group and

place them in a consistent and easy to find place on each page.

4. There are several issues related to text characteristics that can help ensure

a website communicates effectively with users:

• Use familiar fonts that are at least 12-points;

• Use black text on plain, high-contrast backgrounds;

• Use background colors to help users understand the grouping of re-

lated information.

• Use a familiar font to achieve the best possible reading speed.

5. In order to interact with a website, users usually require the use of screen-

based controls (sometimes known as “widgets”). Besides the pervasive

link, commonly used screen-based controls include pushbuttons, radio but-

tons, check boxes, drop-down lists and entry fields. Designers should en-

sure that they use familiar widgets in a conventional or commonly-used

manner.

8.1 User Interface 46

6. When pushbuttons are used, ensure that they look like pushbuttons and

that they are clearly labeled.

7. Check boxes are used to select from among two or more mutually exclusive

selections.

8. Radio buttons should be used to make binary choices, e.g., “yes”or “no”.

9. Drop-down lists are generally used to select one item from among many.

10. To speed user performance, show default values when appropriate, and do

not limit the number of viewable list box options.

11. Entry fields are used when filling-out forms and entering text into search

boxes. We should try to minimize the amount of information entered

by users. Each entry field should be clearly and consistently labeled,

with the labels placed close to the entry fields. To facilitate fast entry of

information, designers should automatically place the cursor in the first

data entry field, provide labels for each field (e.g., time, names, numbers,

etc.), and provide auto-tabbing functionality. 1

12. Coloration of the web pages can not be showy. Colours must be soft and

in the page can not be striking contrast. It would be nicely if colours will

not be very different. According to some colour-scheme standards, colours

must go from dark to light or from light to dark. We have created few

screen shots with different colours palette. They are needful, because can

help to choose best variant for the last project version. Down the page we

show few versions of different coloration. 8.2 8.1 8.3

After we have recognized Web Design elements, we start creating User In-

terface.

8.1.3 Building User Interface

To create UI we had two opportunities: draw it on papers or use web building

program. We did not draw UI on papers because it would be difficult to use

them and understand and trace the navigation between pages. However, it is
1http://usability.gov/pdfs/chapter15.pdf

8.1 User Interface 47

Figure 8.1: ScreenShot1

Figure 8.2: ScreenShot2

8.2 Cascading Style Sheets 48

Figure 8.3: ScreenShot5

not a bad solution, if there are only a few pages. But for us it was not a good

idea, because as we have mentioned in the beginning of this section, it is very

important to have all UI web pages. We chose “Visual studio” web building

tool. This tool has all needful controls and in addition we could put various

web elements onto the page - backgrounds, buttons, links, pictures, data grid,

text fields, etc.

During User Interface creation cycle, we had few meetings with D. Masalas

and A. Dienys. Furthermore, we received feedbacks and some consultative sug-

gestions, also answers to questions about User Interface. Down the page, we

show few examples from feedbacks and suggestions.

8.2 Cascading Style Sheets

During the Project Register system development user interface was one of most

important requirements. It was necessary to make it nice looking and userfre-

andly. For this reason our team pay much attention on it. In third iteration our

8.3 CSS Evaluation 49

team decides to use cascading style sheets. During the team meeting there were

assumed CSS’s advantages, estimated disadvantages and there were decided to

choose cascading style sheets. There were some reasons for that:

1. There are provide only one CSS document.

2. CSS provide simple use and clear understanding, what styles, colors, align-

ments etc., are used in the system.

3. The System forms’ design with CSS brought in some templates into our

work.

8.3 CSS Evaluation

Finally our team had implement UI interface with CSS. It was clever decision,

since our system’s forms had to have similar look. This way to describe style

was short, clear and efficient, it provide only one document through all system.

CSS choice ensured light system style management and it was easy to change.

8.3.1 CSS Choice

Cascading Style Sheets must been studied during one week approximately.

Thereafter it must been implemented. The chosen team member had collect

required information related with CSS for about one week long. He also had

spend some time by trying implement small CSS samples in ASP.NET. d some

time by trying implement small CSS samples in ASP.NET.

8.3.2 User Interface Evaluation

Our User Interface was evaluated in Heuristic evaluation. A more descriptive

term applied to heuristic evaluation is Usability Inspection: an inspection is

carried out and a list of problems affecting usability is drawn up. Heuristic

evaluation is a usability engineering method for finding the usability problems

in a user interface design.

Here are some advantages for heuristic evaluation:

• It is cheap, because it is easy to understand, and use.

8.3 CSS Evaluation 50

• It is intuitive and it is easy to motivate people to do it.

• It does not require advanced planning.

• It can be used early in the development process.

A disadvantage of the method is that it sometimes identifies usability prob-

lems without providing direct suggestions to solve them. The method is biased

by the current mindset of the evaluators and normally does not generate break-

throughs in the evaluated design.

Different people can find different usability problems. In consequence of

that reason, it is necessary to have few evaluators. In our project, our group

members and the customer were evaluators and both we have found different

problems and mistakes, which we will present soon.

We did heuristic evaluation in our project to identify possible flaws in User

Interface (UI). The UI prototype was evaluated on the ten general principles

for user interface design. For evaluation we have chosen few windows: Project

View and Insert Task.

General Principles for User Interface Design

Visibility of system status The system keeps users informed about what is

going on – there are clear presentment of information, so user might not be

worry about non visible things.

Match between system and the real world The system speaks the users’

language, with words, phrases and concepts familiar to the user. – All phrases

and concepts are understandable and familiar to users.

Consistency and standards Users should not have to wonder whether

different words, situations, or actions mean the same thing. – There are no

such problem in our User Interface prototype. All different words, situations,

or actions means different things (projektas, mano projektas, redaguoti, etc.).

Error prevention “Even better than good error messages is a careful design

which prevents a problem from occurring in the first place.”2 – We do not

used error message in UI prototype, but we will have them in our final system
2http://www.useit.com/papers/heuristic/

8.4 Conclusion 51

solution. In case to assurance we use error message, but it do not mean that we

have bad design.

Recognition rather than recall Minimize the user’s memory load by mak-

ing objects, actions, and options visible. Instructions for use of the system is

visible, so the user should not have to remember information from one part of

the action to another.

Flexibility and efficiency of use Accelerators – unseen by the novice user

– may often speed up the interaction for the expert user such that the system can

cater to both inexperienced and experienced users. Allow users to tailor frequent

actions.

Help and documentation “Even though it is better if the system can be

used without documentation”. – We decided not to use help and documentation

in the system.

8.4 Conclusion

According to Web Design Elements and after evaluation, we have changed sys-

tem design: labels, buttons, text boxes sizes and presentment. Also we pay

attention to feedbacks and recommendations from customer: made error mes-

sage in the system, use filtering, etc. Down the page, we will put few screen

shots from the final User Interface prototype solution. Down the page, we will

place few ScreenShots from our project. They will show, how was changed some

details from the beginning to the end, and how look the system. 8.4 8.5 8.6

8.4 Conclusion 52

Figure 8.4: InsertEventsOld

Figure 8.5: Insert

8.4 Conclusion 53

Figure 8.6: insert New Project

Chapter 9

Implementation

9.1 Building Implementation Queue

Implementation process activities of the project had to face many various prob-

lems and obstacles. In the best-case scenario, the implementation activities are

driven by requirements, collected and stored in one or another format. But of

course, there are more things to it. Our project is short in time (approximately

600 human work hours). However, non of the team members has had any en-

counter with .NET platform. This put us in a state that we had to predict as

many obstacles as possible and solve them.

Obstacles might be considered two-fold. One thing is that we do not know

how to implement a specific method, or .Net does not support it transpar-

ently. Another obstacle is lack of experience, and experience is mostly needed

in judging whether appropriate technique is at least sufficiently good to solve

the problem.

9.1.1 Development Risks

The first thing we did to tackle these problems was to establish an order of

biggest development risks and sort them, so we solve biggest risks first, thus

defending ourselves from situation when spending half of the time 50% of work

is done, but the next 50% is unpredictably harder to solve, if at least possible.

The predicted development risks where identified early in project, in “De-

9.1 Building Implementation Queue 55

velopment Risks” included in appendix K.

9.1.2 Use Case Prioritization

The complete list of use cases is defined is Use Case Specification document,

included in appendix N.

During use case prioritization, we found that essentially there are only two

types of use cases from the perspective of implementation: ones are when view-

ing many items in a list (UC4: View Projects, UC6: View Events, etc), another

when editing or creating a new item (UC1: Insert Project, UC5: View Project

In Detail, etc.).

Customers paid mostly attention to UC3: Insert Task, as this use case ad-

dressed very importantly usability issue - the old system was very unwieldy for

inserting many tasks. Thus this use case was adapted so users could easily insert

many tasks at once.

So, the team agreed, that for the sake of addressing architectural tasks first,

we should build UC4: View Projects and UC3: Insert Task. The first use case

is the main page, and the second one was stressed by customers.

9.1.3 Building Final Development Queue

Use case prioritization concluded with two use cases, which we should build

first. However, aside from use cases, we had also to implement functional re-

quirements.

Functional requirements are identified in Supplementary Specification in-

cluded in appendix M.4. We identified three requirements:

• Multi-attachment ability.

• Filtering boxes in datagrid.

• Data Versioning / History.

The first requirement (Multi-attachment) was left for the second release.

Filtering boxes requirement was prioritized as more important than Data ver-

sioning requirement. The team also agreed that History requirement affects all

system, and must be done first, while filtering boxes can be postponed after.

9.2 Database Design 56

Finally, we can present the list of development tasks we had to face during

this whole project.

1. Develop Database Architecture

2. Understand Page Life Cycle

3. Build Architectural Prototype

4. Build Arklys Injections

5. Build UC5: Insert Task

6. Create DB Fillers

7. Rewrite Controllers

8. CSS

9. Understand Page Layout

10. Create PRControls

11. Build UC4: BatchProjectView

12. Build all the rest use cases.

9.2 Database Design

9.2.1 Problem

There is a requirement for the system to store data in a database and to log

changes (M.4.1).

The requirement to log changes brings a lot of difficulties, because it requires

more data to be stored which can lead to performance and data duplication

issues.

9.2.2 Possible Solutions

Three different approaches were developed for logging changes:

9.2 Database Design 57

Log a Field Change

Using this strategy a change of a field is logged storing its old and new values

in an external database table.

Advantages:

• No data duplication. Since only the changed field are be logged no redun-

dant data are being stored.

Disadvantages:

• Complicated design. Few solutions of this problem can be discussed but

non of them seems to be good enough.

• Complicated usage. Tricky design leads to difficult usage.

Duplicating Entries

Using this strategy if a table row is changed it is duplicated regardless one or

more fields are altered.

Advantages:

• Simple database design and implementation. This strategy brings less

limitations for design and implementation comparing to others.

Disadvantages

• Performance. Usually only newest data a required and only sometimes

old versions are examined. Because table rows are duplicated on every

change, database grows very fast and queries can take more and more

time which can lead to huge performance issues. This problem can be

solved by having a identical table where only history are stored.

• Data duplication. Because on a field change whole role is duplicated, a

lot of redundant data are stored in the database.

Split Tables

This strategy is similar to previous one. The difference is that all tables are

divided into two. The first one holds data which does not change or changes

9.3 The Page Life Cycle 58

are not logged. In the second table data which has to be logged is stored. This

table is managed the same like in the second strategy.

Advantages against previous strategy:

• Less data are stored.

• If implemented correctly, can make almost no affect for the performance.

Disadvantages against previous strategy:

• More difficult design. Since this approach brings some difficulties, they

are not so big comparing to ones in the first strategy.

9.2.3 Our Choice

After analysing possible strategies it was decided to take the second one. It was

considered the best, because it brings biggest advantages, least disadvantages,

is easy to understand and implement.

9.3 The Page Life Cycle

The ASP.NET page life cycle concept is very important. The web programming

must create and application, which appears for the user as a continuous running

process. However, for programmers this is not the case (or at least was for ASP

programmers prior ASP.NET). The server loads an ASP.NET page every time

it is requested and then unloads it after the request is completed. Programmers

before ASP.NET evolved had to restore the controls to their previous state

manually (i.e. had to program it). ASP.NET has facilities which automates

this process.

Although the communication between the client and the server is stateless

and disconnected, ASP.NET provides means for programmers to use this in very

transparent manner. The technology provides a set of events, which program-

mers use to achieve client experiencing a continuously executing process.

Figure 9.1 visualizes this set of events 1.

The page undergoes a total of eight stages.
1Diagram is taken from

9.3 The Page Life Cycle 59

0: Instantiation

1: Initialization

2: Load View State

3: Load Postback Data

4: Load

5: Raise PostBack Event

6: Save View State

7: Render

Figure 9.1: Page Life Cycle

Stage 0 - Instantiation

ASP.NET web page life begins with building a class hierarchy. This hierarchy

is a represents an ASP.NET web page, which can be accessed and modified by

code.

9.3 The Page Life Cycle 60

The first time the page is visited after a change to HTML markup or code

belonging to that page, the server builds the class of that page. The class is

inherited from System.Web.UI.Page class. This is done in either way, whether

you write a code in-line in the aspx page together with html markup, or do it

separately, that is linking aspx page to a code behind class, which in turn inherits

the same System.Web.UI.Page class. The purpose of this autogenerated class is

to programmatically create the page’s control hierarchy.

When the hierarchy is constructed, all controls attributes are set to those

defined in aspx file using HTML markup.

Stage 1 - Initialization

In this stage, every control fire its own and allows to do so for its children their

Init event.

This events purpose is two-fold:

• Server controls don’t begin tracking view state changes until right at the

end of the initialization stage. This is done in the next stage.

• Second, when adding dynamic controls that need to utilize view state (to

support the continuous feel of ongoing process), these controls will need

to be added during the Page’s Init event as opposed to the Load event

(fourth stage), as we’ll see shortly.

Stage 2 - Load View State

This state happens only when the page was posted back. It is done so, because

the view state does not simply exist if the page was not posted back, but simply

by a user accessing the page for first time. View state is created in stage 6 (after

page events such onMouseClick or onButtonClick were processed).

Stage 3 - Load Postback Data

This state again happens only in case of post back.

In this stage, the page class enumerates all posted back data, and searched

any corresponding controls. If it does find, and the control implements IPost-

9.4 Dynamic vs Static 61

BackDataHandler interface, it gives that data to the control. Then the control

would update its view state (which finally will be saved in stage 6).

Stage 4 - Load

This event is fired when it is guaranteed that the page has been restored to its

previous state.

Usually, programmers in this event load data to the controls from data

sources.

Stage 5 - Raise PostBack Event

This stage raises various user events such as for DropDownList would be Se-

lectedIndexChange, or for a Button would be a ButtonClicked event.

Stage 6 - Save View State

In the save view state stage, the Page class constructs the page’s view state,

which represents the state that must persist across postbacks. This field is saved

in the page in a form of a hidden field.

Stage 7 - Render

The page is simply rendered by recursively rendering all controls. The rendered

markup is returned to the server.

All these seven stages are very important to understand how to properly

program business processes. We did omit some of the non-very-important stages

such as Send postback change notifications, Prerender, Dispose and Unload.

9.4 Dynamic vs Static

One of the first decisions we had to make before starting building system was to

choose in what way shall we build our web pages? There are at least two ways:

• Static building

• Dynamic building

9.4 Dynamic vs Static 62

The first one, the static building, is also known as drag-and-drop or What-

You-See-Is-What-You-Get. This is when you just take already existing controls

and drag and drop them on the web form, customize the appearance of controls,

assign data and values, add links to other web pages and the page is almost ready

to run.

The second approach is more complicated, since all the page is created pro-

grammaticaly. That is, for each page each control and each function must be

created and altered programmaticaly.

Both ways are good, and using both ways we could have finished the system.

However, the questions is which one to choose. And this is a good question,

since:

Static building advantages: Static building is very good for building user

interface prototypes. If you use the same technique for building a real

system, then, possibly, we could transfer our user interface prototype web

pages without any problems to our development system.

Static building disadvantages: Considerations with static building arise when

we have to think of how we actually are to ensure the common page lay-

out? If we are to build a system with 20 pages, will we have difficulties

in making a slight change in a header, which appears in every and each

page? Or if we have many pages with tables, how shall we ensure, that

all tables have the same positioning in the page?

Dynamic building advantages: With dynamic building we gain the total

control of the page - we create how we want it and we do it how we

want. With static building, as for contrast, even event binding in some

cases was not as a trivial task as it seemed from the first glance. With

dynamic building, the problem of common page layout becomes a question

of architecture - if we will be able to encapsulate all page building in some

factory classes, we can afterwords alter factory products easily.

Dynamic building disadvantages: Dynamic building advantage is also a dis-

advantage - total control requires total understanding of the architecture,

i.e. the effort to create code and create it so that it is extendable is a task

worth experienced architecture designers.

9.5 Building two Functional Prototypes 63

Considerations for both: The biggest problem, however was the obstacle,

which we had to face firmly and at length - we had completely no expe-

rience both for creating web applications, nor for the .Net architecture,

nor c# language. For decent evaluation of static vs dynamic building

techniques we had to acquaint with both of them. And this takes time.

9.5 Building two Functional Prototypes

So we had a problem of which way to choose for building UI, and this problem

must have been solved very early, for this greatly affects all our future decisions.

As shown above, we had a variety of ways to do so, and had a lot of information

from web, but non of us actually was acquainted with any of these techniques,

and no one could tell us firmly which way is the better.

Above all, we had no experience in .Net programming, so finally we decided

that the best choice would be to build two prototypes and afterwords evaluate

and choose to stick to one.

From the beginning, Martynas and Darius had separate ideas, and this re-

sulted that: Darius will build his prototype “Nano Pages” with a mix of dynamic

and static building, more focusing on dynamic contents and Martynas focused

on building content visually and focusing on good code structure and reuse.

9.6 Darius Prototype – Nano Pages

9.6.1 Prototype Goals

A prototype was built as to reach these goals:

• User Interface can be built statically, but also allow means to alter the

page on load.

• Separate page building, permission management, database access and vi-

sual design.

9.6 Darius Prototype – Nano Pages 64

9.6.2 Explained

The system was divided into the following components: BBPageLoader, Code-

Behind (CB), NanoBuilder and PermissionManager.

BBPageLoader acts as mediator, who controls the building process of web

pages.

CodeBehind component classes together with .aspx files constitutes the web

pages. NanoPageLoader intercepts the load routine of web pages, and then

dictates the building process.

NanoBuilder, on request of BBPageLoader, “builds” the web pages. “Build-

ing” actually means modifying and configuring web pages, and not building

those from scratch. This is done this way because the goal is to mix the dy-

namic building and visual design.

PermissionManager simply acts as a service provider. All it cares about is

user identity and permissions.

To put everything in places, see the sequence diagram 9.2, of how the web

page is built and how to act when events happen.

9.6.3 Class Diagram

Figure 9.3 shows the class diagram for such a design.

The diagram shows, and tries to explain, that:

• Each web page will have to pass the ownership of control flow to BBPage-

Loader by extending it.

• BBPageLoader must have access to PermissionManager and MasterBuilder.

MasterBuilder will simply find which NanoBuilder sub-class is competent

to build current page.

• Finally, for one Web Page, there can be many NanoBuilder classes, where

each of them customizes the page as it likes. This might, and could

have been used to build two NanoBuilder for Project web page. One

NanoBuilder would build a project page witch would show all pages, the

other one would show only projects, which are under one employees man-

agement (e.g. ViewMyProjects).

9.6 Darius Prototype – Nano Pages 65

Figure 9.2: Sequence Diagram

9.6 Darius Prototype – Nano Pages 66

htbp

Figure 9.3: Class Diagram

9.7 Martynas Prototype 67

9.6.4 Advantages of this Prototype

• Divides a system into separate part, each part communicating with other

parts through defined and established interface.

• Joins visual design and dynamic building.

9.6.5 Disadvantages of this Prototype

The main disadvantage was that this prototype lacked good file structure.

9.7 Martynas Prototype

9.7.1 Prototype Goals

The second prototype was build by Martynas. He considered these requirements

to be most important:

• User interface must be designed visually (at least major part of it).

• Reduce duplication of code. It is very important, because copy & paste

is the source of most bugs since you often forget to fix some places when

refactoring.

9.7.2 Limitations of ASP.Net

Since he have got a lot of experience making windows style applications, he

tried to use his knowledge creating this system as well. He made few attempts

to create an architecture like for an ordinary application, but always failed.

He always failed because of limitations of ASP.NET, which are promised to

be fixed in next release. The most irritating disadvantage of ASP.NET is that

it is impossible to inherit web-pages if you are visually designing them. All the

pages in the system has got similar layout and includes some common parts

which naturally should be designed in a base page. Because of the mentioned

drawback all the pages have to be designed from scratch and changed one-by-one

if a change is needed.

9.7 Martynas Prototype 68

Despite the limitations we stick to visual design because of the main re-

quirement – usability. We must be able to reconfigure user interface often and

quickly during development process if needed.

9.7.3 Design

The designing of a system usually starts by looking at it from different points

of view (e.g. logical, data flow, user interface – Model View Control (MVC)

pattern) and trying to distinguish different parts. Different parts means that

they do different things and usually are not strongly connected and so can be

developed separately.

In our system Model part (from MVC) is separated automatically, because

Data Base is used to store persistent data. The Data Base design is discussed

in section 9.2.

View

When looking to the user interface of our system, it is easily noticeable that

there are a lot of similar pages which could be bound together. For example

Edit is the same Insert page only filled with data which can be altered by a

user. On the other hand, all the batch view pages differ only by data which is

filled in, the layout is the same.

In my architecture he derived all the pages (in ASP.Net code behind can

be inherited) from BasePage which does common tasks for all pages: checks

whether user is logged, binds data on page load.

For every group of similar pages he made a base class which holds only main

logic (without any user interface design) for particular group of pages:

• BatchView. This class is used when a page which shows a table with some

kind of data is created (e.g. to show list of project). It is responsible to

fill in data to a page, redirect to respective Edit page and so on.

• Edit. A page, derived from this class, can be either Edit or Insert page.

The difference is that, if you are editing, the page is filled up with a data

on load.

9.7 Martynas Prototype 69

• View. This group of pages is intended to show particular data in detail.

The Edit group can be used for this reason as well, but he separated them

for GUI customization reasons.

Logics

There is not single package responsible for all the logics in the system. It is

because that it completely differs when looking from different points of view.

For example if you look at user interface, all the similar pages (see section above)

have got common logics. So part of the logics is implemented in base class in

user interface package.

On the other hand, if you analyse system from data point of view, you see

that there are such parts:

• Projects,

• Tasks,

• Users,

• etc.

So he made another package which is responsible for communication between

User Interface and Data Base packages. It loads needed data, filters and sorts

it. New records are stored or existing ones altered using this package since it

checks user rights and manages history information automatically.

9.7.4 Advantages of this Prototype

It clearly separated parts of the system which could be developed separately.

Some code written in base classes in one place which prevented from some bugs.

9.7.5 Disadvantages of this Prototype

Later it was found out that classes and packages were not flexible enough and

needed to be split into smaller ones. Classes which were responsible for retrieving

and writing data into Data Base were separated.

During developing process it was found that pages in User Interface package

has got a lot of differences even they look familiar. For example data in Batch

9.8 Prototype Choice 70

View pages has to be filtered in different ways (e.g by substring of a column or

picking a value from possible ones using Drop Down list). So it is difficult to

separate common logics for pages and base pages for groups turns out to be not

very useful.

9.8 Prototype Choice

The two prototypes were finished in iteration 4.

We chose to stick to Martynas prototype because of his good structuring

of files. Darius prototype maybe had system separation into different modules,

but that was not reflected in the prototype on how the system was divided into

physical files. This would have had a significant impact of how the team would

work, thus Martynas prototype was considered as a better one.

Later, however, Martynas prototype was enhanced with features, that were

lacked in it, but present in Nano Pages (see 9.10).

9.9 Building Arklys Injections

As a result of re-collecting use-cases with customers, customers exclaimed they

would like to enter not one task at a time, but a variable count. This imme-

diately raised an idea of dynamically adding edit boxes and buttons, which, of

course, was still not an investigated area of .Net and c#. Thus Darius decided

to try to build a proof-of-concept one single web page, were a user could dynam-

ically add or remove buttons and this subsystem was called Arklys Injections.

The goal of Arklys Injections was to establish a common way to add an

ability for every page to have dynamically created parts. This was achieved

through the use of the following classes : DynamicContentInjector and

DynamicContent and a web user control.

DynamicContentInjection is a controller class which provided all the

programing interface to the user of the class.

DynamicContent was a class, which had to be inherited, in order to cre-

ate a web user control. This web user control was used afterwords used by

DynamicContentInjection to create as many instances as was requested by the

9.9 Building Arklys Injections 71

user.

Web User Control Web User Controls offer an easy way to partition and

reuse common user interface (UI) functionality across ASP.NET Web appli-

cations. Like a Web Forms page, you can author these controls with any text

editor, or develop them using code-behind classes. Also, like a Web Forms page,

user controls are compiled when first requested and stored in server memory to

reduce the response time for subsequent requests. Unlike pages, however, user

controls cannot be requested independently; they must be included in a Web

Forms page to work.

Web user controls were created statically using drag and drop. This control

created the exact dynamic content and it’s appearance which will be added to

a web page.

9.9.1 How to Prepare the Page to Use DymacicContent

In order for the page to receive dynamic content, the DynamicContentInjection

class had to be “injected” into the page life cycle.

1. Firstly, the DynamicContentInjection (DCI) had to be created passing the

along the reference of asp page and the path to the newly created Web

User Control (which inherits DynamicContent).

2. Secondly, the ASP.NET PlaceHolder control must be passed to the DCI

(DynamicContentInjection) instance. This could have been done already

in the building process of DCI, unless the creation is done not in the Asp

pages constructor, since at that time the Place Holder is still not created.

3. In the page init cycle, the “Build” method of DCI must be called for the

controlls to be built properly

4. Again in page init cycle, an event handler must be created to handle

“Page UnLoad” event, and that event must call “Save” method of DCI,

to save the number and IDs of Web User Controls created.

These simple four steps prepares the page to create the dynamic content.

9.9 Building Arklys Injections 72

9.9.2 How to Add or Remove DynamicContent

To create or remove dynamic content is very easy, after you set up DynamicCon-

tentInjection. In order to add a control you must call incrDynCont() method

on DynamicContentInjection object.

Similarly, if you want to remove, then call removeControl(e.CommandArgument.ToString()).

The expression e.CommandArgument.ToString() produces the controls id you

want to remove. Object e is of type CommandEventArgs, and this is passed

along during event processing. Of course then, the code to remove the dynamic

content must be placed in an event handler. To bind user code a remove click in

dynamic content, you must bind an onStartEventBind event in init cycle. The

total solution is shown below:

protected void onInit()

{

...

DCI.onStartEventBind +=

new CommandEventHandler(DCI_onStartEventBind);

...

}

private void DCI_onStartEventBind(object sender,

CommandEventArgs e)

{

DynamicContent dc = (DynamicContent)e.CommandArgument;

dc.onRemoveClick +=

new CommandEventHandler(dc_onRemoveClick);

}

private void dc_onRemoveClick(object sender,

CommandEventArgs e)

{

this.DynConInjector.

removeControl(e.CommandArgument.ToString());

}

9.9 Building Arklys Injections 73

9.9.3 How to Create DynamicContent Web User Control

To create a DynamicContent Web User Control is no more difficult than cre-

ating a simple ordinary any other web user control. The difference comes

only in two places: the web user control must inherit from DynamicContent

class, and not directly from System.Web.UI.UserControl. And must override

public override System.Web.UI.WebControls.LinkButton lbRemovea. What

this means is that every DynamicContent we create will have to have a remove

LinkButton.

9.9.4 Problems Creating Arklys Injections

Arklys Injections was thought out during one night, but implementing it re-

quired three days, mainly because of lack experience in .Net.

Delayed DynamicContent Creation

The first problem we ran into was the delayed reaction of DynamicContentIn-

jection (DCI) to user click. The problem was, that if the user click the button

to add a dynamic content, the event processing user request was executed after

page’s init cycle was over. This meant that at first the dynamic controls are

created, and only then the DCI received a message, that user wants one more

DynamicContent. So the results was that if the user wanted to see 5 controls,

he would see only 4. If he wanted to see 1, he would see zero. And so on.

We tried to overcome this problem by passing the number of DynamicCon-

trols to be created using a HyperLink, like this:

(HyperLink)hl.NavigateURL="insertTask.aspx?DynamicContent=ContentNumber+1".

This solution, of course, did not work either, as by using HyperLinks the page

was not submitted back, but rather redirected to itself. This way, the .Net did

not executed very important .Net page life cycle phases, namely SavePageState

and LoadPageState. The results was that the controls were created at correct

phase, but the state of the controls was not restored. That is, if we write some-

thing say, in a text box, that information is not persisted when we add another

DynamicContent. Thus another workaround had to be thought.

The solution, though, was lamentably simple: as soon as DCI receives re-

9.9 Building Arklys Injections 74

quest for new DynamicContent, it can create it and it will appear as expected.

Then whenever the DCI recreated the DynamicContent, it will do so in the

page’s init cycle, and thus the controls view state information will be retained

and persisted correctly.

Correctly Removing DynamicContent

As was told before, to remove the DynamicContent is as simple as calling

DCI.removeControl(); and pass and ID of an appropriate control. However,

for us to code the class was not as simple as now it is to use it.

The problem soon occurred when we tried to remove a DynamicControl

(DC). Imagine a situation were we have three dynamic controls. Each of them

have a text box. Let’s say these values are contained in each of those DCs:

first DC: id=0. TextBox.Text=“aaaaa”.

second DC: id=1. TextBox.Text=“bbbbb”.

third DC: id=2. TextBox.Text=“ccccc”.

As we know already, .Net restores view state by looking at controls ID.

And as we create programmatically DynamicContent, we have to assign IDs to

controls also dynamically. The easiest way to do it is to assign numbers as ID,

and constantly increment the number, that is 0, 1, 2, 3 and so on.

Now image what would happen if we remove and then add a control. Firstly,

when we click the button to remove control, all controls are restored, and then

the remove event is called, where we remove the control. Let’s say we remove

the control which id=1. What we have now is two DC with the following values.

first DC: id=0. TextBox.Text=“aaaaa”.

second DC: id=2. TextBox.Text=“ccccc”.

Now, we click a button to add a third control (since we have only two now).

The first thing happens is DCI is recreating the DynamicControls. However,

what we get is one control with id=0 is recreated normally, while the second

one gets an id of 1 instead of 2, and thus the information in the text box is lost.

first DC: id=0. TextBox.Text=“aaaaa”.

9.10 Improvements to System 75

second DC: id=1. TextBox.Text=“”.

When the third control is added, it gets an id of 3, and text box will also be

empty.

The idea to solve a problem was to somehow persist the IDs of our Dynam-

icContent controls. The solution was though soon and coded in 5 or 6 hours.

It introduced a new step in Arklys Injections life cycle - the PageUnload stage

had to save the IDs of each Dynamic Controls into SessionState, so it could

persist through many page requests. This is the reason why we have to bind to

Page Unload the following event:

protected virtual void InsertView_Unload(object sender,

EventArgs e)

{

DCI.save();

}

9.10 Improvements to System

9.10.1 New DBFillers and Improved Controllers

Controllers

As the system grew, the old controller classes began to not only not fulfill their

role, but also became a hindrance to further enhancing our system. We had to

redesign them.

The new role for controllers was only to perform data modification in data-

base routines, such as inserting new rows, updating or deleting old ones. The

new role for controllers was to be an intermediate layer abstracting access to

DB. This abstraction suited perfectly for data-history requirement.

This requirement stated, that every data change must be stored in DB for

later use and that this requirement will be implemented later, after the system

will be ported to .Net. So, this new role for controllers allowed us to port to

.Net without worrying that later this requirement till have big impact to our

system.

9.11 Final System Design 76

DB Fillers

If controller classes now cared only about data modification, then who had

a role of getting data from the database? This new role was decided to be

performed by DataBase fillers. These fillers gathered data from DB and filled

the appropriate structures.

9.10.2 FilterDropDownList

To implement data filtering successfully, we had to create our own custom web

controls.

The new custom web control was named simply FilterDropDownList. This

control was an extension to a normal drop down list, except it had a few new

attributes: FilterOperation, FilterColumnName, DefaultValueID and Default-

ValueText. The first two attributes were used to build a filter rule, by witch

the rows where filtered. The two latter attributes created a default item with a

default value.

9.10.3 FilterTextBox and DatePicker

Later on, we also created two other controls. One was like a standard text box

control, except it had FilterOperation and FilterColumnName. The other was

an extension to a calendar. The Calendar control is used to display a calendar

in the browser.

9.11 Final System Design

9.11.1 Package View

The final system design resulted in the following packages:

• User Interface. This package holds all the logics (e.g. navigation between

windows) and user interface part.

• DBFillers. This package extracts data from database.

• Controllers. This package commits data to database, ensuring any data

relation requirements.

9.11 Final System Design 77

• User. This package is repsonisble for permission control.

• PRControls. This package is an extension to .NET user interface controls

The packages are visualized in the 9.4 diagram.

Figure 9.4: System packages

User Interface

All the pages must be derived from the BasePage. This class is responsible just

for few base functions, such as controlling the life cycle of a web page.

For every group of similar pages, a base class is made which holds only main

logic (without any user interface design):

• BatchView. This class is used when a page which shows a table with some

kind of data (e.g. to show list of project).It is responsible to fill in data

to a page, redirect to respective Edit page and so on.

9.11 Final System Design 78

• Edit. A page, derived from this class, can be either Edit or Insert page.

• View. This group of pages allows to view a particular data in detail. The

Edit group can be used for this reason as well, but they are separated for

GUI customization reasons.

An example of how a Batch Project view is composed of classes can be seen

in 9.5 figure. It shows that this page inherits BatchView page, and BatchView

inherits BasePage. Through dependiencies, batch project view page can acess

FilterDropDownList custom web control, and abstract controller for data access.

Figure 9.5: Batch Project View class diagram

The total inheritance diagram of BasePage class can be seen in 9.6 diagram.

DBFillers

DBFillers is responsible for:

• Retrieving required data for User Interface package;

There is an abstract base class DBFiller, which defines an interface. Each

subclass of a DBFiller will fill a dataset with some data from the table.

9.11 Final System Design 79

Figure 9.6: Base Page inheritance

The class diagram with all sub-children can be seen in figure 9.7.

Controllers

This package controls data submission to databse actions, ensuring History re-

quirement is satisfied and hiding history implementation features from program-

mer.

There is an abstract base class AbstractController which defines an interface

and performs most common tasks. All base classes in the User Interface package

work with data using an instance of this class.

The class diagram with all sub-children can be seen in figure 9.8.

PRControls

This package provides new or enhanced web controls for user interface design.

And example of these would be FilterDropDownList or FilterTextBox.

These controls are used only by User Interface package.

9.11.2 Project File Structure

All our system was finally divided into systems. All these systems were visual

studio projects:

• Project Registry. It is a main project, which actually builds the system.

9.11 Final System Design 80

Figure 9.7: DBFillers inheritance

Figure 9.8: Abstract Controller inheritance

9.11 Final System Design 81

• PRControls. This project builds additional web controls, such as Date

Picker of Filter Drop Down List.

• PRCommonLibrary. This is a project, which holds common code used by

other two projects.

• UIPrototype. This project is for building User Interface Prototype.

• PRTest. This projects performs unit tests, and requires NUnit package.

Project Registry

. This project actually build the ASP.NET web application. It uses both

PRControls and PRCommonLibrary projects.

The following list describes projects file structure in detail. Each item is a

directory. Each indented item denotes a subdirectory.

ProjectRegistry: a directory to hold ProjectRegistry project

Database: Each controller is put into separate directory. Examples: Em-

ployee, Event, Project, etc.

Backup: holds a backup of database, which can be used to restore

or create a new database.

Datasets: Each subdirectory holds a DBFiller, which fills a dataset

with data. Examples are: Departments, Employees, Years, Pro-

jectManagers, etc.

HeaderControl: Holds Header and Copyright user controls.

JScripts: Holds any java script codes. Example: datepicker.

Pages: Holds groups of sub-pages

Administrator: Holds administrator pages (Administrate)

BatchViews: Holds batch view related pages (BatchEmployeeView,

BatchEventView, BatchProjectView, BatchTaskView)

DetailView: Holds detail view pages (ViewProject)

Inserts: Holds insert/edit pages (InsertEmployee,Insert Event, In-

sertProject, InsertTask, etc).

Pictures: Holds pictures

9.11 Final System Design 82

Scripts: Holds this project solution file

Users: Holds user package

PRControls

This project builds various web custom controls.

Projects file structure: The following list describes projects file structure in

detail. Each item is a directory.

PRControls: a directory to hold PRControls project. Holds web custom con-

trol files (DatePicker, FilterDropDownList, FilterTextBox)

PRCommonLibrary

This project contains source code used by other projects.

Projects file structure: The following list describes projects file structure in

detail. Each item is a directory.

PRCommonLibrary: a directory to hold PRCommonLibrary project.

Persistency: Holds Persistency classes (FilterHashTable, SessionPersis-

tency)

UIPrototype

This project builds user interface prototype.

It is built simply by dragging and droping controls.

PRTests

This project runs unit tests to test ProjectRegistry project.

It uses NUnit http://www.nunit.org/

http://www.nunit.org/

Chapter 10

Testing

10.1 Introduction

Our testing process was done according to guidelines stated in document “Test

Plan” Q. It was planned to have such tests:

• functional – ensure proper functionality, including navigation, data entry,

processing, and retrieval.

• user interface – ensure that the User Interface provides the user with the

appropriate access and navigation through the functions and all the pages

have a common style.

• security – ensure that only those users granted access to the system are

capable of accessing the system.

Security testing has not been done, because only few security features has

been implemented till the end of the project.

10.2 Purpose of Testing

Testing is intended for checking whether a system operates as it is expected. The

size of testing process varies depending on a project, but it should be started

early in the project and performed till the end of the project. The sooner a bug

is found, the easier it is to fix it.

10.3 Test Types 84

“Program testing can be a very effective way to show the presence of

bugs, but is hopelessly inadequate for showing their absence” Edsger

Wybe Dijkstra.

10.3 Test Types

Possible testing methods varies depending on an area you want to check. For

example there is no other way to identify usability problems than asking people

to use a system and give a feedback. This kind of method should be avoided if

possible, because it has got a lot of drawbacks:

• Since labor is expensive, it rises development costs,

• This method is very slow, so it takes a while to check all the system,

• Humans do a lot of mistakes, so a few people should test same things in

order to minimize a chance of a mistake.

For parts of a system where it is possible to check correctness of a func-

tionality by writing a simple condition, automated tests suits best. The biggest

advantage of automated tests is that you can check a system very fast. Despite

that automated tests avoid all the disadvantages inherent in manual testing,

unit test have got drawbacks too:

• Lacks flexibility, so they must be adjusted whenever system architecture

is changed a bit,

• Tests must be written for every single part for a system. However, writing

tests is a big issue, since many programmers dislike doing that.

During the development process we used both types of tests for measuring

and sustaining quality of the system.

10.3.1 Unit Testing

As the name implies, this test type is designed for doing automated tests for

units of a system. Unit testing is one of the key things of Extreme Programming.

It suggest writing test cases before writing code. At the begging it could seem to

be an overhead, but in the reality you get more advantages than disadvantages:

10.3 Test Types 85

• even a simplest test prevents you from a lot of bugs,

• in order to write a test, your code has to be well structured,

• bugs do not return or they are located faster,

• if you have enough tests, you can refactor code without worrying about

the impact on the other parts of a system, because tests will do it for you.

So if you are using unit tests in a project, refactoring becomes painless.

This is important, because usually it is almost impossible to make perfect initial

system architecture, because humans do mistakes and requirements tend change.

In case you have to refactor a part of a system, you must also check how changes

affect the rest of it. Good unit tests help to find mis-functional parts quicker.

Despite we had chosen RUP as a methodology for development process, we

could not avoid code refactoring. First of all, this was because the client often

provided us with feedback which usually brought changes. On the other hand

we lacked .Net programming experience and needed to check several solutions in

order to find the most suitable one. In the beginning constant refactoring often

resulted in non functional system which bothered other team members. After

implementing unit tests, a developer could easily check if everything worked

correctly before committing changes to the main repository.

Unit Test Examples

It was decided to make a unit test for every page in the system checking if it

loads correctly. It was efficient enough, because other parts of the system which

are needed to load a page are tested automatically, and did not take much effort.

An example test checking if the main page loads:

using System;

using NUnit.Extensions.Asp;

using NUnit.Extensions.Asp.AspTester;

namespace PRTests

{

10.3 Test Types 86

public class PageExistenceTests : WebFormTestCase

{

string baseUrl = "http://localhost/ProjectRegistry/Pages/";

/// <summary>

/// test checking if "BatchProjectView" page loads

/// </summary>

public void TestBatchProjectViewPageExistence()

{

Browser.GetPage(baseUrl +

"BatchViews/BatchProjectView.aspx");

}

/// <summary>

/// test checking if Project Insert and Edit pages load

/// </summary>

public void TestInsertProjectPageExistence()

{

Browser.GetPage(baseUrl +

"Inserts/InsertProject.aspx");

Browser.GetPage(baseUrl +

"Inserts/InsertProject.aspx?ProjectID=1");

}

}

}

10.3.2 User Interface Testing

User Interface testing is expected to identify look (e.g. colors, fonts) & feel (i.e.

usability) problems. These tests are very important in our project since system

is intended to be actively used by people in their daily work and usability was

10.3 Test Types 87

stressed by Blue Bridge as a key requirement.

User Interface can be tested only by humans, because only users can tell

whether interface is convenient for them or not. In our project we did two stage

interface evaluation. First of all we tried to make it comfortable from our point

of view and then Blue Bridge provided us with feedbacks. Since the project was

intended to be used only internally, such testing was sufficient for us.

For further details on User Interface and its testing see chapter 8.1.

Appendix A

Iteration 1 – 17 08 - 22 08

Inception Phase

A.1 Goals

1. Agree On Development Case

2. Initiate project

A.2 Objectives

• Agree on Development case.

• Define Deliverables with templates and guidelines

• Establish following documents:

1. Risk List

2. Risk Management Plan

3. Software Development Plan

4. Use Case Model

5. Supplementary Specification

6. Team Contract

A.3 Work Orders 89

7. Test Plan

• Define Phase Plan

• Define Project Organization

• Create Programming Guidelines

• Create Domain Model

A.3 Work Orders

1. Martynas

• Establish Risk List, Risk Management Plan

• Supplementary Specification

• Coding Standards

2. Viktoras

• Establish Use Case Model

• Test Plan

• Create Domain Model

3. Darius

• Establish Software Development Plan

• Team Contract

• Phase Plan

• Iteration Management Plan

A.4 Iteration Assessment

A.4.1 IterationSummary

Evaluation Date

Iteration Assessment was carried out on 22 08 2005.

A.4 Iteration Assessment 90

Concise Summary

This iteration resulted in project initiation. The primary objectives of agreeing

on methodology and building a development case have been met as a result

producing a development case.

Summary of Meeting with the Company

No meeting with the company.

Summary of Meeting with Project Adviser

No meeting with the project adviser.

Appendix B

Iteration 2 – 23 08 - 30 08

Elaboration Phase

B.1 Goals

1. Establish a good base for requirements

2. Build an initial prototype

B.2 Objectives

See table B.1 for objectives.

B.3 Iteration Assessment

B.3.1 Iteration Summary

Evaluation Date

Iteration Assessment was carried out on 24 08 2005

Summary of Meeting with The Company

Date:24 08 2005 Requests for system:

B.3 Iteration Assessment 92

Objective Worker

Create Software Architecture

Plan

Darius Damalakas

Domain Model Viktoras Čiumanovas , Vilma Rudžionytė

Collect Use Cases Vilma Rudžionytė , Viktoras Čiumanovas

Make initial DB schema Martynas Kriaučiūnas

Prioritize Use Cases Darius Damalakas

Build a small prototype from

UC1 Create New Project N.6,

and UC3 Edit Project N.8

Darius Damalakas , Martynas Kriaučiūnas ,

Viktoras Čiumanovas

Prototype must connect to data-

base

Darius Damalakas , Martynas Kriaučiūnas ,

Viktoras Čiumanovas

Refine Risk List Darius Damalakas

Table B.1: Iteration 2 Objectives

1. Ability to reserve projects.

The problem arises when a project manager tries to “reserve” an employee

for a non-started project. If the project is approved, and project starts,

a reserved employee continues to work for that project and no problem

occurs. If the project is canceled, problem occurs if the project is forgotten

to be deleted from the system. In this case, the resources are not freed

up.

2. Load report (uzimtumo ataskaita) should not report abnormal resource

usage, such as one employee working 150% of total time.

3. Ability to attach more than one attachment, for both projects and events.

Team Report For Customers:

1. The team should have a meeting-leader. This way, the order of meeting

will be retained. Meeting leader is responsible for ensuring everything is

ready for procedure.

2. Presentation plan must establish a defined order of meeting.

B.3 Iteration Assessment 93

3. Presentation plan must include a questionary, and answers to these

questions must be written down and well agreed both between team and

customer. Questionary must be prepared before the meeting and reviewed

by team.

4. Customers are interested to know which point in the project are we in

at the moment in terms of accomplished jobs. If any important jobs are

unfinished, what caused the delay. Almost finished jobs are not finished.

Date: 26 08 2005

• Do we have to implement Administration feature in the system during

first construction phase? YES.

• Do we have to implement various reports (Ataskaitos) in the system during

the first construction phase? NO, not necessarily.

• Do we have to implement multi files attachment feature during the first

construction phase? NO, not necessarily.

• Is it preferable, that for every attached file would be possible to specify

a file type? YES. It must be a list of structured titles, such “Agreement”,

“Analysis Result”, etc.

• Who has the right to see information in Administration area? Admin-

istrators. The reason why you (the team) can not access that part is a

system bug. This must be solved.

• Who has the right to edit and delete Project information? Project Man-

ager and Department Manager, who is in charge of the project. If the

project’s manager or person responsible for task changes, he/she loses the

right to manage it.

• Do we need to create individual table with “My Events” information as

is done with “My Projects” and “My Tasks”? No, it is not needed, since

there are not so many events.

• Who can perform all actions with events? Project Manager, Department

Manager and Employee who creates an event.

B.3 Iteration Assessment 94

• Who can perform all actions with tasks? Project Manager, Department

Manager and Employee who creates a task.

• In Administration− >Personal Workers Information is “Work” column.

Who manages this column: Administrator or the system counts it dy-

namically ? Administrator. It is important value, by which system knows

to show worker in employee lists or not.

Summary of Meeting with Project Adviser

Meeting among:

Team members: Martynas Kriaučiūnas , Darius Damalakas , Viktoras

Čiumanovas and

Project reviser: Michael Claudius.

Given suggestions:

1. The section “Team Contract” should be called “Team Members”,

2. The section “Team Capabilities” should be called “Human Resources”,

3. It have to be an explanation, why each team member get particular

role(-s) or responsibility(-ies),

4. It have to be person who is responsible for documentation manage-

ment (Documentation manager).

Appendix C

Iteration 3 – 31 08 - 13 09

C.1 Goals

• Functional Prototype

• User Interface

C.2 Objectives

See table C.2 for objectives.

C.3 Iteration Assessment

C.3.1 IterationSummary

Evaluation Date

Iteration Assessment was carried out on 14 09 2005.

Concise Summary

The goals were to build user interface prototype and functional prototype. The

iteration was very unsuccessful, and we did not finish any of the defined tasks.

User interface prototype only began to shape, and use cases were not done

up to the end as we wanted to, however, a lot of input was done to this activity.

C.3 Iteration Assessment 96

Functional prototype area the work was very concentrated on building two

prototypes. However, the outcome of the prototypes is good - the team agreed

on how the system will be further developed, and what way it will focus on -

that is it will stick to building the system with drag and drop techniques.

Summary of Meeting with The Company

Secret Meeting. Participants: . Dalius Masalas and Darius Damalakas

Date: 01 09 2005

Summary: Reviewed our Use Case Specification and wrote comments. Main

errors : no Glossary results in inconsistencies between terms (such as

“Project Owner”, “Leader” And “Project Manager”). Need careful at-

tention to pre- and post- conditions of every use case. Also some small

(though sever) mistakes in use case flow (UC3).

Reviewed UI Navigation diagrams. Missing one page. Emerges a new

need for a component diagram, i.e. what components builds what pages.

This UI Navigation shows what the user perceives, and not how the pages

will be implemented.

Minor error in Use Case Diagram.

Discussed a possible page design technique (with Master builder and Nano-

builders).

Meetign date: 2005 09 07

During the project presentation: • We must clear defined what is a fin-

ished product, when we speak about final result.

• All projects’, tasks’ and events’ in the system can not be simply

deleted – those data have to be stored in history area.

• Do we have to implement the Back button in the system, since it is

implemented in browser too? It is not necessary. If you be able to

ensure good system functionality without Back button you may skip

it.

• Should we propose an additional document for interface prototype or

it will be enough to show some screen shots? YES, you may do that.

C.3 Iteration Assessment 97

Objective Worker Needed hours and date

Complete a User Interface Specifi-

cation: for each of 19 pages build a

window with visual studio and insert

the screen shot of that page into UI

specification

Viktoras,

Vilma

There are total 19 pages. Ini-

tial page will take 4 hours of

work, each subsequent will take

30 minutes, thus total amount-

ing to 4+18*0.5 =

13 hours of work. less than 4

days of work (4 hours per day).

Due date: 09 09 2005

Complete a Test Plan. Test plan must

state what strategies will be used for

testing, what are the requirements of

testing, the priorities and risks for tests,

acceptance criteria. Identify, evalu-

ate and plan test deliverables, includ-

ing test cases, test procedures and test

scripts

Darius,

Vilma

Initial investigation into test

plan - 2hours. Assess test

strategies (around 7 strategies)

- 7*0.5=3.5 hours. Identify re-

quirements - 2 hours. Assess and

priorities tests - 1 hour. Build a

test plan with scheduled deliver-

ables - 2 hours.

Total 10,5 hours. 3 days of

work.

Due date: 09 09 2005

Build a Database Package. Package will

contain classes to group database access

into one area by specifying concrete in-

terface. This will abstract our access

to database, hiding any additional func-

tions, such as data versioning.

Martynas Due date 09 09 2005

Build a SAD. This includes generating

DB schema, producing class diagrams,

system sequence diagrams, packages di-

agram and writing programming guide-

lines (such as how to use DB).

Darius,

Martynas

DB Schema 4 hours. Class Di-

agram 2 hours. Sequence dia-

gram 3 hours. Package diagram

2 hours. programming guidelines

2 hours.

Total 13 hours.

Due date: 13 09 2005

Table C.1: Iteration 3 Objectives (part 1)

C.3 Iteration Assessment 98

Objective Worker Needed hours and date

Build DB scripts. DB scripts should

create all tables, add all constraints and

all relationships into database.

Martynas Total 2 hours

Due date 13 09 2005

Build Use Case Specifications. This in-

cludes defining and detailing all cur-

rently known 17 use cases. Use cases

must be of deliverable quality to the

customer. Any important vocabulary

(such as who is employee and who is

project manager) must be defined in

glossary

Martynas,

Viktoras

Use cases are almost in detail,

they need only a thorough review

and to add vocabulary into glos-

sary.

Total 2 hours.

Due date 07 09 2005

Build Core package, Permission,

ProjectBuilder This includes build-

ing a NanoBuilder, NanoPageLoader,

BBPage classes, CBProjectDetail and

NanoProjectBuilder and NanoMyPro-

jectBuilder

Darius The actual work will be done in

connection with other packages,

mainly Database Package, Per-

mission and Project builder. Dif-

ficult to assume the total amount

of hours needed, but lets say each

class takes 1 hour to build (total

6 hours), and then 3 hours to in-

tegrate those classes. To test and

ensure that all packages work as

expected 2 hours. If any prob-

lems occur on architectural scale,

the time needed to fix this is un-

determined.

Total 11 + x hours.

Due date 16 09 2005

Table C.2: Iteration 3 Objectives (part 2)

Appendix D

Iteration 4 – 14 09 - 28 09

D.1 Goals

1. To create best Use case solution and finish with them.

2. Establish the following documents:

• Data Base architecture

• System architecture

• Test Plan

• Use Case

3. Transfer partial User Interface on the system (shift, align, etc) and to run

system prototype for the clients and other users.

D.2 Objectives

See table D.1 for objectives.

D.3 Iteration Assessment

D.3.1 IterationSummary

Evaluation Date

Iteration Assessment was carried out on 29 09 2005.

D.3 Iteration Assessment 100

To make Data Base architecture

documents

Martynas Kriaučiūnas

System architecture Martynas Kriaučiūnas , Viktoras

Čiumanovas

Make Test plan Viktoras Čiumanovas and Martynas

Kriaučiūnas

Finish Use case and make docu-

mentation

Darius Damalakas , Vilma

Rudžionytė

Continue System core program-

ing

Martynas Kriaučiūnas and Darius

Damalakas

Make User interface Viktoras Čiumanovas and Vilma

Rudžionytė

Make Initial prototype for test-

ing

Martynas Kriaučiūnas

Table D.1: Iteration 4 Objectives

Concise Summary

The iteration again does not meet its defined outcomes. However, of the defined

goals some are done, , that is system architecture and database architecture.

The two are discussed by team and defined formally (L.3).

Requirements are undergoing hard-times as before. The team is having

meeting with customers, but the requirements are not formally captured. User

interface prototype already contains 5 out of 20 pages, and they are already

agreed and approved by customer.

Test plan is not even started.

Summary of meeting with the company

Meting date: 2005 09 14

Meeting purpose: Proposed Use Case document, User Interface planning.

• It is preferable to implement the Task insertion form like line (some-

thing like in Excel).

D.3 Iteration Assessment 101

• The Project’s name dropdown list can be implemented singly from

the others insertion fields, since it suits usually for all task during

one insertion.

• The User must have possibility to choose how many Task insertion

fields he/she would like to see (i.e. 10, 15, 20 etc.).

Meeting Date: 2005 09 21

Meeting purpose: User Interface prototype review and Use Case document

discussion.

• The Task column in Projects table can be some images, since it would

save some place and would be more understandable.

• Team members must add two new columns into Projects’ table: De-

fined project hours and used project hours. Those columns must be

placed after End date columns.

• It is better to implement the column Project finished with words

(Yes/No) or some images, instead with checkboxes.

• The Priority column is not required in Task insertion table.

• The task Improvement description field is not required in Task inser-

tion table.

• The Column header fields, which contain time data, from the begin-

ning must be empty.

• From the beginning of data insertion the first field in Task insertion

form must be focused.

• It is enough, that the Description field would be two rows high.

• It is preferable to have the same task view and edit form (edition

function would be allowed just for those who has required rights).

• It is preferable, that in messages about some changes in projects,

tasks and etc., for which they are responsible, would be clear what

changes were made.

Summary of Meeting with Project Adviser

No meeting with project adviser.

Appendix E

Iteration 5 – 29 09 - 28 10

Construction Phase

In iteration 5 the planned was remade for the last time and we committed to

do the job till the end of our project.

E.1 Iteration Goals and Objectives

1. Implement system,

2. Improve User Interface prototype,

3. Write project report.

Implement Task Insert page Darius Damalakas

Implement filtering Martynas Kriaučiūnas and Darius Damalakas

Make User Interface prototype Viktoras Čiumanovas and Vilma Rudžionytė

Table E.1: Iteration 5 Objectives

E.2 Requirements and UI Prototype

According to our customer, User Interface is most important part of this project.

So at this iteration a lot of work was done making and tuning user interface.

E.3 Development 103

The highest priority was given to Insert Task page, because it was used very

often and was inconvenient. The requirement was to make task inserting as fast

as possible. So the page was made similar to a Microsoft Excel Spread Sheet

and it was made that few tasks could be inserted at once.

In this iteration was agreed on a common design of Batch View and In-

sert/Edit/View pages.

All the designing was made using CSS (Cascading Style Sheet) technology,

so it was easily applied on the real system.

More about User Interface design is written in chapter 8.1.

E.3 Development

In the last iteration system design was made and the development was started

using it. During the development process we realised that system architecture

was not good enough and it was changed.

E.3.1 Database Subsystem

First of all Database Controllers were split into Database Fillers and Database

Controllers. The task for Database Fillers was only to fill a table with data.

The need of them came up when we realized that few Database Controllers

(old ones) need to fill in the same data (e.g. most pages required data about

projects), so we decided to reduce duplication of code by extracting parts of

it into Database Fillers. Database Controllers made was responsible only for

inserting new records and updating existing ones.

E.3.2 Filtering

When designing User Interface prototype, there was a request to add filtering

fields above each column and it was required that filters would work while

navigating through pages.

Filters influenced system architecture as well, because it system had to load

filters on page load and gather data according to them.

It was decided to store filtering rules in browsing Session. To implement

data filtering successfully, we had to create our own custom web controls:

E.4 Testing 104

• FilterDropDownList – This control was an extension to a normal drop

down list, except it had a few new attributes: FilterOperation, Filter-

ColumnName, DefaultValueID and DefaultValueText.

• FilterTextBox – This control was an extension to a normal text box, except

it had a few new attributes: FilterOperation, FilterColumnName.

E.4 Testing

In this iteration testing was started.

Our testing process was done according to guidelines stated in document

“Test Plan” Q. It was planned to have such tests:

• functional – ensure proper functionality, including navigation, data entry,

processing, and retrieval.

• user interface – ensure that the User Interface provides the user with the

appropriate access and navigation through the functions and all the pages

have a common style.

• security – ensure that only those users granted access to the system are

capable of accessing the system.

Security testing has not been done, because only few security features has

been implemented till the end of the project.

In the beginning constant refactoring often resulted in non functional system

which bothered other team members. After implementing unit tests, a developer

could easily check if everything worked correctly before committing changes to

the main repository.

We benefited a lot from testing, because bugs were caught faster and we

were always sure that the system is always well functioning.

More about testing is written in chapter 10.

E.5 Iteration Assessment 105

E.5 Iteration Assessment

E.5.1 Are the Goals Met?

The goal of this iteration was agree on User Interface design and build the

system with 4 Batch View pages, 4 Insert – Edit pages and 1 View Details

page.

Because we were short in time (the system appeared to be bigger then in

the beginning of the project), we did not succeed in implementing the whole

system. We made proof of concepts – implemented at least a single page of each

different type.

Appendix F

Iteration Management Plan

F.1 Introduction

The goal of this document is to specify how to:

• Create new iteration plan

• When and how to evaluate iterations

F.2 Document Holder

Darius Damalakas is responsible for managing this document.

F.3 Iteration Timing

Each iteration is agreed by all team members to last approximately one week.

Each iteration is evaluated on Tuesdays. Every new iteration starts on Wednes-

day.

On Tuesdays team evaluates iteration, and afterwords together agrees on

next iteration plan.

On Wednesday, iteration can are re-evaluated and adjusted as necessary.

F.4 Iteration Plan Structure 107

F.4 Iteration Plan Structure

Each iteration plan must clearly state:

1. When iteration starts and ends.

2. Goals

Goals define the broad-level targets of this iteration. An example of such

might be “Detail 2-3 use cases” or “Build prototype”.

3. Objectives

Objectives are concrete targets of this iteration. Objectives, in the best

case scenario, must be specified as concrete as possible, and, if possible, in

a way so they can be measured or tracked. An example might be “Detail

a use case named. ” or

“Implement that and that component. Component realisation must result

in the following artifacts:

• Source Code

• Updated Design Model

• Updates Class Diagram

”.

F.5 Iteration Evaluation and Assessment

Iteration evaluation is carried out orally by all team members. Evaluation

process consists of the following process:

• Checking are the goals met

• Identifying succeeded and failed objectives

• Reevaluating risks

• Planning next iteration

• Shortly summarising evaluation process for later use using the following

template. Attach this summary to iteration plan.

F.5 Iteration Evaluation and Assessment 108

– Evaluation date

– Concise summary

– Summary of meeting with the company

– Summary of meeting with project adviser

Appendix G

Software Development Plan

G.1 Deliverables

Deliverables are the artifacts, which the team agrees to develop to a specified

date and submit to customer for review and approval. Deliverables on delivery

date must be already seen and negotiated with customer. If deliverables upon

submit date are not acceptable to customer, the issue are negotiated: why

deliverables are not ready, does the team need more time, more resources, or is

the scope of the deliverable not-realistic, too-big, or else.

Deliverable name Delivery Date Evaluation

Supplementary Specification 14 08 2005

Use Case Specification 14 09 2005

User Interface Specification 14 09 2005

Initial Prototype 14 09 2005

Test Plan 14 09 2005

Software Architecture Docu-

ment

21 09 2005

Functional Prototype 28 09 2005

Operational system 12 10 2005

Deployment tools 19 10 2005

Table G.1: Deliverables

G.1 Deliverables 110

G.1.1 Supplementary Specification

The goal of this document is to specify requirements, that are not captured

directly by use cases, such as usability, reliability, performance and supportabil-

ity. Also operating systems and environments, compatibility requirements, and

design constraints.

G.1.2 Use Case Specification

This document captures all use-cases identified by the team and detalises them.

Any identified business rules will be captured here as well.

G.1.3 User Interface Specification

The document will capture and stabilize user interfaces. The document will also

include a diagram of the overall system from user perspective.

G.1.4 Software Architecture Document

Software Architecture Document will outline the software architecture to be

used in the system. It will also prioritize use cases in order of implementation.

G.1.5 Test Plan

Test plan will outline the areas going to be tested. What techniques will be

used to perform testing. Testing prioritization and scheduling will be defined as

well.

G.1.6 Initial Prototype

This prototype will prove that a suggested architectural solution will work and

solve the problem. The prototype will also solve or diminish any severe devel-

opment risks identified.

G.1.7 Functional Prototype

Functional prototype will have implemented 80% of identified use-cases.

G.2 Human Resources 111

G.1.8 Operational System

System will operate 100% planned functionality. System will be tested and work

without any identified erros.

G.1.9 Deployment Tools

Deployment tools will allow the deployment of operational system into cus-

tomers environment. The tools must be well-tested and guarantee proper install

procedure.

G.2 Human Resources

G.2.1 Team Structure

The team consist of four members. Table G.2 shows each team members details.

Name Phone Number E-mail address

Vilma Rudžionytė +37060068449 vilma.rudzionyte@gmail.com

Martynas Kriaučiūnas +37067002732 martynask@gmail.com

Viktoras Čiumanovas +37067485615 viktoras.ciumanovas@gmail.com

Darius Damalakas +37060246428 darius.damalakas@gmail.com

Table G.2: Team Members

G.2.2 Team Capabilities

Team good and bad traits are identified in table G.3.

G.2.3 Roles and Responsibilities

The team has divided amongself the main roles and agreed on responsibilities.

See table G.4.

G.3 Project Planning 112

Name Good Traits Bad Traits

Vilma Rudžionytė Does not have any sense of

humour, total lack of re-

sponsibility

Does not program,

changes often study

programs

Martynas Kriaučiūnas Wants to do more than he

is able to, Thinks he is the

best in designing

Took to much jobs in one

time

Viktoras Čiumanovas Once he knew he was mis-

taken, but now he realised

he was wrong

No self-responsibility, no

personal inspiration

Darius Damalakas Works a lot, help to every-

one

Can’t work steady for a

long time, not always able

to accept other people

with their good and bad

sides, underestimates own

limits and abilities.

Table G.3: Team Capabilities

G.3 Project Planning

G.3.1 Phase Plan

The project is going to be developed through 17 08 2005 to 31 10 2005. This

time is split into four phases.

G.3.2 Iteration Plans

1. Iteration 1 (Inception phase) on page 88

2. Iteration 2 (Elaboration phase) on page 91

3. Iteration 3 (Elaboration phase) on page 95

4. Iteration 4 (Elaboration phase) on page 99

5. Iteration 5 (Construction phase) on page 102

G.3 Project Planning 113

Name Main Role Description

Vilma Rudžionytė User Interface De-

signer, Tester

Designs user interfaces

Martynas Kriaučiūnas Software Architect,

Documentation

Manager

Responsible for setting and as-

sessing architectural analysis,

defining reuse strategy and lead-

ing Design and Implementation

Work flow

Viktoras Čiumanovas Test Designer,

Tester

Responsible for designing, im-

plementing and performing auto-

mated tests

Darius Damalakas Project Manager,

Process Engineer

Responsible for guiding the

project and ensuring everybody

agrees on the working methods

Table G.4: Team Responsibilities

Date Phase Name Phase goals

18 08 2005 –

22 08 2005

Inception Establish project and agree on

development case

23 08 2005 –

28 09 2005

Elaboration collect requirements, define user

interface, define architectural de-

sign, implement an architectural

prototype

29 09 2005 –

31 10 2005

Construction Build an operation system, test

system

Table G.5: Phase Plan

G.3.3 Project Plan

Project plan includes not only deliverables, but also artifacts, which are the

documents or code entities which the team will produce during the development

process. Artifacts are to be used only inside the team and will not be submitted

to the customer. Artifacts help the team to carry out the project by capturing

various information such planning and risk management.

G.4 Technical Process Plans and Guidelines 114

Some artifacts put together will constitute a deliverable, which will be shown

in bold. For the deliverable dates see deliverable only list G.1.

The dates for artifacts can be changed in team freely, when ether the whole

team agrees to do so in accordance with deliverable plan. The dates for deliv-

erables can not be changed, unless through formal change request procedure.

G.4 Technical Process Plans and Guidelines

G.4.1 Iteration Management

Iteration Management plan can be found on page 106

G.4 Technical Process Plans and Guidelines 115

Artifact or deliverable name References Delivery

Date

Development Case “Development Case.ppt” 20 08 2005

Software Development Plan (this document) 22 08 2005

Iteration Management Plan F 22 08 2005

Risk Management Strategy chapter H 26 08 2005

Project Management Risk List chapter I 26 08 2005

Development Risk List chapter K 26 08 2005

Supplementary Specification chapter M Deliverable

Database Package code 09 09 2005

Permission package

Project Builder

Core package

code 12 09 2005

Software Architecture Document chapter L 13 09 2005

Database Scripts code 13 09 2005

Test Plan Chapter Q Deliverable

User Interface Specification chapter ?? Deliverable

Use Case Specification chapter N Deliverable

Project Detail Builder code 13 09 2005

Initial Prototype code Deliverable

Task Builder Task Detail Builder code 18 09 2005

Event Builder

Event Detail Builder

code 24 09 2005

Functional Prototype code Deliverable

Operational System code Deliverable

Deployment Tools tools Deliverable

Table G.6: Artifacts

Appendix H

Risk Management Strategy

H.1 Introduction

The purpose of this document is to explain how all the risk will be managed

during the project.

H.2 Document Holder

Martynas is responsible for managing this document.

H.3 What is a Risk

A Risk is the potential harm that may arise from some present process or from

some future event.

There are different kinds of risks:

• indirect – risks which may or may not occur and we cannot prevent them,

e.g. the world may end tomorrow, it also may not end. We will not try to

identify risks like this in our project and will deal with them only when

such a risk occurs.

• direct risks – risks which may occur, can be foreseen and a mitigation

strategy can be developed. So the purpose of Risk Management Strategy

is to specify how project’s risks must be managed.

H.4 Specifying a Risk 117

H.4 Specifying a Risk

During the project we will have two huge main activities: Project Management

and Development along with their own risks. Despite the similar management

of these risks, they will be separated and specified in different risk lists for the

clearness and simplicity reasons:

• A list of risks applied for the project management activity can be found

on page 119.

• A list of risks applied for the development phase can be found on page

123.

When a direct risk is identified it must be specified instantly so it would not

be forgotten. For defining risks a common template will be used:

Name: A short name for a risk (may be replaced with a document’s subsection

name).

Description: A more decent description of a risk.

Severity: A measure of a damage which could be caused for the project if the

risk occurs. Possible values: low, normal, high.

Probability: A measure of chance for this risk to occur. Possible values: low,

normal, high.

Status: Indication of a status of the risk: active, solved.

Manager: A team member who is responsible for solving the risk.

Mitigation strategy: Description of mitigation strategies for the risk.

H.5 Risk Management Strategy

As it was stated above risks can cause serious troubles for the project, so they

must be solved or a mitigation strategy must be developed for them as soon as

possible.

Risks should be managed according to their severity: more dangerous should

be examined first. Therefore risk lists should be reviewed before every iteration

H.5 Risk Management Strategy 118

and a time must be scheduled for solving most important ones. For example

almost all development risks should be solved before or in Analysis and Design

phase so they would not influence a system architecture.

Appendix I

Project Management Risk

List

I.1 Introduction

The purpose of this document is to list risks related to Project Management.

Risks are managed according to the rules stated in chapter H.

I.2 Document Holder

Darius Damalakas

I.3 Risk List

I.3.1 Mis-conceived or Undefined Project Scope

Description: The team has agreed to port the existing system to .NET plat-

form until 1st of October. The problems is how to evaluate, when the

project is successfully ported. What functionality must be present and

which not? Which functions are considered as “add–on” functions and

will be tackled in Construction phase II (see project phase plan G.3.1).

What about bug penetration? Must the port be completely bug-free? Is

this feasible at all?

I.3 Risk List 120

Severity: very high.

Probability: high.

Status: active.

Manager: Darius Damalakas .

Mitigation strategy: For tackling this risk the following procedure and meth-

ods will be used throughout the project.

• Agree on essential and non-essential functionality. Define how much

of essential and non-essential functionality must be implemented be-

fore specific date. State this in Software Development Plan under

section Project Scope G.1. Agree on Testing and bug penetration

level and scope.

• Meetings with customer must be held as specified below:

1. After meeting, create a document with captured information.

2. In team, agree on the contents of the document.

3. Submit the document to customer for review and approval.

4. After the document is approved, the team must include in doc-

ument what actions will be taken for the discussed items.

5. Submit the document to customer for review and approval.

I.3.2 Low-risk Tasks go First

Description: The problem occurs, when the team spend time on solving low-

risk tasks first, and leave the high tasks for the end of the project. Even

if 50% of low risk tasks are solved after spending 50% of time assigned for

the project, the high risk tasks might “drown” the project.

Severity: very high.

Probability: high.

Status: active.

Manager: Darius Damalakas .

I.3 Risk List 121

Mitigation strategy: During iteration planning procedures, the team must

choose highest risk jobs first. As an example consider whether to do a

high-risk prototype before the necessary documents are ready. Good doc-

umentation indeed might help drive prototype building activities, though

consider that building a prototype the team will from time to time stum-

ble on severe technical problems, when no real advancement programming

can be done. This time could be spent on making the documents ready.

Appendix J

Glossary

J.1 Document Holder

Viktoras is responsible for this document.

J.2 Glossary

1. System – “Project Register” system.

2. Employee – The company’s worker, whom has right to sign-in into the

system.

3. Project Manager – a user who owns a project. He is responsible for ap-

proving tasks and can edit all the information related to the project.

4. Department Manager – a user who is in charge of employees in his/her

department. He/she approves tasks for his/her employees.

5. Task – A smaller activity of a project, which must be performed during

its (project) running period to complete the project properly.

6. Event – The noteworthy file (e.g. system agreement) or occurrence during

the project.

7. Company’s resources– The company’s workers work hours, which can be

used for company’s needs.

Appendix K

Development Risk List

K.1 Introduction

The purpose of this document is to list risks related to analysis and design, and

implementation activities. Risks are managed according to the rules stated in

chapter H.

K.2 Document Holder

Martynas is responsible for managing this document.

K.3 Risk List

K.3.1 Lack of .Net Knowledge

Description: None of our team members has ever developed a project using

.Net, only Vilma has had a course about ASP.Net.

Severity: very high.

Probability: high.

Status: being solved.

Manager: Martynas.

K.3 Risk List 124

Mitigation strategy: If not solved this risk can be a reason for a failure,

therefore few mitigation strategies will be applied:

• Intense learning. We started looking for material about .Net before

the project, have found some useful books and not are reading.

• Despite the fact all the members are studying ASP.Net, Martynas will

put even more effort on investigating this field so he could consult

the rest of the team in more difficult situations.

• External reviews. We are planing to ask few external people to review

our job related to .Net : design documents and source code.

K.3.2 Inappropriate Database Design

Description: We had never done before a database design for a real world

system. This DB design might exhibit needs with which we had never

had any encounter before.

Severity: Normal.

Probability: high.

Status: Solved.

Manager: Martynas.

Mitigation strategy: • Focus on this problem first and ask guidance from

external sources.

Appendix L

Software Architecture

L.1 Introduction

The goal of this document is to identify and describe main parts of the system

(including database and web application). This document is being written (and

later constantly updated) at the end of the Elaboration phase so it would provide

a clear vision of the system for developers.

L.2 Document Holder

Martynas Kriaučiūnas

L.3 Architectural Goals

The main purpose of making systems’s architecture is to solve biggest architec-

tural risks and find out how to implement main requirements.

Requirements for the system can be extracted from Supplementary Specifi-

cationM and Use Case SpecificationN.

The most important requirements are:

• Data versioning. System must track all changes and provide change log

when needed;

L.3 Architectural Goals 126

• User permissions. System must limit user’s possible actions according to

it’s rights (check Use Case SpecificationN for more details).

• Usability. It should be possible to change user interface according to users’

feed back collected during testing period.

L.3.1 Main Components

Two main components which are identified in the system:

• Web Application. This part will provide interface for end users and will

control the logic (e.g. permissions).

• Data Base. All internal data will be stored in a data base.

L.3.2 Database

The main requirement which influences a design of the database is the wish to

keep track of the changes.

Three different database design strategies were discussed (see Project Report

document for more details). After considering advantages and drawbacks of all

the strategies, it was chosen to duplicate a record in an other table even a single

field is altered.

Detailed Description of the Design Strategy

Main rules how to add logging to a database:

1. For every table A a table AH must be created containing all the columns

from table A and an extra one – Parent – external key to table A;

2. If a table A has an external key to table B, then this key in table AH

show to table BH.

3. When a table A is altered, new data is written to AH as well. If an

external key from table A to table B exists, when the external key from

table AH must show to the top child record of the table BH;

Example. For the simplicity reasons lets consider a database containing only

two related tables (see figure L.1).

L.3 Architectural Goals 127

Figure L.1: “Projects & Employees” Database

In this example table P (P could stand for Projects) has an external key

to table E (E could stand for Employees).

In order to add history control, this data base should be extended in such a

way (see figure L.2).

Figure L.2: Versioned “Projects & Employees” Database

Retrieving Historical Data

If you need to get the change log for a record in table A which has ID=id, you

need to look for all the rows in table AH where Parent=id. An example of

SQL query:

SELECT * FROM AH WHERE Parent=@id;

If a table A has an external key (e.g. field ExtKey) to table B, then AH

has an external key to BH. In order to get a child row you have to perform

such steps:

• Find an id of the next version of the same record. This record holds the

key to the needed child row;

• Retrieve a child row.

L.3 Architectural Goals 128

L.3.3 Web Application

This is the main and very complex part of the system.

The designing is usually started by distinguishing related parts of the system

which later usually become into packages. When designing it is essential to know

limitations ant capabilities of the developing tools (e.g. programming language)

(it was a problem for us) which will be used. After long trial and error process

we decomposited the system according to two different aspects:

• Data View. Divided system into parts according to the data they deal

with, e.g. “Projects”, “Tasks” etc.

• Interface View. Divided system into parts according to user interface, e.g.

“BatchView”, “Insert/Edit/View” etc.

Packages

Web application is divided into packages with subpackages:

• User Interface. This package holds all the logics (e.g. navigation between

windows) and user interface part.

• Data package. This package has a two subpackages: DBFillers and Con-

trollers. They both constitute a middle layer between Data Base and User

Interface.

• User. This package is repsonisble for permission control.

• PRControls. This package is an extension to .NET user interface controls

User Interface

According to requirements, we tried to make a customizable interface and, if

possible, extract any code which might be reused. It is a very good practice to

avoid copy & paste by extracting as much functionality as possible to abstract

classes. So, if system design is done well, you need to change something only in

one place if a bug arises.

All the pages must be derived from the BasePage. This class is responsible

just for few base functions, such as controlling the life cycle of a web page.

L.3 Architectural Goals 129

Figure L.3: System Architecture

For every group of similar pages a base class is made which holds only main

logic (without any user interface design) for particular group of pages:

• BatchView. This class is used when a page which shows a table with some

kind of data is created (e.g. to show list of project).It is responsible to fill

in data to a page, redirect to respective Edit page and so on.

• Edit. A page, derived from this class, can be either Edit or Insert page.

The difference is that, if you are editing, the page is filled up with a data

on load.

• View. This group of pages allows to view a particular data in detail. The

Edit group can be used for this reason as well, but they are separated for

GUI customization reasons.

At first it was an idea to include some user interface design into base classes

(there are some parts which are similar for groups of pages, e.g. page header),

but, since ASP.NET does not allow to inherit ASP pages, we decided to make

all the user interface design in bottom classes. So every page in the system is

made separately and only code behind is derived from a respective class.

Data Package

Data Package contains two subpackages: DBFillers and Controllers.

DBFillers is responsible for:

L.3 Architectural Goals 130

• Retrieving required data for User Interface package;

There is an abstract base class DBFiller, which defines an interface. Each

subclass of a DBFiller will fill a dataset with some data from the table.

Controllers

This package controls data submission to databse actions, ensuring History re-

quirement is satisfied and hiding history implementation features from program-

mer.

There is an abstract base class AbstractController which defines an interface

and performs most common tasks. All base classes in the User Interface package

work with data using an instance of this class.

PRControls

This package provides new or enhanced web controls for user interface design.

And example of these would be FilterDropDownList or FilterTextBox.

These controls are used only by User Interface package.

Appendix M

Supplementary

Specification

M.1 Introduction

The goal of this documents is to capture requirements, which are not captured

in use-cases, such as usability, reliability, performance and supportability. Also

operating systems and environments, compatibility requirements, and design

constraints.

M.2 Document Holder

Martynas is responsible for managing this document.

M.3 Requirements

M.3.1 Development Environment

The project must be developed using ASP.Net and C#.

M.3.2 Persistency

System will have to use Microsoft SQL Enterprise Server 2003 for storing data.

M.4 Functional Requirements 132

M.3.3 User Interface

The system must be viewable using Microsoft Internet Explorer.

Project’s company stressed usability requirements which will be ensured do-

ing user interface prototypes and constantly giving users to do reviews.

M.3.4 Security

System will have to use role-based security model and limit it’s functionality

according to a user’s rights. A user can be assigned to several groups at once

and posses all the rights applicable for all the groups he/she belongs to. The

system must support these user types:

User – An ordinary system’s user. Specific rights/limitations are defined in

Use Case Specification (chapter N); An ordinary user can perform any

role in the system: employee, project manager or department manager.

See glossary J for details;

Administrator – can create/delete/administrate system users. Can perform

any action in the system.

Windows integrated authentication must be used to identify a user.

M.3.5 Accurateness

Projects’ and tasks’ start and end time has to be specified using full dates: year,

month and day.

Scheduled and real time which has been spent on doing a job has to be

specified hourly.

M.4 Functional Requirements

M.4.1 Data Versioning / History

Problem and

For the project management purposes it is useful to have information about

changes which have been made during the project and their reasons. E.g. why

a task’s duration time was extended and so on.

M.4 Functional Requirements 133

Requirement

Build an architecture which supports History, but do not build any interface

functionality to actually use this feature. This feature will be brought into use

after our first release.

Constraitns

The use of History feature will be developed during the second release building.

M.4.2 Multi-attachment Ability

Requirement

It is useful to attach more than one file. For example Project might have

attachments to as many documents as needed. Maintenance (Prieziuros Ivykiai)

could also have many attachments.

Constraints

Not applicable in first release.

M.4.3 Filtering Boxes in Datagrid

Requirement

This requirement came after discussing systems User Interface. Customers sug-

gested that would be very great to have filtering boxes directly in header section

of data grid.

Constraints

Must be developed in first release.

Appendix N

Use Case Specification

N.1 Introduction

This document contains domain model diagram, and any business logic identi-

fied, and use case specifications.

N.2 Document Holder

Viktoras is the holder of this document.

N.3 Domain Model Diagram

The domain model captures the real world classes in the problem domain. Do-

main model visualize the most important relations between classes together

identifying the multiplicity and attributes of classes. The diagram is shown in

figure N.1.

N.4 Business Logic

N.4.1 Task Creation Cycle

Task creation cycle emphasizes that the task must be approved by different

users in different cases. There are three cases. One is when a task is inserted

N.5 Use Case Template 135

Figure N.1: Domain model

by an employee and thus the task must be approved both by project manager

(PM) and department manager(DM). The other two cases are when either the

PM creates task and DM approves it, or DM creates task and PM approves it.

This is summarized visually in figure N.2

N.5 Use Case Template

Access Rights: List of actors, who can initiate this use case, e.g. Project

Manager, Department Manager, Employee, System Administrator.

Preconditions: Condition, which needs to start use case (e.g. a system user

is authenticated and has enough rights to complete the task).

Postcondition: Condition, by which is possible to recognize the use case is

performed.

Basic flow: Describes main work sequence during the use case, e.g.:

1. Project Manager inserts new project;

N.6 UC1: Insert Project 136

Figure N.2: Create Task Cycle

2. Project Manager inserts new tasks;

3. etc.

N.6 UC1: Insert Project

Postcondition: A new project is created.

Basic flow:

1. User fills in necessary information (look at table Project in diagram

N.1);

2. User submits data;

(a) If data is invalid, system displays message and allows to correct

changes;

3. System creates a new project.

N.7 UC2: Log Into System

Preconditions: User is not logged into the system

N.8 UC3: Insert Task 137

Postcondition: User is logged into system and system does not ask to log in

again for as long as user is using system, and for 30 min after user is not

using the system.

Basic flow:

1. User is automatically authenticated by Windows Login.

Alternative flow:

In case the browser does not support Windows automatic authentication:

1. User enters user name and password;

2. User submits data;

3. Systems logs user into system.

N.8 UC3: Insert Task

Preconditions: User is logged into the system.

Postcondition: A new task is created.

Basic flow:

1. User fills in necessary details (look at table Task in diagram N.1);

2. User submits data;

(a) If data is invalid, system displays message and allows to correct

errors.

3. System creates a new task;

4. System sends e-mails to the Employee, Project Manager ant Depart-

ment Manager notifying about the new task (if the task was not

entered by himself).

N.9 UC4: View Projects

Preconditions: User is logged into the system.

Postcondition: Based on the filter, system displays project information.

N.10 UC5: View Project In Detail 138

Basic flow: Based on the employee’s personal filter, system displays such a

data for each project:

1. Project code;

2. Project name;

3. Project leader;

4. Customer;

5. Project Start date;

6. Project End date;

7. Is project closed (yes/no).

N.10 UC5: View Project In Detail

Preconditions: User is logged into the system and a project is selected.

Postcondition: System displays project information.

Basic flow: The system displays all the data about a project (look at table

Project in diagram N.1).

N.11 UC6: View Events

Preconditions: User is logged into the system.

Postcondition: Based on the filter, the system displays event information.

Basic flow: The system display such data for a event:

• Name;

• Type;

• Date;

• A report applied for the Event.

N.12 UC7: View Event in Detail 139

N.12 UC7: View Event in Detail

Preconditions: User is logged into the system and an event is selected.

Postcondition: Based on the filter, the system displays event’s information.

Basic flow: System displays all the data about the event (look at table Event

in diagram N.1).

N.13 UC8: View Task in Detail

Preconditions: User is logged into the system and a task is selected.

Postcondition: Based on the filter, the system displays task’s information.

Basic flow: System display all the data about the task (look at table Task in

diagram N.1).

N.14 UC9: Edit Task

Access Rights: Owner, Project Manager, Department Manager.

Preconditions: A task is selected for editing and is not being edited by some-

one else.

Postcondition: An updated task is saved and requests for approvals are sent

to Project Manager and Department Manager.

Basic flow:

1. The user changes any information about the task (look at table Task

in diagram N.1).

(a) If data is invalid, system displays message and allows to correct

errors.

Alternative flow:

AF1 User can cancel editing at any time before it is successfully submitted to

the system. In that case editing is terminated and the old version of the

task is kept back.

N.15 UC10: View Tasks 140

N.15 UC10: View Tasks

Preconditions: User is logged into the system.

Postcondition: Based on the filter, the system displays information about

task.

Basic flow: The system display such data for a task:

• Unique project code;

• Performer of the task;

• Name of the task;

• Scheduled hours;

• Scheduled beginning date;

• Scheduled end date;

• Real end date;

• Approved by Project Manager (yes/no);

• Approved by Department Manager (yes/no);

• Performing date;

• Spend hours for task performance.

N.16 UC11: View My Approvals

Preconditions: User is logged into the system.

Basic flow:

System show approvals filtered by “Approved By” = current user.

N.17 UC12: Approve Task

Access Rights: Project Manager, Department Manager.

Preconditions: The top version of the task is not approved by the user.

Postcondition: The task is marked as approved by the user.

N.18 UC13: Delete Task 141

Basic flow:

1. The user approves the task.

N.18 UC13: Delete Task

Access Rights: Owner, Project Manager.

Preconditions: A task is selected.

Postcondition: The task is permanently deleted from the system.

Basic flow:

1. The user asks for deleting a task and approves it (extra precautions

are needed!);

2. System deletes the task and all the related data: its approvals, files

etc with respective history.

N.19 UC14: Delete Project

Access Rights: Project Manager, Department Manager.

Preconditions: A project is selected.

Postcondition: The project is permanently deleted from the system.

Basic flow:

1. The user asks for deleting a project and approves it (extra precautions

are needed!);

2. System deletes the project and all the related data: its tasks, ap-

provals, files etc. with respective history.

N.20 UC15: Edit Project

Access Rights: Project Manager, Department Manager.

Preconditions: User is logged into the system.

N.21 UC16: Delete Event 142

Postcondition: The project data is edited and updated.

Basic flow:

1. The user changes any information about the project (look at table

Project in diagram N.1).

(a) If data is invalid, system displays message and allows to correct

errors.

Alternative flow:

AF1 User can cancel editing at any time before it is successfully submitted to

the system. In that case editing is terminated and the old version of the

project is kept back.

N.21 UC16: Delete Event

Access Rights: Project Manager, Department Manager.

Preconditions: An Event is selected.

Postcondition: The Event is permanently deleted from the system.

Basic flow:

1. The user asks for deleting a event and approves it (extra precautions

are needed!);

2. System deletes the event with its history.

N.22 UC17: Edit Event

Access Rights: Project Manager, Department Manager.

Preconditions: An Event is selected.

Postcondition: The project data is edited and updated.

Basic flow:

N.23 UC19: Filter 143

1. The user changes any information about the event (look at table

Event in diagram N.1).

(a) If data is invalid, system displays message and allows to correct

errors.

Alternative flow:

AF1 User can cancel editing at any time before it is successfully submitted to

the system. In that case editing is terminated and the old version of the

project is kept back.

N.23 UC19: Filter

Preconditions: A Task, Project, Event or Approvals view is selected;

Postcondition: A required part of the view is shown;

Basic flow:

1. The system provides a possibility to filter the view according to all

its fields and external keys;

2. The user specifies filtering criteria he/she is interested in.

3. The user submits the filter.

Appendix O

Company, School and Team

Contract

Company Blue Bridge Jasinskio 16A LT – 01112, Vilnius

Contact person: Dalius Masalas

Tel: (8 5) 252 6060

E-mail: dalius.masalas@bluebridge.lt

Group members:

Darius Damalakas – darius.damalakas@gmail.com

Martynas Kriauciunas – martynas.k@gmail.com

Viktoras Ciumanovas – viktoras.ciumanovas@gmail.com

Vilma Rudzionyte – vilma.rudzionyte@gmail.com

Project period August – November 2005

Title “Project Registry”

Agreement

The group, Blue Bridge and Roskilde Business Academy are establishing

this agreement as a means of protecting all parties. This agreement will remain

fixed between all parties throughout the whole project period

The following items are drawn up to outline the responsibilities of all parties

involved in the project:

1. The group primary focus will be on delivering a study project (written

documents) for the purpose of the final fifth semester examination at

145

Roskilde Business Academy. Therefore the completion of any software

products resulting from the project cannot be guaranteed.

2. Blue Bridge owns the commercial rights of the delivered (code and report).

3. Should Blue Bridge decide to no longer support the project: “ Group

would have permission to continue the project using all information al-

ready provided by Blue Bridge. “ Furthermore all the references to the

company can be used by the group until the end of the project.

4. Should group decided to no longer support the project: “ Blue Bridge will

retain all the company material, if any, up to point. “ Blue Bridge owns

the commercial rights of finished or unfinished code produced up to that

point. “ Any commercial use of unfinished product will require written

consent from Blue Bridge.

5. The group grants permission to Roskilde Business Academy to publish the

report at the school library for educational purposes. Should any student

or teacher at the school choose to use any part of the code and/or report

for any purpose aside from educational purposes, express written consent

from all group members and Blue Bridge is required.

By signing this contract, I hereby state agreement and future compliance

with all items contained herein.

For and behalf of Blue Bridge:

• Dalius Masalas

For and behalf of Roskilde Business Academy:

• Michael Claudius

Group members:

• Vilma Rudžionyt_e

• Darius Damalakas

• Viktoras Čiumanovas

• Martynas Kriaučiūnas

Appendix P

Development Case

147

148

149

150

151

152

153

154

Appendix Q

Test Plan

Q.1 Introduction

The test plan contains information about the purpose and goals of testing within

the project. Additionally, the test plan identifies the strategies to be used to

implement and execute testing and resources needed.

Q.2 Document Holder

Darius is the holder of this document.

Q.3 Types of Tests

Q.3.1 Functional Tests

Functional requirements for test, as their name implies, are derived from de-

scriptions of the systems functional behaviors. At a minimum, each use case

should constitute at least one requirement for test.

TestObjective:

Ensure proper functionality, including navigation, data entry, processing,

and retrieval.

Technique:

Q.3 Types of Tests 156

Execute each use case, use-case flow, or function, using valid and invalid

data, to verify the following:

• The expected results occur when valid data is used.

• The appropriate error or warning messages are displayed when invalid

data is used.

• Each business rule is properly applied.

Completion Criteria:

• All planned tests have been executed.

• All identified defects have been addressed.

Q.3.2 User Interface Tests

User Interface (UI) testing verifies a user’s interaction with the software. The

goal of UI testing is to ensure that the User Interface provides the user with

the appropriate access and navigation through the functions. In addition, UI

testing ensures that the objects within the UI function as expected and has a

common style.

TestObjective: Verify the following:

• Navigation through the target-of-test properly reflects business func-

tions and requirements, including window-to-window, field-to-field,

and use of access methods (tab keys, mouse movements, accelerator

keys.

• Window objects and characteristics, such as menus, size, position,

state, and focus conform to standards.

Technique:

Create or modify tests for each window to verify proper navigation and

object states for each application window and objects

Completion Criteria: Each window successfully verified to remain consistent

within acceptable standard.

Q.3 Types of Tests 157

Q.3.3 Security Testing

Security testing focus on the area of System-level Security, more specifically

logging into the system.

System-level security ensures that only those users granted access to the

system are capable of accessing the system.

TestObjective: Verify that users are correctly logged into system, and only

those users, who have granted access.

Technique:

Create or modify tests for each window to verify proper navigation and

object states for each application window and objects

Completion Criteria: Each window successfully verified to remain consistent

within acceptable standard.

Appendix R

Team Contract

R.1 Purpose of this Document

The team working contract is done for several reasons:

• To support the project team by identifying human, technical and environ-

mental resources available to the project

• To allow team members to identify and accept the realities of the project:

its scope, duration, rules, interested parties and goals and their roles in

the project

• To provide a simple, clear starting point for the project and a foundation

for the team’s working practices and social dynamics.

R.2 What is the Goal for the Team Work (What

is to be Delivered to Who)

The main objective of the project is to gain experience working with C#, RUP,

UML, web development and relational databases.

The goal is to complete the study project in time and to deliver Study

Project documentation and System Development documentation to the school

for evaluation at the final exam for this 5th semester.

R.3 Team Members 159

The criteria for success have been included to aid us in evaluating the results

of the project:

• A report outlining the decisions made and tasks performed during the

completion of the research and system development project is delivered.

• The project is completed on time.

• The project receives a good evaluation from the project adviser and censor.

R.3 Team Members

Name Telephone E-mail

Vilma Rudzionyte +37060068449 ragana.v@gmail.com

Viktoras Ciumanovas +37067485615 viktoras.ciumanovas@gmail.com

Darius Damalakas +37067348362 darius.damalakas@gmail.com

Martynas Kriauciunas +37067002732 martynas.kriauciunas@mif.vu.lt

R.4 Resources Available for the Team and As-

sessment of Strengths and Weaknesses

We are the best team and here are our weaknesses and strengths

R.5 Work Organisation

This project is being done by a group therefor all the group members are equally

responsible for the success and are expected to do their best.

The roles in our team were not defined artificially, i.e. the team naturally

observed and noted that one member is more liable to prompt action, the others

are more liable to anger, and the third one is natural idler.

Thus, the table R.2 shows team member role assignment along with ...

R.6 What is the Goal for Team Work

The main objective of the project is to gain experience working with UP, UML,

C#.NET.

R.6 What is the Goal for Team Work 160

Name Good Traits Bad Traits

Vilma Rudžionytė Does not have any sense of

humour, total lack of re-

sponsibility

Does not program,

changes often study

programs

Martynas Kriaučiūnas Wants to do more than he

is able to, Thinks he is the

best in designing

Took to much jobs in one

time

Viktoras Čiumanovas Once he knew he was mis-

taken, but now he realized

he was wrong

No self-responsibility, no

personal inspiration

Darius Damalakas Works a lot, help to every-

one

Can’t work steady for a

long time, not always able

to accept other people

with their good and bad

sides, underestimates own

limits and abilities.

Table R.1: Team Capabilities

The goal is to complete the study project in time and to deliver Study

Project documentation and Systems Development documentation to the school

for evaluation at the final exam for this semester.

The criteria for success have been included to aid us in evaluating the results

of the project:

• A report outlining the decisions made and tasks performed during the

completion of the research and system development project is delivered;

• The project is completed on time;

• The project receives a good evaluation from the project advisers and cen-

sor.

R.6 What is the Goal for Team Work 161

Name Main Role

Vilma Rudžionytė User Interface Evaluation, Project Report Designs

and evaluates UI

Description She has done UI design in 3rd semester. She easily

copes with small-scope tasks, but easily bumps into

dead-ends when given more abstract tasks. Needs

strong guidance

Martynas Kriaučiūnas Software Architect: Responsible for setting and

assessing architectural analysis, defining reuse strat-

egy and leading Design and Implementation Work

flow

Description He has outstanding experience in designing software

and building reusable architectures. 4 years of ex-

perience with real world projects. Critical thinking

(some times too much). Structural thinking

Viktoras Čiumanovas User Interface Design: Responsible for building

UI prototype and communicating with customers

Description He has outstanding experience in designing software

and building reusable architectures. 4 years of ex-

perience with real world projects. Critical thinking

(some times too much). Structural thinking

Darius Damalakas Project Manager, Process Engineer Responsible for

guiding the project and ensuring everybody agrees

on the working methods

Description He has outstanding experience in designing software

and building reusable architectures. 4 years of ex-

perience with real world projects. Critical thinking

(some times too much). Structural thinking

Table R.2: Team Roles

R.7 Technical Resources Available 162

R.7 Technical Resources Available

The following is a list of resources owned by group members or available from

Blue Bridge (BB):

R.8 Software

• LaTeX (Word Processor)

• Dia (Diagram Application)

• Subversion (Version Control System)

• Visual Studio.NET 2003(Programming Language)

• Windows 98, Windows 2000, Windows XP home edition

• SQL Server 2000

• MS Project

R.9 Hardware

• PCs at BB and at home

• Laser printer at BB

• Internet and network connections for backup and communication

R.10 Working Place

Team members living places or in the BB.

R.11 Risks

Based on the above analysis and the experience from last semesters work typical

risks in the group work fall in these categories:

• Disharmony in group work

R.11 Risks 163

• Sharing of workload

• Lack of skills

Appendix S

XP versus UP a

Methodology Comparison

Study Work

S.1 Introduction

The comparison will be made based on information from official XP web site [1]

and practice gain from following the approaches described in Craig’s Larman

book [10] “Applying UML and patterns” and “The New Methodology” [11] from

Martin Flower.

S.2 Philosophy

These sections present the philosophy the methodologies expose. In this con-

text, “philosophy” is regarded the same as in the book “Information Systems

development” [9] it is a principle or a set of principles that underlie the method-

ology.

S.2 Philosophy 165

S.2.1 Paradigm

Two paradigms are considered relevant to this are the science [6] and the systems

[7] paradigm.

It is difficult to strictly say to what paradigm methodologies should be put.

We identify UP as being science paradigm while XP being systems paradigm.

This partitioning is on the biggest part influenced by the overall perception of

systems development for particular methodology. XP tries to build the system

gradually. On the other hand, we believe, that UP is based on science paradigm

because it tries more or less to build the system which is based on elaborate

architecture (because UP is architecture-centric). Of course UP (as also XP) is

based on an iterative approach. The important issue is not the exact paradigm

we assign, but the discussion our ideas might generate.

S.2.2 Objectives

This section distinguishes the objectives of the methodologies, or more strictly

– it tries to answer the question ’could the use of methodology lead to the

implementation of a purely organizational or non-IT solution?’

The objective of the XP methodology is not to come up with the non-IT

or purely organizational solution, but quite the opposite – XP is designed to

build IT-systems and do not address the analysis of the organization strategy

and functions. UP is identified also as capable of producing only IT solution.

This is based on the fact that both methodologies do not incorporate business

analysis steps.

S.2.3 Domain

This section describes methodologies as being of the planning, organization, and

strategy type or problem solving methodologies. This is related to the objectives

of the methodology, but focuses on what aspects or domain the methodology

seeks to address.

The primary focus is to solve a particular problem (to create a system which

helps achieve some specific goals). That means the domain of interest is rather

narrow and solely limits to creating an IT-solution and non-IT solution is not in

S.3 Model 166

the area of interest. XP does not address the general planning, organizational,

and strategy of information and systems in the organization analysis. UP is also

described as problem-solving methodology for the same reasons.

S.2.4 Target

This section is concerned with the target system to be developed, or more

particularly whether the methodology is aimed at particular types of application,

types of domain, size of system, environment and so on.

The XP is suited, as stated in XP web site [1], for small groups of people,

usually varying between 2 and 12, though larger groups of 30 have also report

success. It is not possible to use XP with huge staff. XP enables to embrace

change, so projects with highly unstable project requirements fits perfectly.

UP is considered to be general purpose methodology, although it is suggested

they are not really helpful for simple, limited systems.

S.3 Model

This sections concerns with the model or models that the methodologies use.

This can be described in terms of the type of the model, the levels of abstraction

of the model and the orientation or focus of the model.

XP uses OO modeling techniques. It is stated that there is some written

documentation for the software, more commonly interpreting requirements than

documenting design.

In UP the basic models are also of object-orientation approach. However,

the models are oriented not only for software design, but also business processes.

S.4 Techniques and Tools

This section describes techniques and tools used by the methodologies

S.4.1 UP Techniques

UP utilizes the following techniques in developing IT-solution

• Entity modeling

S.4 Techniques and Tools 167

• Gannt charts

• OO techniques and UML (class diagram, use case diagram, interaction

diagram, sequence and state chart diagrams, activity diagram)

S.4.2 UP Tools

UP does not specifically address the tools to be used together with methodology.

Some individual tools that might be used with UP

• For diagramming: Microsoft Visio, MagicDraw,

• For project management: Microsoft project,

• Requirements: Microsoft office, Open Office, any XML technology sup-

porting program,

• Application packages (supports whole process): Rational Rose.

S.4.3 XP Techniques

XP does not specify techniques to be used except that it is object oriented

methodology and appropriate tools and techniques should be used. Based on

this we can state that it uses.

• OO techniques and UML (class diagram, use case diagram, interaction

diagram, sequence and state chart diagrams, activity diagram)

• Requirements are modeled with the use of CRC cards. CRC stands for

Class, Responsibilities, and Collaboration. The cards are rarely filled up

in great detail and in most cases only a class name is written at the top

of the card.

• User stories [3]

S.4.4 XP Tools

XP does not specify any specific tools to use except the very important area –

testing.

S.5 Scope 168

Phase/Methodology XP UP

Strategy 0 1

Feasibility 0 1

Analysis 1 3

Logical Design 1 3

Physical Design 1 3

Programming 3 1

Testing 3 2

Implementation 1 3

Evaluation 0 2

Maintenance 0 0

• Unit Test Framework

Unit test framework is a development tool to facilitate creating and managing

tests. “Your unit test framework can help you formalize requirements, clarify

architecture, write code, debug code, integrate code, release, optimize, and of

course test.”

S.5 Scope

Both methodologies are valued against the scope of software development life

cycle stages they cover. This kind of comparison has major flaw – not all

methodologies do follow a life cycle and follow other approaches. As is with

our case, both methodologies use iterative approach. The values for evaluating

stage coverage ranges from 0 (means methodology does not cover the stage at

all) to 3 (covers in detail). The comparison is based on our quick investigation

so the table should not be understood as concise and in most cases correct.

The comparison clearly shows that the UP covers most of the areas rather

in detail while XP focuses on programming and testing. This is because XP is

a lightweight methodology [2]. XP focuses on delivering the software when it is

needed and embraces changes gently through short-time boxed iterations (early

feedback) and simplicity.

UP starts with inception phase looking at whether the project is feasible,

S.6 Outputs 169

and proceeds further with the project requirement gathering and analysis. XP

does not have an implicit analysis phase – customer is available all the time and

writes user stories [3]. User stories serve as a replacement of a big requirements

document.

XP explicitly does not state logical or physical design stages – though spike

solutions are created to help resolve various technical or system design problems.

UP, on the contrary, has a design discipline, where design and data models are

created with the Software Architecture document.

XP covers programming stage thoroughly. It has many, though simple rules

and practices to guide the programmer of achieving simple code with extend-

able design. The coding rules are as follows: the customer is always available,

code must be written to agreed standards, code the unit test first, all code is

pair programmed, only one pair integrates code at a time, integrate often, use

collective code ownership, leave optimization till last, no overtime working (in-

stead change the project scope or timing). UP explicitly assumes that the OO

programming language will be used (as is the methodology itself OO).

The last stage XP covers thoroughly is testing. Testing is one of the core

roots of XP. It is even said “We would like to have more lines of test than we do of

actual code” [5]. Both acceptance tests and unit tests are used. Unit test should

be in most cases 100 percent automated. UP pays a great deal of attention to

testing also, though not so “aggressively” as XP. In a testing discipline a test

model is created with lots of test cases, and, presumably, automated tests.

S.6 Outputs

S.6.1 Introduction

The next sections will be investigations of what is actually produced in terms

of deliverables at the end of each stage of methodology. XP Outputs

• User Stories [3]

• CRC cards

• Release plans

S.6 Outputs 170

• Iteration plan

• Unit tests

• Acceptance tests

S.6.2 UP Outputs

The outputs for UP will be categorized by the UP disciplines. Only the major

artifacts (deliverables) will be named here and many simple non major artifacts

will be skipped.

• Business modeling

– Domain Model

• Requirements

– Use-Case model

– Vision

– Supplementary Specification

– Glossary

• Design

– Design Model (Use Case Realizations)

– Software architecture document

– Data Model

• Implementation

– Implementation model

• Project Management

– Software Development plan (includes Project plan, iteration plans,

etc.)

• Testing

– Test Model

S.7 Practice 171

• Environment

– Development Case

S.7 Practice

S.7.1 Background

The background of the methodology broadly identifies its origins in terms of

academic or commercial.

The UP has mainly an academic background, while XP is a commercial

methodology. The new ways of developing software developed by Kent Beck

were first tried in Daimler Chrysler and resulted as an XP methodology.

S.7.2 User Base

This topic describes how wide the methodology is used.

Not discussed in this document due to the lack of information

S.7.3 Participants

In this topic we discuss the participants involved, in some contexts these are

referred to as “actors” or “stake-holders”. The questions answered here will

be “Who is supposed to use the methodology”, “What roles do they perform”.

Skill levels are also addressed.

S.7.4 UP Participants

A specialist team of professional systems analysts and designers perform the

analysis and design aspects and professional programmers design the programs

and write the code. The system is implemented by the analysts. In order to

learn UP, significant training and experience is needed.

S.7.5 XP Participants

Participants are “ordinary programmers”, who do not need a Ph.D. to use XP.

Part of the team are also managers and customers as well. Through XP being

S.8 Product 172

a lightweight methodology [2], no intensive and expensive training is needed to

wield the methodology.

S.8 Product

This section describes what is supplied when purchasing a methodology and at

what cost.

S.8.1 UP Products

The author of this document was not been able to find a freely available docu-

mentation. Software to support the methodology (in activities such as config-

uration and change control, design and analysis) is advisable, though suitable

open source software might be downloaded freely from web.

S.8.2 XP Products

The descriptive documentation of the methodology is available online and is

presented to the public with no charge. XP does not require any additional

software to use it.

S.9 Conclusion

The two compared methodologies XP and UP are quite different from their

background.

XP is designed to be a lightweight [2] and agile methodology. It is intended

to be not used in projects with huge staff (suggested team size varies from 2 to 12

people). XP focuses on following practices which makes software development go

faster and remove practices which make it move slower – it means documentation

is made only when it is needed.

UP is quite the opposite – it is designed for big projects and with huge staff.

A thorough process must be followed in order use UP methodology.

Both methodologies embrace change, though there are some differences in

the two: UP embraces change through the use iterations and planning. XP

uses also an iterative approach though with much smaller iterations (one of the

S.9 Conclusion 173

reasons is because of the huge staff and the communication taking place there)

thus enabling considerably fast feedbacks.

It is clear that the differences are primarily implied by the size of the staff.

This allows XP to reduce documentation to the minimum and still keep the

communication active and efficient.

Another underlying difference between these two methodologies is the way

they treat system design. UP is based on an idea that as soon as the design

is stabilized, coding planning and programming can take place. While this is a

very good idea in civil engineering (where the cost of designing a bridge is 10

percent of the whole cost of the project), s1 uggests that for a large project,

only 15 percent of the project is code and unit test, an almost perfect reversal

of the bridge building ratios. He states that the design part takes not less than

50 percent of the work. XP addresses this (and all agile methodologies [8]) by

focusing on coding thus limiting design (and documentation) activities.

UP is

• architecture centric

• Use-case driven

• Iterative

• Deals high risk issues in first place

• Object oriented

XP emphasizes:

• Team work

• Customer satisfaction by delivering software which is needed when it is

needed

• Improvement of software project in four essential ways: communication,

simplicity, feedback and courage

• Writing tests before actual code to be tested

• Implementing things you need right now, not the things you will need.
1McConnell, http://www.amazon.com/exec/obidos/ASIN/1556159005

McConnell, http://www.amazon.com/exec/obidos/ASIN/1556159005

S.10 References 174

• Do documentation whenever it is needed

• The quality of the source code

• Small iterations

• Customer involvement

Whilst there are many differences, the authors personal opinion is of that

these two methodologies do not compete with each other – both stresses different

parts of IS development and thus provide different approaches and practices.

S.10 References

[1] XP website

www.extremeprogramming.org

[2] Lightweight methodologies

An excerpt from XP website [1]: “A software methodology is a set of rules and

practices used to create computer programs. A heavyweight methodology has

many rules, practices, and documents. It requires discipline and time to follow

correctly. A lightweight methodology has only a few rules and practices or ones

which are easy to follow”.

[3] User stories

An excerpt from XP website [1]: “User stories serve the same purpose as use

cases but are not the same. They are used to create time estimates ¡. . . ¿. They

are also used instead of a large requirements document. User stories are written

by the customers as things that the system needs to do for them. ¡. . . ¿ They

are in the format of about three sentences of text written by the customer in

the customers terminology without techno-syntax”.

[4] Spike solutions

An excerpt from XP website [1]: “Create spike solutions to figure out answers

to tough technical or design problems¡. . . ¿ Most spikes are not good enough to

keep, so expect to throw it away. The goals are reduce the risk of a technical

problem or increase the reliability of a user story’s estimate”.

[5] The four project values

http://www.xprogramming.com/Practices/PracValues.html

S.10 References 175

[6] Science paradigm

Checkland (1981) describes science paradigm as consisting of reductionism, re-

peatability, and refutation: “we may reduce the complexity of the variety of the

real world in experiments whose results are validated by their repeatability, and

we may build knowledge by the refutation of hypothesis”.

[7] Systems paradigm

Checkland (1981) argues that human activity systems are systems which do not

display characteristics of breaking down a problem into smaller parts does not

break the whole system. Human activity systems has quite the opposite char-

acteristics – emergent properties (i.e. the whole is greater than the sum of the

parts) and perform differently as a whole. The systems paradigm concerns itself

for the whole picture, the emergent properties, and interrelationships between

parts of the whole.

[8] Agile methodology

Some time ago lightweight methodologies [2] were the term to be used instead of

agile, whilst now these terms are used interchangeably. Agile methods “attempt

a useful compromise between no process and too much process, providing just

enough process to gain a reasonable payoff”, an excerpt from Martin Flower doc-

ument “The new Methodology” [11]. “Agile methods are adaptive rather than

predictive, Agile methods are people-oriented rather than process-oriented”.

[9] “Information Systems Development”

[10] “Applying UML and patterns”.

An introduction to Object-Oriented Analysis and Design and the Unified Process.

Craig Larman, 2nd edition 2002

[11] The New Methodology

Martin Fowler. http://www.martinfowler.com

Appendix T

Project Registry Source

T.1 Pages

ProjectRegistry/Pages/BasePage.cs

using System;

using System.Data;

using System.Web.UI.WebControls;

using ProjectRegistry.DataBase;

namespace ProjectRegistry.Pages

{

/// <summary>

/// Base page establishes a common interface for all pag

es. It establishes user identity

/// on page load, and additionaly, each page must:

/// 1. provide an AbstractController, a page id

/// 2. PRBindData() method, which performs data binding.

/// </summary>

/// <remarks> This class can not be made Abstract, as

Visual studio web designer will

T.1 Pages 177

/// complain, that aspx page can not inherit from abstract class</remarks>

public class BasePage : System.Web.UI.Page

{

private AbstractController controller;

protected string PageID;

public BasePage(AbstractController controller, string id) : base ()

{

this.PageID = id;

this.controller = controller;

}

public AbstractController Controller

{

get

{

if (this.controller == null)

throw new System.Exception("must override");

return this.controller;

}

}

// This is only to shut up Visual Studio

public BasePage() : base ()

{

this.controller = null;

}

/// <summary>

/// establish user identity and bind data

/// </summary>

/// <param name="sender"></param>

T.1 Pages 178

/// <param name="e"></param>

protected virtual void Page_Load(object sender, System.EventArgs e)

{

ProjectRegistry.Users.User.getUser(this.Session)

;

if (!Page.IsPostBack)

PRBindData();

}

protected virtual void PRBindData() {throw new System.Exception("must override");}

}

}

T.1 Pages 179

T.1.1 BatchView Pages

ProjectRegistry/Pages/BatchViews/BatchView.cs

using System;

using System.Data;

using System.Collections;

using System.Web.UI;

using System.Web.UI.WebControls;

using ProjectRegistry.Pages;

using ProjectRegistry.DataBase;

using ProjectRegistry.DataBase.DataSets;

using PRControls;

using PRCommonLibrary;

namespace ProjectRegistry.Pages.BatchViews

{

/// <summary>

/// Details an interface for BatchView pages

/// </summary>

public class BatchView : BasePage

{

// Filtering Rules

protected PRCommonLibrary.Persistency.FilterHashTabl

e PersistentFilter;

// Sorting Rules

protected PRCommonLibrary.Persistency.FilterHashTabl

e PersistentSorting;

T.1 Pages 180

public BatchView(AbstractController controller, stri

ng id) : base (controller, id)

{

// create filtering and sorting rule tables

this.PersistentFilter =

new PRCommonLibrary.Persistency.FilterHashTa

ble("filtering table of " + this.PageID);

this.PersistentSorting =

new PRCommonLibrary.Persistency.FilterHashTa

ble("sorting table of " + this.PageID);

}

// an empty constructor to VS designer ;)

public BatchView() : base () {}

protected string ReplaceBooleanTaipNe(object val)

{

return ReplaceBoolean(val, "taip", "ne");

}

protected string ReplaceBoolean(object val, string T

rue, string False)

{

if (val.ToString() == "True")

return True;

else

return False;

}

override protected void OnInit(EventArgs e)

{

// supply session object to Filter and Soring ta

bles

T.1 Pages 181

// this must be done in init stage, as the same

filter and sort rule objects

// will persist through many sessions

this.PersistentFilter.PageSession = this.Session

;

this.PersistentSorting.PageSession = this.Sessio

n;

base.OnInit(e);

}

/// <summary>

/// adds any filters programmaticaly.

/// </summary>

/// <remarks>

/// <p> For ex. If a page is invoked somePage.aspx?P

MID=3

/// then it could add a filter

/// this.PersistentFilter.injectRule("ProjectID",Fil

terOperation.Equals, PMID, "");

/// </p>

/// <p>subclasses must always override this method.

</p> </remarks>

protected virtual void addFilters()

{

throw new System.Exception("must override");

}

// each subpage must have a datagrid

protected virtual DataGrid dataGrid

{

get { throw new System.Exception("must override"

); }

}

T.1 Pages 182

/// <summary>

/// each subpage must have a dataview.

/// </summary>

/// <remarks> DataView is usually bound to dataGrid<

/remarks>

protected virtual DataView dataView

{

get { throw new System.Exception("must override"

); }

}

// checks if page index is in correct boundaries

private void setCurrentPageIndex()

{

if (this.dataGrid.CurrentPageIndex * this.dataGr

id.PageSize >= this.dataView.Count)

{

int page = (this.dataView.Count / this.dataG

rid.PageSize) - 1;

// page might equal to -1, when dataView.Cou

nt=0

if (page < 0) page = 0;

this.dataGrid.CurrentPageIndex = page;

}

}

/// <summary>

///

/// </summary>

/*protected virtual DataSet dataSet

{

T.1 Pages 183

get { throw new System.Exception("must override"

);}

}*/

protected override void PRBindData()

{

this.dataGrid.VirtualItemCount = this.dataView.C

ount;

this.addFilters();

dataView.RowFilter = this.PersistentFilter.build

Filter();

dataView.Sort = this.PersistentSorting.buildFilt

er();

DataBind();

this.setCurrentPageIndex();

managePermissions();

}

// Permissions should me managed through this method

protected virtual void managePermissions() {}

// Responsible for paging

protected virtual void Paging(object source, DataGri

dPageChangedEventArgs e)

{

dataGrid.CurrentPageIndex = e.NewPageIndex;

PRBindData();

}

/// <summary>

/// Handle sorting commands

/// </summary>

T.1 Pages 184

protected void Sorting(object source, System.Web.UI.

WebControls.DataGridSortCommandEventArgs e)

{

// if alrady exists a filter rule

if (this.PersistentSorting.getFilterRule(e.SortE

xpression) != null)

{

// invert sorting from ASC to DESC and vice

versa

PRCommonLibrary.Persistency.FilterHashTable.

FilterRule fr =

this.PersistentSorting.getFilterRule(e.S

ortExpression);

if (fr.value1 == "ASC")

fr.value1 = "DESC";

else

fr.value1 = "ASC";

}

else // if the rule does not contain specified s

orting

{

// clear filter table , so no multiple sorti

ng is not allowed.

this.PersistentSorting.removeRules();

// add new sorting rule

this.PersistentSorting.injectRule(e.SortExpr

ession,

PRCommonLibrary.Persistency.FilterHashTa

ble.FilterRule.FilterOperation.Sorting,

"ASC", "");

}

// rebind data to reflect changes

PRBindData();

T.1 Pages 185

}

/// <summary>

/// restores filtering controls to show correspondin

g values

/// </summary>

protected void DataGrid_ItemDataBound(object sender,

System.Web.UI.WebControls.DataGridItemEventArgs e)

{

// search for FilterDDL or FilterTB controls in

datagrid

if (e.Item.ItemType != ListItemType.Header) retu

rn;

foreach (TableCell tc in e.Item.Cells)

{

foreach (Control c in tc.Controls)

{

if (c is PRControls.FilterDropDownList)

{

// if found DDL, make it show any cu

rrent filter rules

PRControls.FilterDropDownList ddl =

c as PRControls.FilterDropDownList;

if (this.PersistentFilter.getFilterR

ule(ddl.FilterColumnName) == null) continue;

string Value = this.PersistentFilter

.getFilterRule(ddl.FilterColumnName).value1;

System.Web.UI.WebControls.ListItem i

tem = ddl.Items.FindByValue(Value);

ddl.SelectedIndex = ddl.Items.IndexO

f(item);

T.1 Pages 186

}

if (c is PRControls.FilterTextBox)

{

// if found TB, make it show text, w

hich it had before

PRControls.FilterTextBox tb = c as P

RControls.FilterTextBox;

if (this.PersistentFilter.getFilterR

ule(tb.FilterColumnName) == null) continue;

tb.Text = this.PersistentFilter.getF

ilterRule(tb.FilterColumnName).value1;

}

}

}

}

/// <summary>

/// Binds Events to DropDownList’s in DataGrid heade

r

/// </summary>

protected void DataGrid_ItemCreated(object sender, S

ystem.Web.UI.WebControls.DataGridItemEventArgs e)

{

// search for FilterDLL or FilterTB control

if (e.Item.ItemType == ListItemType.Header)

{

foreach (TableCell tc in e.Item.Cells)

{

foreach (Control c in tc.Controls)

{

T.1 Pages 187

if (c is PRControls.FilterDropDownLi

st)

{

DropDownList ddl = c as DropDown

List;

ddl.AutoPostBack = true;

ddl.SelectedIndexChanged += new

EventHandler(ddl_SelectedIndexChanged);

}

if (c is PRControls.FilterTextBox)

{

PRControls.FilterTextBox tb = c

as PRControls.FilterTextBox;

tb.AutoPostBack = true;

tb.TextChanged += new EventHandl

er(tb_TextChanged);

}

}

}

}

}

/// <summary>

/// when PRDropDownList selection changes, we add a

filter or remove it

/// </summary>

protected void ddl_SelectedIndexChanged(object sende

r, EventArgs e)

{

if (sender is PRControls.FilterDropDownList)

{

PRControls.FilterDropDownList ddl = sender a

T.1 Pages 188

s PRControls.FilterDropDownList;

if ((ddl.SelectedValue != null) && (ddl.Sele

ctedValue != "-1"))

{

this.PersistentFilter.injectRule(ddl.Fil

terColumnName,

ddl.FilterOperation, ddl.SelectedVal

ue, null);

}

else

this.PersistentFilter.removeRule(ddl.Fil

terColumnName);

}

this.PRBindData();

}

/// <summary>

/// When PRTextBox changes text, we add or remove fi

lter

/// </summary>

private void tb_TextChanged(object sender, EventArgs

e)

{

if (sender is PRControls.FilterTextBox)

{

PRControls.FilterTextBox tb = sender as PRCo

ntrols.FilterTextBox;

tb.Text.Trim();

if (tb.Text.ToString() == "")

this.PersistentFilter.removeRule(tb.Filt

erColumnName);

else

this.PersistentFilter.injectRule(tb.Filt

T.1 Pages 189

erColumnName,

tb.FilterOperation, tb.Text, null);

}

this.PRBindData();

}

}

}

T.1 Pages 190

ProjectRegistry/Pages/BatchViews/BatchProjectView.aspx Pro-

jectRegistry/Pages/BatchViews/BatchProjectView.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using ProjectRegistry.Users;

using ProjectRegistry.DataBase.Project;

using PRControls;

using PRCommonLibrary;

namespace ProjectRegistry.Pages.BatchViews

{

public class BatchProjectView : BatchView

{

protected System.Web.UI.WebControls.DataGrid dgProje

cts;

protected System.Web.UI.WebControls.Label Label1;

protected ProjectRegistry.DataBase.DataSets.ProjectM

anagers.PMs dsPMs1;

protected ProjectRegistry.DataBase.DataSets.Projects

.DSProjects dsProjectView;

protected System.Data.DataView dvProjects;

protected PRControls.FilterDropDownList ddlPMs;

protected System.Web.UI.WebControls.Button btInsert;

T.1 Pages 191

protected ProjectRegistry.DataBase.DataSets.TrueFals

e.DSTrueFalse dsProjectStatus;

protected System.Web.UI.WebControls.Panel Panel1;

protected System.Web.UI.WebControls.Button Button1;

protected System.Web.UI.WebControls.Panel Panel2;

protected ProjectRegistry.DataBase.DataSets.Years.DS

Years dsYears;

public BatchProjectView() : base(new ProjectControll

er(), "BatchProjectView") {}

protected override DataView dataView

{

get

{

return this.dvProjects;

}

}

protected override DataGrid dataGrid

{

get

{

return dgProjects;

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

T.1 Pages 192

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsPMs1 = new ProjectRegistry.DataBase.DataS

ets.ProjectManagers.PMs();

this.dsProjectView = new ProjectRegistry.DataBas

e.DataSets.Projects.DSProjects();

this.dvProjects = new System.Data.DataView();

this.dsProjectStatus = new ProjectRegistry.DataB

ase.DataSets.TrueFalse.DSTrueFalse();

this.dsYears = new ProjectRegistry.DataBase.Data

Sets.Years.DSYears();

((System.ComponentModel.ISupportInitialize)(this

.dsPMs1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectView)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dvProjects)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus)).BeginInit();

T.1 Pages 193

((System.ComponentModel.ISupportInitialize)(this

.dsYears)).BeginInit();

this.dgProjects.ItemCreated += new System.Web.UI

.WebControls.DataGridItemEventHandler(this.DataGrid_ItemCrea

ted);

this.dgProjects.ItemCommand += new System.Web.UI

.WebControls.DataGridCommandEventHandler(this.dgProjects_Ite

mCommand);

this.dgProjects.PageIndexChanged += new System.W

eb.UI.WebControls.DataGridPageChangedEventHandler(this.Pagin

g);

this.dgProjects.SortCommand += new System.Web.UI

.WebControls.DataGridSortCommandEventHandler(this.Sorting);

this.dgProjects.ItemDataBound += new System.Web.

UI.WebControls.DataGridItemEventHandler(this.DataGrid_ItemDa

taBound);

this.btInsert.Command += new System.Web.UI.WebCo

ntrols.CommandEventHandler(this.btInsert_Command);

//

// dsPMs1

//

this.dsPMs1.DataSetName = "PMs";

this.dsPMs1.Locale = new System.Globalization.Cu

ltureInfo("en-US");

//

// dsProjectView

//

this.dsProjectView.DataSetName = "DSProjectView"

;

this.dsProjectView.Locale = new System.Globaliza

tion.CultureInfo("en-US");

//

// dvProjects

T.1 Pages 194

//

this.dvProjects.Table = this.dsProjectView.Proje

cts;

//

// dsProjectStatus

//

this.dsProjectStatus.DataSetName = "DSProjectSta

tus";

this.dsProjectStatus.Locale = new System.Globali

zation.CultureInfo("en-US");

//

// dsYears

//

this.dsYears.DataSetName = "DSYears";

this.dsYears.Locale = new System.Globalization.C

ultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsPMs1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectView)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dvProjects)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsYears)).EndInit();

}

#endregion

private void dgProjects_ItemCommand(object source, S

T.1 Pages 195

ystem.Web.UI.WebControls.DataGridCommandEventArgs e)

{

switch (e.CommandName)

{

case "View":

this.Response.Redirect("../DetailView/Vi

ewProject.aspx?ProjectID=" + e.CommandArgument, false);

break;

case "ViewTasks":

this.Response.Redirect("BatchTaskView.as

px?ProjectID=" + e.CommandArgument, false);

break;

case "Edit":

this.Response.Redirect("../Inserts/Inser

tProject.aspx?ProjectID=" + e.CommandArgument, false);

break;

case "Delete":

ProjectRegistry.DataBase.Project.Project

Controller pc =

(this.Controller as ProjectRegistry.

DataBase.Project.ProjectController);

pc.deleteProject(e.CommandArgument.ToStr

ing());

this.PRBindData();

break;

}

}

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.ProjectMan

agers.PMsDSF(dsPMs1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.P

T.1 Pages 196

rojectsDSF(dsProjectView).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.P

rojectStatusDSF(dsProjectStatus).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Years.Year

sDSF(dsYears).fillDataSet();

base.PRBindData();

}

protected override void managePermissions()

{

AccessControl ac =

new AccessControl(ProjectRegistry.Users.

User.getUser(this.Session));

for (int i = 0; i < dataGrid.Items.Count; i++)

{

System.Web.UI.Control cntrl = dataGrid.Items

[i].FindControl("lbEdit");

cntrl.Visible = ac.isProjectManager(dataGrid

.DataKeys[i].ToString());

}

}

protected override void addFilters()

{

if (this.IsPostBack == false)

{

if (this.Page.Request.Params["PMID"] != null

)

{

string pmid = this.Page.Request.Params["

PMID"].ToString();

PRCommonLibrary.Persistency.FilterHashTa

ble.FilterRule.FilterOperation fo =

T.1 Pages 197

PRCommonLibrary.Persistency.FilterHa

shTable.FilterRule.FilterOperation.Equals;

base.PersistentFilter.injectRule("PMID",

fo, pmid, null);

}

}

}

private void btInsert_Command(object sender, System.

Web.UI.WebControls.CommandEventArgs e)

{

this.Response.Redirect("../Inserts/InsertProject

.aspx", false);

}

}

}

T.1 Pages 198

ProjectRegistry/Pages/BatchViews/BatchTaskView.aspx Projec-

tRegistry/Pages/BatchViews/BatchTaskView.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using ProjectRegistry.Users;

using ProjectRegistry.DataBase.Task;

namespace ProjectRegistry.Pages.BatchViews

{

/**/

/// <summary>

/// Summary description for BatchTaskView.

/// </summary>

public class BatchTaskView : BatchView

{

protected ProjectRegistry.DataBase.DataSets.Tasks.DS

Tasks dsTaskView1;

protected System.Data.DataView dwTasks;

protected System.Web.UI.WebControls.Panel MPanel;

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees1;

protected System.Web.UI.WebControls.Button btInsert;

T.1 Pages 199

protected System.Web.UI.WebControls.Panel Panel2;

protected ProjectRegistry.DataBase.DataSets.TrueFals

e.DSTrueFalse dsTaipNe;

protected System.Web.UI.WebControls.DataGrid dgTasks

;

public BatchTaskView() : base(new TaskController(),

"BatchTaskView") {}

/*protected override DataSet dataSet

{

get

{

return dsTaskView1;

}

}*/

protected override DataView dataView

{

get

{

return this.dwTasks;

}

}

protected override DataGrid dataGrid

{

get

{

return this.dgTasks;

}

}

T.1 Pages 200

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.Tasks.Task

sDSF(dsTaskView1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(dsEmployees1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.TrueFalse.

TrueFalseDSF(dsTaipNe).fillDataSet();

base.PRBindData();

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsTaskView1 = new ProjectRegistry.DataBase.

DataSets.Tasks.DSTasks();

T.1 Pages 201

this.dwTasks = new System.Data.DataView();

this.dsEmployees1 = new ProjectRegistry.DataBase .DataSets.Employees.DSEmployees();

this.dsTaipNe = new ProjectRegistry.DataBase.Dat

aSets.TrueFalse.DSTrueFalse();

((System.ComponentModel.ISupportInitialize)(this

.dsTaskView1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dwTasks)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTaipNe)).BeginInit();

this.dgTasks.ItemCreated += new System.Web.UI.We

bControls.DataGridItemEventHandler(this.DataGrid_ItemCreated

);

this.dgTasks.ItemCommand += new System.Web.UI.We

bControls.DataGridCommandEventHandler(this.dgTasks_ItemComma

nd);

this.dgTasks.PageIndexChanged += new System.Web.

UI.WebControls.DataGridPageChangedEventHandler(this.Paging);

this.dgTasks.SortCommand += new System.Web.UI.We

bControls.DataGridSortCommandEventHandler(this.Sorting);

this.dgTasks.ItemDataBound += new System.Web.UI.

WebControls.DataGridItemEventHandler(this.DataGrid_ItemDataB

ound);

this.dgTasks.SelectedIndexChanged += new System.

EventHandler(this.dgTasks_SelectedIndexChanged);

this.btInsert.Command += new System.Web.UI.WebCo

ntrols.CommandEventHandler(this.btInsert_Command);

//

// dsTaskView1

//

T.1 Pages 202

this.dsTaskView1.DataSetName = "DSTaskView";

this.dsTaskView1.Locale = new System.Globalizati

on.CultureInfo("en-US");

//

// dwTasks

//

this.dwTasks.Table = this.dsTaskView1.Tasks;

//

// dsEmployees1

//

this.dsEmployees1.DataSetName = "DSEmployees";

this.dsEmployees1.Locale = new System.Globalizat

ion.CultureInfo("en-US");

//

// dsTaipNe

//

this.dsTaipNe.DataSetName = "DSTrueFalse";

this.dsTaipNe.Locale = new System.Globalization.

CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsTaskView1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dwTasks)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTaipNe)).EndInit();

}

#endregion

T.1 Pages 203

/*protected void EditCommand(object source, System.W

eb.UI.WebControls.DataGridCommandEventArgs e)

{

EditCommand(e, "../Edits/EditProject.aspx");

}*/

private void dgTasks_ItemCommand(object source, Syst

em.Web.UI.WebControls.DataGridCommandEventArgs e)

{

switch (e.CommandName)

{

case "View":

/*this.Response.Redirect("ViewTask.aspx?

TaskID=" +

e.CommandArgument, false);*/

break;

case "Edit":

this.Response.Redirect("../Inserts/Inser

tTask.aspx?TaskID=" +

e.CommandArgument, false);

break;

case "Delete":

ProjectRegistry.DataBase.Task.TaskContro

ller tc =

this.Controller as ProjectRegistry.D

ataBase.Task.TaskController;

tc.deleteTask(e.CommandArgument.ToString

());

this.PRBindData();

break;

default:

break;

}

T.1 Pages 204

}

protected override void managePermissions()

{

AccessControl ac =

new AccessControl(ProjectRegistry.Users.User

.getUser(this.Session));

for (int i = 0; i < dataGrid.Items.Count; i++)

{

bool canEdit = ac.canEditTask(dataGrid.DataK

eys[i].ToString());

// Edit button

System.Web.UI.Control cntrl = dataGrid.Items

[i].FindControl("lbEdit");

cntrl.Visible = canEdit;

// Delete button

cntrl = dataGrid.Items[i].FindControl("lbDel

ete");

cntrl.Visible = canEdit;

}

}

protected override void addFilters()

{

// if this is not post back

if (this.IsPostBack == true) return;

// then maybe we got a reqyest to filter our tab

le?

if (this.Request.Params["ProjectID"] != null)

{

string pid = this.Request.Params["ProjectID"

];

T.1 Pages 205

this.PersistentFilter.injectRule("ProjectID"

,

PRCommonLibrary.Persistency.FilterHashTa

ble.FilterRule.FilterOperation.Equals, pid , "");

}

if (this.Request.Params["EmployeeID"] != null)

{

string pmid = this.Request.Params["EmployeeI

D"];

this.PersistentFilter.injectRule("EmployeeID

",

PRCommonLibrary.Persistency.FilterHashTa

ble.FilterRule.FilterOperation.Equals, pmid, "");

}

}

private void btInsert_Command(object sender, System.

Web.UI.WebControls.CommandEventArgs e)

{

PRCommonLibrary.Persistency.FilterHashTable.Filt

erRule filterRule =

PersistentFilter.getFilterRule("ProjectID");

if (filterRule != null)

this.Response.Redirect("../Inserts/InsertTas

k.aspx?ProjectID=" +

filterRule.value1, false);

else

this.Response.Redirect("../Inserts/InsertTas

k.aspx", false);

}

private void dgTasks_SelectedIndexChanged(object sen

T.1 Pages 206

der, System.EventArgs e)

{

}

}

}

T.1 Pages 207

ProjectRegistry/Pages/BatchViews/BatchEmployeeView.aspx Pro-

jectRegistry/Pages/BatchViews/BatchEmployeeView.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using ProjectRegistry.DataBase.Employee;

namespace ProjectRegistry.Pages.BatchViews

{

/// <summary>

/// Summary description for BatchEmployeeView.

/// </summary>

public class BatchEmployeeView : BatchView

{

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployeeView1;

protected System.Data.DataView dwEmployees;

protected System.Web.UI.WebControls.LinkButton lbIns

ert;

protected System.Web.UI.WebControls.Panel Panel1;

protected System.Web.UI.WebControls.Panel Panel2;

protected ProjectRegistry.DataBase.DataSets.TrueFals

e.DSTrueFalse dsTaipNe1;

protected ProjectRegistry.DataBase.DataSets.Departme

nts.AllDepartment dsDepartments1;

T.1 Pages 208

protected System.Web.UI.WebControls.DataGrid DataGri

d1;

public BatchEmployeeView() : base(new ProjectRegistr

y.DataBase.Employee.EmployeeController(),

"BatchEmployeesView") {}

protected override DataView dataView

{

get

{

return this.dwEmployees;

}

}

protected override DataGrid dataGrid

{

get

{

return this.DataGrid1;

}

}

protected override void addFilters() {}

protected override void PRBindData()

{

// fill and bind data

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(dsEmployeeView1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.TrueFalse.

TrueFalseDSF(dsTaipNe1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Department

T.1 Pages 209

s.AllDepartmentDSF(dsDepartments1).fillDataSet();

base.PRBindData();

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsEmployeeView1 = new ProjectRegistry.DataB

ase.DataSets.Employees.DSEmployees();

this.dwEmployees = new System.Data.DataView();

this.dsTaipNe1 = new ProjectRegistry.DataBase.Da

taSets.TrueFalse.DSTrueFalse();

this.dsDepartments1 = new ProjectRegistry.DataBa

se.DataSets.Departments.AllDepartment();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployeeView1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

T.1 Pages 210

.dwEmployees)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTaipNe1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsDepartments1)).BeginInit();

this.DataGrid1.ItemCreated += new System.Web.UI.

WebControls.DataGridItemEventHandler(this.DataGrid_ItemCreat

ed);

this.DataGrid1.ItemCommand += new System.Web.UI.

WebControls.DataGridCommandEventHandler(this.DataGrid_ItemCo

mmand);

this.DataGrid1.PageIndexChanged += new System.We

b.UI.WebControls.DataGridPageChangedEventHandler(this.Paging

);

this.DataGrid1.SortCommand += new System.Web.UI.

WebControls.DataGridSortCommandEventHandler(this.Sorting);

this.DataGrid1.ItemDataBound += new System.Web.U

I.WebControls.DataGridItemEventHandler(this.DataGrid_ItemDat

aBound);

this.lbInsert.Click += new System.EventHandler(t

his.lbInsert_Click);

//

// dsEmployeeView1

//

this.dsEmployeeView1.DataSetName = "DSEmployeeVi

ew";

this.dsEmployeeView1.Locale = new System.Globali

zation.CultureInfo("en-US");

//

// dwEmployees

//

this.dwEmployees.Table = this.dsEmployeeView1.Em

ployees;

T.1 Pages 211

//

// dsTaipNe1

//

this.dsTaipNe1.DataSetName = "DSTrueFalse";

this.dsTaipNe1.Locale = new System.Globalization

.CultureInfo("en-US");

//

// dsDepartments1

//

this.dsDepartments1.DataSetName = "AllDepartment

";

this.dsDepartments1.Locale = new System.Globaliz

ation.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsEmployeeView1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dwEmployees)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTaipNe1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsDepartments1)).EndInit();

}

#endregion

private void lbInsert_Click(object sender, System.Ev

entArgs e)

{

this.Response.Redirect("~/Pages/Inserts/InsertEm

ployee.aspx");

T.1 Pages 212

}

private void DataGrid_ItemCommand(object source, Sys

tem.Web.UI.WebControls.DataGridCommandEventArgs e)

{

switch (e.CommandName)

{

case "Edit":

this.Response.Redirect("~/Pages/Inserts/

InsertEmployee.aspx?EmployeeID=" +

e.CommandArgument, false);

break;

case "Delete":

break;

}

}

}

}

T.1 Pages 213

ProjectRegistry/Pages/BatchViews/BatchEventView.aspx Projec-

tRegistry/Pages/BatchViews/BatchEventView.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using ProjectRegistry.Users;

namespace ProjectRegistry.Pages.BatchViews

{

/// <summary>

/// Summary description for BatchEventView.

/// </summary>

public class BatchEventView : BatchView

{

protected ProjectRegistry.DataBase.DataSets.Events.D

SEvents dsBatchEvents1;

protected System.Web.UI.WebControls.DataGrid dgEvent

s;

protected System.Data.DataView dwEvents;

protected System.Web.UI.WebControls.LinkButton lbIns

ert;

protected BatchEventView() : base

(new ProjectRegistry.DataBase.Event.EventControl

ler(), "Batch Event View") {}

T.1 Pages 214

protected override DataView dataView

{

get

{

return this.dwEvents;

}

}

protected override DataGrid dataGrid

{

get

{

return this.dgEvents;

}

}

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.Events.Bat

chEventsDSF(this.dsBatchEvents1).fillDataSet();

base.PRBindData();

}

protected override void addFilters() {}

protected override void managePermissions()

{

AccessControl ac =

new AccessControl(ProjectRegistry.Users.User

.getUser(this.Session));

for (int i = 0; i < dataGrid.Items.Count; i++)

T.1 Pages 215

{

bool canEdit = ac.canEditEvent(dataGrid.Data

Keys[i].ToString());

// Edit button

System.Web.UI.Control cntrl = dataGrid.Items

[i].FindControl("lbEdit");

cntrl.Visible = canEdit;

// Delete button

cntrl = dataGrid.Items[i].FindControl("lbDel

ete");

cntrl.Visible = canEdit;

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

T.1 Pages 216

private void InitializeComponent()

{

this.dsBatchEvents1 = new ProjectRegistry.DataBa

se.DataSets.Events.DSEvents();

this.dwEvents = new System.Data.DataView();

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1.TableEvents)).BeginInit();

this.dgEvents.ItemCreated += new System.Web.UI.W

ebControls.DataGridItemEventHandler(this.DataGrid_ItemCreate

d);

this.dgEvents.ItemCommand += new System.Web.UI.W

ebControls.DataGridCommandEventHandler(this.dgEvents_ItemCom

mand);

this.dgEvents.PageIndexChanged += new System.Web

.UI.WebControls.DataGridPageChangedEventHandler(this.Paging)

;

this.dgEvents.SortCommand += new System.Web.UI.W

ebControls.DataGridSortCommandEventHandler(this.Sorting);

this.dgEvents.ItemDataBound += new System.Web.UI

.WebControls.DataGridItemEventHandler(this.DataGrid_ItemData

Bound);

this.lbInsert.Click += new System.EventHandler(t

his.lbInsert_Click);

//

// dsBatchEvents1

//

this.dsBatchEvents1.DataSetName = "dsBatchEvents

";

this.dsBatchEvents1.Locale = new System.Globaliz

ation.CultureInfo("en-US");

//

T.1 Pages 217

// dsBatchEvents1.TableEvents

//

this.dsBatchEvents1.TableEvents.Constraints.AddR

ange(new System.Data.Constraint[] {

new System.Data.Unique

Constraint("DSEventsKey1", new string[] {

"ID"}, true)});

this.dsBatchEvents1.TableEvents.TableName = "Eve

nts";

//

// dwEvents

//

this.dwEvents.Table = this.dsBatchEvents1.TableE

vents;

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1.TableEvents)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dwEvents)).EndInit();

}

#endregion

private void dgEvents_ItemCommand(object source, Sys

tem.Web.UI.WebControls.DataGridCommandEventArgs e)

{

switch (e.CommandName)

{

case "Edit":

T.1 Pages 218

this.Response.Redirect("~/Pages/Inserts/

InsertEvent.aspx?EventID=" + e.CommandArgument, false);

break;

case "Delete":

ProjectRegistry.DataBase.Event.EventCont

roller pc =

(this.Controller as ProjectRegistry.

DataBase.Event.EventController);

pc.deleteEvent(e.CommandArgument.ToStrin

g());

this.PRBindData();

break;

}

}

private void lbInsert_Click(object sender, System.Ev

entArgs e)

{

this.Response.Redirect("~/Pages/Inserts/InsertEv

ent.aspx");

}

}

}

T.1 Pages 219

T.1.2 Insert Pages

ProjectRegistry/Pages/Inserts/InsertView.cs

using System;

namespace ProjectRegistry.Pages.Inserts

{

/// <summary>

/// Details an interface for pages with Insert/Edit logi

cs

/// </summary>

public class InsertView : BasePage

{

public InsertView(){}

public InsertView(ProjectRegistry.DataBase.AbstractC

ontroller controller, string id) : base (controller, id)

{

}

/// <summary>

/// simply inform all controls to do their databindi

ng

/// </summary>

protected override void PRBindData()

{

this.DataBind();

}

}

}

T.1 Pages 220

ProjectRegistry/Pages/Inserts/InsertTask.aspx ProjectRegistry/Pages/Inserts/InsertTask.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.Inserts

{

/// <summary>

/// Summary description for InsertTask.

/// </summary>

public class InsertTask : InsertView

{

protected PRControls.FilterDropDownList ddlProjects;

protected ProjectRegistry.DataBase.DataSets.Projects

.DSProjects dsProjects;

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees;

protected System.Data.DataSet dataSet1;

protected System.Data.DataTable dataTable1;

protected System.Data.DataColumn dataColumn1;

protected System.Web.UI.WebControls.Button btSaveAnd

Continue;

protected System.Web.UI.WebControls.Button btSave;

protected System.Web.UI.WebControls.Panel MPanel;

protected System.Web.UI.WebControls.Panel Panel1;

T.1 Pages 221

protected ProjectRegistry.DataBase.DataSets.Tasks.DS

Tasks dsTasks1;

protected System.Web.UI.WebControls.Label lbTaskID;

protected System.Web.UI.WebControls.Panel pnlSaveBut

tons;

protected PRControls.DatePicker DatePicker1;

protected System.Web.UI.WebControls.CompareValidator

validateProjectSelected;

protected System.Web.UI.WebControls.DataGrid DataGri

d1;

public InsertTask():base (new ProjectRegistry.DataBa

se.Task.TaskController(),

"insert task page") {}

private string TaskID

{

get

{

return this.lbTaskID.Text;

}

set

{

this.lbTaskID.Text = value;

}

}

private string ProjectID;

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.Projects.P

T.1 Pages 222

rojectsDSF(this.dsProjects).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(this.dsEmployees).fillDataSet();

ProjectRegistry.DataBase.DataSets.Tasks.TasksDSF

tdsf =

new ProjectRegistry.DataBase.DataSets.Tasks.

TasksDSF(this.dsTasks1);

if (this.TaskID != "")

{

tdsf.fillDataSet(this.Request.Params["TaskID

"].ToString());

object v = this.dsTasks1.Tables[0].Rows[0].I

temArray.GetValue(11);

this.ddlProjects.SelectedValue = v.ToString(

);

}

else

{

for (int i1=0; i1<5; i1++)

{

string[] row = new string[this.dsTasks1.

Tables[0].Columns.Count];

row[0] = "" + i1; // ID

row[1] = ""; // Project Name

row[7] = "false"; // Approved by Project

Manager

row[8] = "false"; // Approved by Departm

ent Manager

row[10] = "0"; // Used hours

this.dsTasks1.Tables[0].Rows.Add(row);

}

T.1 Pages 223

}

this.DataBind();

if (ProjectID != null)

{

ListItem item = ddlProjects.Items.FindByValu

e(ProjectID);

ddlProjects.SelectedIndex = ddlProjects.Item

s.IndexOf(item);

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsProjects = new ProjectRegistry.DataBase.D

T.1 Pages 224

ataSets.Projects.DSProjects();

this.dsEmployees = new ProjectRegistry.DataBase.

DataSets.Employees.DSEmployees();

this.dataSet1 = new System.Data.DataSet();

this.dataTable1 = new System.Data.DataTable();

this.dataColumn1 = new System.Data.DataColumn();

this.dsTasks1 = new ProjectRegistry.DataBase.Dat

aSets.Tasks.DSTasks();

((System.ComponentModel.ISupportInitialize)(this

.dsProjects)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dataSet1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dataTable1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTasks1)).BeginInit();

this.btSaveAndContinue.Click += new System.Event

Handler(this.btSaveAndContinue_Click);

this.btSave.Click += new System.EventHandler(thi

s.btSave_Click);

//

// dsProjects

//

this.dsProjects.DataSetName = "DSProjects";

this.dsProjects.Locale = new System.Globalizatio

n.CultureInfo("en-US");

//

// dsEmployees

//

this.dsEmployees.DataSetName = "DSEmployees";

T.1 Pages 225

this.dsEmployees.Locale = new System.Globalizati

on.CultureInfo("en-US");

//

// dataSet1

//

this.dataSet1.DataSetName = "NewDataSet";

this.dataSet1.Locale = new System.Globalization.

CultureInfo("lt-LT");

this.dataSet1.Tables.AddRange(new System.Data.Da

taTable[] {

this.dataTable1});

//

// dataTable1

//

this.dataTable1.Columns.AddRange(new System.Data

.DataColumn[] {

this.dataColumn1});

this.dataTable1.TableName = "Table1";

//

// dataColumn1

//

this.dataColumn1.ColumnName = "Column1";

//

// dsTasks1

//

this.dsTasks1.DataSetName = "DSTasks";

this.dsTasks1.Locale = new System.Globalization.

CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

T.1 Pages 226

.dsProjects)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dataSet1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dataTable1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsTasks1)).EndInit();

}

#endregion

private void InsertTasks()

{

ProjectRegistry.DataBase.Task.TaskController tc

=

this.Controller as ProjectRegistry.DataBase.

Task.TaskController;

System.Web.UI.WebControls.DataGridItemCollection

dgic =

this.DataGrid1.Items;

// ProjectID

string projectID = this.ddlProjects.SelectedValu

e;

if (projectID == "-1") return;

tc.addParam("ProjectID", projectID);

for (int i = 0; i < this.DataGrid1.Items.Count;

i++)

{

T.1 Pages 227

// Employee ID

System.Web.UI.WebControls.DropDownList prddl

=

dgic[i].Cells[0].FindControl("ddlVykdyto

jas") as

System.Web.UI.WebControls.DropDownList;

tc.addParam("EmployeeID", prddl.SelectedValu

e);

// Task name

System.Web.UI.WebControls.TextBox tb =

dgic[i].Cells[1].FindControl("tbName") a

s

System.Web.UI.WebControls.TextBox;

tc.addParam("Name", tb.Text);

if (tb.Text == "") continue;

// Planned Hours

tb = dgic[i].Cells[2].FindControl("tbHours")

as

System.Web.UI.WebControls.TextBox;

tc.addParam("PlannedHours", tb.Text);

// StartDate

tb = dgic[i].Cells[3].FindControl("tbStartDa

te") as

System.Web.UI.WebControls.TextBox;

tc.addParam("StartDate", tb.Text);

// EndDate

tb = dgic[i].Cells[4].FindControl("tbEndDate

") as

T.1 Pages 228

System.Web.UI.WebControls.TextBox;

tc.addParam("EndDate", tb.Text);

tc.addParam("Priority", 2);

// Description

tb = dgic[i].Cells[5].FindControl("tbDescrip

tion") as

System.Web.UI.WebControls.TextBox;

tc.addParam("Description", tb.Text);

tc.addParam("AcceptanceCriteria", "akceptanc

e kraiteria");

//(this.Controller as ProjectRegistry.DataBa

se.Task.TaskController).insertTask(projectID,employeeID,task

Name);

if (this.TaskID == "")

tc.insertTask();

else

tc.updateTask(this.TaskID);

}

}

private void btSaveAndContinue_Click(object sender,

System.EventArgs e)

{

this.InsertTasks();

}

protected override void Page_Load(object sender, Sys

T.1 Pages 229

tem.EventArgs e)

{

if (this.Page.Request.Params["TaskID"] != null)

this.TaskID = this.Page.Request.Params["Task

ID"].ToString();

if (this.Page.Request.Params["ProjectID"] != nul

l)

this.ProjectID = this.Page.Request.Params["P

rojectID"].ToString();

base.Page_Load(sender, e);

}

private void btSave_Click(object sender, System.Even

tArgs e)

{

this.InsertTasks();

this.Response.Redirect("../BatchViews/BatchTaskV

iew.aspx", false);

}

}

}

T.1 Pages 230

ProjectRegistry/Pages/Inserts/InsertProject.aspx ProjectRegistry/Pages/Inserts/InsertProject.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.Inserts

{

public class InsertProject : InsertView

{

protected System.Web.UI.WebControls.Button btSave;

protected System.Web.UI.WebControls.TextBox tbProjec

tID;

protected System.Web.UI.WebControls.TextBox tbCode;

protected System.Web.UI.WebControls.TextBox tbName;

protected System.Web.UI.WebControls.DropDownList ddl

PM;

protected System.Web.UI.WebControls.TextBox tbClient

;

protected System.Web.UI.WebControls.HyperLink hlCont

ract;

protected System.Web.UI.WebControls.TextBox tbClient

Representative;

protected System.Web.UI.WebControls.TextBox tbBeginD

ate;

protected System.Web.UI.WebControls.TextBox tbEndDat

e;

T.1 Pages 231

protected System.Web.UI.WebControls.CheckBox cbFinis

hed;

protected System.Web.UI.WebControls.TextBox tbPPK;

protected System.Web.UI.WebControls.TextBox tbProjec

tStaff;

protected System.Web.UI.WebControls.TextBox tbSize;

protected System.Web.UI.WebControls.HyperLink hlProj

ectPlan;

protected System.Web.UI.WebControls.TextBox tbDescri

ption;

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees1;

protected ProjectRegistry.DataBase.DataSets.TrueFals

e.DSTrueFalse dsProjectStatus1;

protected ProjectRegistry.DataBase.DataSets.Projects

.AllProject dsAllProject1;

protected System.Web.UI.WebControls.Panel Panel1;

protected System.Web.UI.WebControls.Panel Panel2;

protected System.Web.UI.WebControls.Panel Panel3;

protected System.Web.UI.WebControls.Panel Panel4;

protected System.Web.UI.WebControls.Panel pnlSaveBut

tons;

protected System.Web.UI.WebControls.Panel pnlFakeAre

a;

protected System.Web.UI.HtmlControls.HtmlInputFile f

akebrowse;

protected System.Web.UI.HtmlControls.HtmlInputFile b

rowse;

protected System.Web.UI.WebControls.Table DataGrid1;

public InsertProject():base(new ProjectRegistry.Data

Base.Project.ProjectController(),"InsertProject")

T.1 Pages 232

{

}

/// <summary>

/// gets PMID from Project Data set table

/// </summary>

/// <remarks> can be used after dataBind() only, oth

erwise DS is not filed</remarks>

private string ProjectManagerID

{

get {return this.dsAllProject1.Tables[0].Rows[0]

.ItemArray.GetValue(7).ToString();}

}

/// <summary>

/// gets PMID from Project Data set table

/// </summary>

/// <remarks> can be used after dataBind() only, oth

erwise DS is not filed</remarks>

private string ProjectStatus

{

get {return this.dsAllProject1.Tables[0].Rows[0]

.ItemArray.GetValue(5).ToString();}

}

private string ProjectID

{

get

{

return this.tbProjectID.Text;

}

set

{

T.1 Pages 233

this.tbProjectID.Text=value;

}

}

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(this.dsEmployees1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.P

rojectStatusDSF(dsProjectStatus1).fillDataSet();

if (this.ProjectID!="")

{

new ProjectRegistry.DataBase.DataSets.Projec

ts.AllProjectDSF(this.dsAllProject1).fillDataSet(this.Projec

tID);

}

else

{

string[] row = new string[this.dsAllProject1

.Tables[0].Columns.Count];

for (int i = 1; i < this.dsAllProject1.Table

s[0].Columns.Count; i++)

row[i] = "";

row[0] = "-1";

row[3] = "12/12/2005";

row[4] = "12/12/2005";

row[5] = "false";

row[7] = "-1";

row[10] = "0";// size

this.dsAllProject1.Tables[0].Rows.Add(row);

}

this.DataBind();

T.1 Pages 234

// set up ddlPM to show selected project manager

if (this.ProjectManagerID!="-1")

this.ddlPM.SelectedValue=this.ProjectManager

ID;

this.cbFinished.Checked=System.Convert.ToBoolean

(this.ProjectStatus);

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsEmployees1 = new ProjectRegistry.DataBase

.DataSets.Employees.DSEmployees();

this.dsProjectStatus1 = new ProjectRegistry.Data

T.1 Pages 235

Base.DataSets.TrueFalse.DSTrueFalse();

this.dsAllProject1 = new ProjectRegistry.DataBas

e.DataSets.Projects.AllProject();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsAllProject1)).BeginInit();

this.btSave.Click += new System.EventHandler(thi

s.btSave_Click);

//

// dsEmployees1

//

this.dsEmployees1.DataSetName = "DSEmployees";

this.dsEmployees1.Locale = new System.Globalizat

ion.CultureInfo("en-US");

//

// dsProjectStatus1

//

this.dsProjectStatus1.DataSetName = "DSProjectSt

atus";

this.dsProjectStatus1.Locale = new System.Global

ization.CultureInfo("en-US");

//

// dsAllProject1

//

this.dsAllProject1.DataSetName = "AllProject";

this.dsAllProject1.Locale = new System.Globaliza

tion.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

T.1 Pages 236

.dsEmployees1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsAllProject1)).EndInit();

}

#endregion

// inserts or updates a project

private void btSave_Click(object sender, System.Even

tArgs e)

{

if (this.Page.IsValid==false) return;

ProjectRegistry.DataBase.Project.ProjectControll

er c=this.Controller as ProjectRegistry.DataBase.Project.Pro

jectController;

c.addParam("Code",this.tbCode.Text);

c.addParam("Name",this.tbName.Text);

c.addParam("BeginDate",this.tbBeginDate.Text);

c.addParam("EndDate",this.tbEndDate.Text);

if (this.cbFinished.Checked)

c.addParam("Finished",1); else

c.addParam("Finished",0);

c.addParam("Description",this.tbDescription.Text

);

c.addParam("ProjectManagerID",this.ddlPM.Selecte

dValue);

c.addParam("ProjectTeam",this.tbProjectStaff.Tex

t);

c.addParam("PPK",this.tbPPK.Text);

T.1 Pages 237

c.addParam("ProjectSize",this.tbSize.Text);

c.addParam("Client",this.tbClient.Text);

c.addParam("ClientRepresentative",this.tbClientR

epresentative.Text);

c.addParam("Contract",this.hlContract.NavigateUr

l);

c.addParam("ProjectPlan",this.hlProjectPlan.Navi

gateUrl);

// if ProjectID is set, then we are in Edit Mode

if (this.ProjectID!="")

{

c.updateProject(this.ProjectID);

this.Response.Redirect("../BatchViews/BatchP

rojectView.aspx",false);

return;

}

else // we are in insert mode

{

c.addProject();

this.Response.Redirect("../BatchViews/BatchP

rojectView.aspx",false);

}

}

private void CustomValidator2_ServerValidate(object

source, System.Web.UI.WebControls.ServerValidateEventArgs ar

gs)

{

}

private void sqlConnection2_InfoMessage(object sende

T.1 Pages 238

r, System.Data.SqlClient.SqlInfoMessageEventArgs e)

{

}

protected override void Page_Load(object sender, Sys

tem.EventArgs e)

{

if (this.Page.Request.Params["ProjectID"]!=null)

this.ProjectID=this.Page.Request.Params["Pro

jectID"];

base.Page_Load(sender,e);

}

}

}

T.1 Pages 239

ProjectRegistry/Pages/Inserts/InsertEvent.aspx ProjectRegistry/Pages/Inserts/InsertEvent.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.Inserts

{

public class InsertEvent : InsertView

{

protected ProjectRegistry.DataBase.DataSets.Events.D

SEvents dsBatchEvents1;

protected System.Web.UI.WebControls.Label lbEventID;

protected System.Web.UI.WebControls.Table DataGrid1;

protected System.Web.UI.WebControls.LinkButton LinkB

utton1;

protected System.Web.UI.WebControls.HyperLink hlLink

ToReport;

protected PRControls.FilterDropDownList ddlPro

jectID;

protected System.Web.UI.WebControls.TextBox tbName

;

T.1 Pages 240

protected ProjectRegistry.DataBase.DataSets.Projects

.dsProjectCode dsProjectCode1;

protected System.Web.UI.WebControls.Panel SavePanel;

protected System.Web.UI.WebControls.Panel MainPanel;

protected System.Web.UI.WebControls.TextBox tbDate

;

public InsertEvent() :base (new ProjectRegistry.Data

Base.Event.EventController(),"Insert Task")

{

}

protected override void Page_Load(object sender, Sys

tem.EventArgs e)

{

if (this.Request.Params["EventID"] != null)

this.EventID = this.Request.Params["EventID"

];

base.Page_Load(sender,e);

}

private string EventID

{

get

{

return this.lbEventID.Text;

}

set

{

this.lbEventID.Text=value;

}

T.1 Pages 241

}

protected override void PRBindData()

{

new ProjectRegistry.DataBase.DataSets.Projects.P

rojectCodeDSF(this.dsProjectCode1).fillDataSet();

ProjectRegistry.DataBase.DataSets.Events.BatchEv

entsDSF bedsf=new ProjectRegistry.DataBase.DataSets.Events.B

atchEventsDSF(this.dsBatchEvents1);

if (this.EventID != "")

bedsf.fillDataSet(this.EventID);

else

{

bedsf.fillDataSetEmpty();

}

base.PRBindData ();

if (bedsf.getFromDS("ProjectID") != "-1")

this.ddlProjectID.SelectedValue = bedsf.getF

romDS("ProjectID").ToString();

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

T.1 Pages 242

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsBatchEvents1 = new ProjectRegistry.DataBa

se.DataSets.Events.DSEvents();

this.dsProjectCode1 = new ProjectRegistry.DataBa

se.DataSets.Projects.dsProjectCode();

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1.TableEvents)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectCode1)).BeginInit();

this.LinkButton1.Click += new System.EventHandle

r(this.LinkButton1_Click);

//

// dsBatchEvents1

//

this.dsBatchEvents1.DataSetName = "dsBatchEvents

";

this.dsBatchEvents1.Locale = new System.Globaliz

ation.CultureInfo("en-US");

//

// dsBatchEvents1.TableEvents

//

this.dsBatchEvents1.TableEvents.Constraints.AddR

T.1 Pages 243

ange(new System.Data.Constraint[] {

new System.Data.Unique

Constraint("DSEventsKey1", new string[] {

"ID"}, true)});

this.dsBatchEvents1.TableEvents.TableName = "Eve

nts";

//

// dsProjectCode1

//

this.dsProjectCode1.DataSetName = "dsProjectCode

";

this.dsProjectCode1.Locale = new System.Globaliz

ation.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1.TableEvents)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsBatchEvents1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectCode1)).EndInit();

}

#endregion

private void LinkButton1_Click(object sender, System

.EventArgs e)

{

ProjectRegistry.DataBase.Event.EventController c

= this.Controller as ProjectRegistry.DataBase.Event.EventCo

T.1 Pages 244

ntroller;

c.addParam("ProjectID",this.ddlProjectID.Selecte

dValue);

c.addParam("Name",this.tbName.Text);

c.addParam("Date",this.tbDate.Text);

c.addParam("LinkToReport", this.hlLinkToReport.N

avigateUrl);

if (this.EventID != "")

{ // this is edit mode

c.updateEvent(this.EventID);

}

else

{ // insert mode

c.addEvent();

}

this.Response.Redirect("~/Pages/BatchViews/Batch

EventView.aspx");

}

}

}

T.1 Pages 245

ProjectRegistry/Pages/Inserts/InsertEmployee.aspx ProjectReg-

istry/Pages/Inserts/InsertEmployee.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.Inserts

{

/// <summary>

/// Summary description for InsertEmployee.

/// </summary>

public class InsertEmployee : InsertView

{

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees1;

protected System.Web.UI.WebControls.Label lbEmployee

ID;

protected ProjectRegistry.DataBase.DataSets.Departme

nts.AllDepartment dsAllDepartment1;

protected System.Web.UI.WebControls.Table DataGrid1;

protected System.Web.UI.WebControls.CheckBox cbWorki

ng;

T.1 Pages 246

protected System.Web.UI.WebControls.TextBox tbName;

protected System.Web.UI.WebControls.TextBox tbEmail;

protected System.Web.UI.WebControls.TextBox tbWindow

sLogin;

protected PRControls.FilterDropDownList ddlDepartmen

ts;

protected System.Web.UI.WebControls.Panel MainPanel;

protected System.Web.UI.WebControls.Panel SaveButton

Panel;

protected System.Web.UI.WebControls.LinkButton btnSa

ve;

protected System.Web.UI.WebControls.CheckBox cbAdmin

istrator;

public InsertEmployee() : base(new ProjectRegistry.D

ataBase.Employee.EmployeeController(), "InsertEmployee") {}

protected string EmployeeID

{

get

{

return this.lbEmployeeID.Text;

}

set

{

this.lbEmployeeID.Text = value;

}

}

protected override void Page_Load(object sender, Sys

T.1 Pages 247

tem.EventArgs e)

{

if (this.Request.Params["EmployeeID"] != null)

this.EmployeeID = this.Request.Params["Emplo

yeeID"].ToString();

base.Page_Load(sender, e);

// Put user code to initialize the page here

}

protected override void PRBindData()

{

ProjectRegistry.DataBase.DataSets.Employees.Empl

oyeesDSF edsf

= new ProjectRegistry.DataBase.DataSets.Empl

oyees.EmployeesDSF(this.dsEmployees1);

if (this.EmployeeID != "")

{

edsf.fillDataSet(this.EmployeeID);

btnSave.Text = "Issaugoti";

}

else

edsf.fillDataSetEmpty();

new ProjectRegistry.DataBase.DataSets.Department

s.AllDepartmentDSF(this.dsAllDepartment1).fillDataSet();

base.PRBindData();

if (edsf.getFromDS("DepartmentID") != "-1")

this.ddlDepartments.SelectedValue = edsf.get

FromDS("DepartmentID");

}

#region Web Form Designer generated code

T.1 Pages 248

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsEmployees1 = new ProjectRegistry.DataBase

.DataSets.Employees.DSEmployees();

this.dsAllDepartment1 = new ProjectRegistry.Data

Base.DataSets.Departments.AllDepartment();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsAllDepartment1)).BeginInit();

this.btnSave.Command += new System.Web.UI.WebCon

trols.CommandEventHandler(this.btSave_Click);

//

// dsEmployees1

//

this.dsEmployees1.DataSetName = "DSEmployees";

this.dsEmployees1.Locale = new System.Globalizat

T.1 Pages 249

ion.CultureInfo("en-US");

//

// dsAllDepartment1

//

this.dsAllDepartment1.DataSetName = "AllDepartme

nt";

this.dsAllDepartment1.Locale = new System.Global

ization.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsAllDepartment1)).EndInit();

}

#endregion

// inserts or updates an employee

private void btSave_Click(object sender, System.Web.

UI.WebControls.CommandEventArgs e)

{

if (!this.Page.IsValid) return;

ProjectRegistry.DataBase.Employee.EmployeeContro

ller c =

this.Controller as ProjectRegistry.DataBase.

Employee.EmployeeController;

c.addParam("Name", this.tbName.Text);

c.addParam("Email", this.tbEmail.Text);

c.addParam("Working", this.cbWorking.Checked? 1

: 0);

c.addParam("Administrator", this.cbAdministrator

T.1 Pages 250

.Checked? 1 : 0);

c.addParam("DepartmentID", this.ddlDepartments.S

electedValue);

c.addParam("WindowsLogin", this.tbWindowsLogin.T

ext);

if (this.EmployeeID == "")

// we are in insert mode

c.insertEmployee();

else

c.updateEmployee(this.EmployeeID);

this.Response.Redirect("~/Pages/BatchViews/Batch

EmployeeView.aspx", false);

}

}

}

T.1 Pages 251

T.1.3 Edit Pages

ProjectRegistry/Pages/Edits/EditView.cs

using System;

using System.Data;

using System.Web.UI.WebControls;

using ProjectRegistry.Pages;

using ProjectRegistry.DataBase;

namespace ProjectRegistry.Pages.Edits

{

/// <summary>

/// Summary description for EditView.

/// </summary>

public class EditView : BasePage

{

public EditView(AbstractController controller,string

id) : base (controller,id) {}

public EditView() : base () {}

/*protected override void BindData()

{

object key = Session["key"];

if (key != null)

{

controller.selectByKey(dataView, key.ToStrin

g());

DataBind();

}

//TODO - redo all edit page

}*/

}

T.1 Pages 252

}

T.1 Pages 253

ProjectRegistry/Pages/Edits/EditProject.aspx ProjectRegistry/Pages/Edits/EditProject.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using ProjectRegistry.DataBase.Project;

namespace ProjectRegistry.Pages.Edits

{

/// <summary>

/// Summary description for EditProject.

/// </summary>

public class EditProject : EditView

{

protected System.Web.UI.WebControls.Table Table2;

protected System.Web.UI.WebControls.Label Label5;

protected System.Web.UI.WebControls.Label Label1;

protected System.Web.UI.WebControls.Button btSave;

//protected System.Web.UI.WebControls.DropDownList d

dlPM;

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees1;

protected System.Web.UI.WebControls.DropDownList Dro

pDownList1;

protected System.Web.UI.WebControls.Label Label3;

protected System.Web.UI.WebControls.TextBox TextBox1

T.1 Pages 254

;

//protected System.Web.UI.WebControls.DropDownList d

dlPMs;

protected ProjectRegistry.DataBase.DataSets.Projects

.DSProjects dsProjects1;

public EditProject() : base(new ProjectController(),

"EditProject") {}

/*protected override DataSet dataSet

{

get { return dsProjectView; }

}*/

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

T.1 Pages 255

this.dsProjects1 = new ProjectRegistry.DataBase.

DataSets.Projects.DSProjects();

this.dsEmployees1 = new ProjectRegistry.DataBase

.DataSets.Employees.DSEmployees();

((System.ComponentModel.ISupportInitialize)(this

.dsProjects1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).BeginInit();

this.btSave.Click += new System.EventHandler(thi

s.btSave_Click);

//

// dsProjects1

//

this.dsProjects1.DataSetName = "DSProjects";

this.dsProjects1.Locale = new System.Globalizati

on.CultureInfo("en-US");

//

// dsEmployees1

//

this.dsEmployees1.DataSetName = "DSEmployees";

this.dsEmployees1.Locale = new System.Globalizat

ion.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsProjects1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).EndInit();

}

#endregion

// gets the DropDownList Project Manager from the ht

T.1 Pages 256

ml table.

private System.Web.UI.WebControls.DropDownList ddlPM

{

get{return this.FindControl("ddlPM") as System.W

eb.UI.WebControls.DropDownList;}

}

private System.Web.UI.WebControls.TextBox tbCode

{

get{return this.FindControl("tbCode") as System.

Web.UI.WebControls.TextBox;}

}

private System.Web.UI.WebControls.TextBox tbProjectI

D

{

get{return this.FindControl("tbProjectID") as Sy

stem.Web.UI.WebControls.TextBox;}

}

private System.Web.UI.WebControls.TextBox tbName

{

get{return this.FindControl("tbName") as System.

Web.UI.WebControls.TextBox;}

}

private string ProjectID

{

get

{

if (this.Page.Request.Params["ProjectID"]==n

ull)

T.1 Pages 257

throw new System.Exception("must pass Pr

ojectID parameter");

return this.Page.Request.Params["ProjectID"]

.ToString();

}

}

private string ProjectManagerID

{

get {return this.dsProjects1.Tables[0].Rows[0].I

temArray.GetValue(8).ToString();}

}

protected override void BindData()

{

//if (this.Request.Params["ProjectID"]==null) th

row new System.Exception("must provide ProjectID param");

//string projectID=this.Request.Params["ProjectI

D"];

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(this.dsEmployees1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.P

rojectsDSF(this.dsProjects1).fillDataSet(this.ProjectID);

// force all controls to bind to data

this.DataBind();

// set-up ddlPM to show selected project manager

this.ddlPM.SelectedValue=this.ProjectManagerID;

}

private void btSave_Click(object sender, System.Even

T.1 Pages 258

tArgs e)

{

ProjectRegistry.DataBase.Project.ProjectControll

er c=this.Controller as ProjectRegistry.DataBase.Project.Pro

jectController;

string pmid=this.ddlPM.SelectedValue;

string code=this.tbCode.Text;

string name=this.tbName.Text;

string projectid=this.tbProjectID.Text;

c.updateProject(projectid,code,name,pmid);

this.Response.Redirect("../BatchViews/BatchProje

ctView.aspx",false);

}

}

}

T.1 Pages 259

T.1.4 DetailView Pages

ProjectRegistry/Pages/DetailView/ViewProject.aspx ProjectRegistry/Pages/DetailView/ViewProject.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.BatchViews

{

/// <summary>

/// Summary description for ViewProject.

/// </summary>

public class ViewProject : BasePage

{

protected System.Web.UI.WebControls.HyperLink hlTask

s;

protected ProjectRegistry.DataBase.DataSets.Projects

.AllProject dsAllProject1;

protected System.Web.UI.WebControls.HyperLink hlEven

ts;

protected System.Web.UI.WebControls.Label lbProjectI

D;

protected System.Web.UI.WebControls.Label lbCode;

protected System.Web.UI.WebControls.Label lbName;

protected System.Web.UI.WebControls.Label lbDescript

ion;

T.1 Pages 260

protected System.Web.UI.WebControls.DropDownList ddl

PM;

protected System.Web.UI.WebControls.Label lbClient;

protected System.Web.UI.WebControls.HyperLink hlCont

ract;

protected System.Web.UI.WebControls.Label lbClientRe

presentative;

protected System.Web.UI.WebControls.Label lbBeginDat

e;

protected System.Web.UI.WebControls.Label lbEndDate;

protected System.Web.UI.WebControls.CheckBox cbFinis

hed;

protected System.Web.UI.WebControls.Label lbPPK;

protected System.Web.UI.WebControls.Label lbProjectS

taff;

protected System.Web.UI.WebControls.Label lbSize;

protected System.Web.UI.WebControls.HyperLink hlProj

ectPlan;

protected System.Web.UI.WebControls.Label lbPMName;

protected System.Web.UI.WebControls.Label lbFinished

;

protected ProjectRegistry.DataBase.DataSets.Employee

s.DSEmployees dsEmployees1;

protected ProjectRegistry.DataBase.DataSets.TrueFals

e.DSTrueFalse dsProjectStatus1;

protected System.Web.UI.WebControls.Panel SavePanel;

protected System.Web.UI.WebControls.Panel MainPanel;

protected System.Web.UI.WebControls.Table Table1;

T.1 Pages 261

private string ProjectID

{

get

{

return this.lbProjectID.Text;

}

set

{

this.lbProjectID.Text=value;

}

}

protected override void PRBindData()

{

// fill data set

//new ProjectRegistry.DataBase.DataSets.Projects

.ProjectsDSF(this.dsProjects1).fillDataSet(this.ProjectID);

new ProjectRegistry.DataBase.DataSets.Employees.

EmployeesDSF(this.dsEmployees1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.P

rojectStatusDSF(dsProjectStatus1).fillDataSet();

new ProjectRegistry.DataBase.DataSets.Projects.A

llProjectDSF(this.dsAllProject1).fillDataSet(this.ProjectID)

;

// wait till all controls bind their data

this.DataBind();

if (System.Convert.ToBoolean(this.dsAllProject1.

Tables[0].Rows[0].ItemArray.GetValue(5)) == false)

this.lbFinished.Text="Ne"; else

this.lbFinished.Text="Taip";

// then find ProjectName and build URLs for two

T.1 Pages 262

HL controls

//string projectName=(this.FindControl("lbName")

as System.Web.UI.WebControls.Label).Text;

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.dsAllProject1 = new ProjectRegistry.DataBas

e.DataSets.Projects.AllProject();

this.dsEmployees1 = new ProjectRegistry.DataBase

.DataSets.Employees.DSEmployees();

this.dsProjectStatus1 = new ProjectRegistry.Data

Base.DataSets.TrueFalse.DSTrueFalse();

((System.ComponentModel.ISupportInitialize)(this

.dsAllProject1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

T.1 Pages 263

.dsEmployees1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus1)).BeginInit();

//

// dsAllProject1

//

this.dsAllProject1.DataSetName = "AllProject";

this.dsAllProject1.Locale = new System.Globaliza

tion.CultureInfo("en-US");

//

// dsEmployees1

//

this.dsEmployees1.DataSetName = "DSEmployees";

this.dsEmployees1.Locale = new System.Globalizat

ion.CultureInfo("en-US");

//

// dsProjectStatus1

//

this.dsProjectStatus1.DataSetName = "DSProjectSt

atus";

this.dsProjectStatus1.Locale = new System.Global

ization.CultureInfo("en-US");

this.Load += new System.EventHandler(this.Page_L

oad);

((System.ComponentModel.ISupportInitialize)(this

.dsAllProject1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsEmployees1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this

.dsProjectStatus1)).EndInit();

}

#endregion

T.1 Pages 264

protected override void Page_Load(object sender, Sys

tem.EventArgs e)

{

//this.ProjectID="";

if (this.Page.Request.Params["ProjectID"] != nul

l)

this.ProjectID = this.Page.Request.Params["P

rojectID"];

base.Page_Load(sender, e);

}

}

}

T.1 Pages 265

T.1.5 Administrator Pages

ProjectRegistry/Pages/Administrator/Administrate.aspx ProjectReg-

istry/Pages/Administrator/Administrate.aspx.resx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ProjectRegistry.Pages.BatchViews

{

/// <summary>

/// Summary description for Administrate.

/// </summary>

public class Administrate : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Panel Panel1;

protected System.Web.UI.WebControls.Panel MainPanel;

protected System.Web.UI.WebControls.LinkButton lbEmp

loyees;

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

T.1 Pages 266

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not mo

dify

/// the contents of this method with the code editor

.

/// </summary>

private void InitializeComponent()

{

this.lbEmployees.Click += new System.EventHandle

r(this.lbEmployees_Click);

}

#endregion

private void lbEmployees_Click(object sender, System

.EventArgs e)

{

this.Response.Redirect("~/Pages/BatchViews/Batch

EmployeeView.aspx",false);

}

}

}

T.2 Users Management 267

T.2 Users Management

ProjectRegistry/Users/AccessControl.cs

using System;

using ProjectRegistry.DataBase.DataSets.Events;

using ProjectRegistry.DataBase.DataSets.Tasks;

using ProjectRegistry.DataBase.DataSets.Projects;

namespace ProjectRegistry.Users

{

/// <summary>

/// Summary description for AccessControl.

/// </summary>

public class AccessControl

{

public AccessControl(User user)

{

this.user = user;

}

public bool canEditTask(string TaskID)

{

if (isTaskExecutor(TaskID))

return true;

DSTasks task = getTaskDescription(TaskID);

int project = task.Tables[0].Columns.IndexOf("Pr

ojectID");

if (isProjectManager(task.Tables[0].Rows[0].Item

Array[project].ToString()))

return true;

return false;

T.2 Users Management 268

}

public bool canEditEvent(string EventID)

{

DSEvents Event = getEventDescription(EventID);

int project = Event.Tables[0].Columns.IndexOf("P

rojectID");

if (isProjectManager(Event.Tables[0].Rows[0].Ite

mArray[project].ToString()))

return true;

return false;

}

/// <summary>

/// Checks whether the user is manager of a project

/// </summary>

public bool isProjectManager(string ProjectID)

{

DSProjects project = getProjectDescription(Proje

ctID);

int PMColumn = project.Tables[0].Columns.IndexOf

("PMID");

return project.Tables[0].Rows[0].ItemArray[PMCol

umn].ToString() ==

user.UserID.ToString();

}

public bool isTaskExecutor(string TaskID)

{

DSTasks task = getTaskDescription(TaskID);

int EmployeeColumn = task.Tables[0].Columns.Inde

xOf("EmployeeID");

return task.Tables[0].Rows[0].ItemArray[Employee

T.2 Users Management 269

Column].ToString() ==

user.UserID.ToString();

}

private DSEvents getEventDescription(string EventID)

{

if ((eventDescription == null) || (EventID != th

is.EventID))

{

eventDescription = new DSEvents();

new BatchEventsDSF(eventDescription).fillDat

aSet(EventID);

this.EventID = EventID;

}

return eventDescription;

}

private DSEvents eventDescription;

private string EventID;

private DSTasks getTaskDescription(string TaskID)

{

if ((taskDescription == null) || (TaskID != this

.TaskID))

{

taskDescription = new DSTasks();

new TasksDSF(taskDescription).fillDataSet(Ta

skID);

this.TaskID = TaskID;

}

return taskDescription;

}

T.2 Users Management 270

private DSTasks taskDescription;

private string TaskID;

private DSProjects getProjectDescription(string Proj

ectID)

{

if ((projectDescription == null) || (this.Projec

tID != ProjectID))

{

projectDescription = new DSProjects();

new ProjectsDSF(projectDescription).fillData

Set(ProjectID);

this.ProjectID = ProjectID;

}

return projectDescription;

}

private DSProjects projectDescription;

private string ProjectID;

private User user;

}

}

T.2 Users Management 271

ProjectRegistry/Users/User.cs

using System;

using System.Data;

using ProjectRegistry.DataBase.DataSets.Employees;

namespace ProjectRegistry.Users

{

/// <summary>

/// Summary description for User.

/// </summary>

public class User

{

private int userID = -1;

public int UserID

{

get

{

return userID;

}

}

public static string UserDomainName

{

get

{

return System.Security.Principal.WindowsIden

tity.GetCurrent().Name;

}

}

private bool isAdministrator;

T.2 Users Management 272

public bool IsAdministrator

{

get

{

return isAdministrator;

}

}

private User()

{

DSEmployees users = new DSEmployees();

new EmployeesDSF(users).fillDataSet();

int logIn = users.Tables[0].Columns.IndexOf("Win

dowsLogIn");

string CurrentUser = User.UserDomainName;

foreach (DataRow user in users.Tables[0].Rows)

if (user.ItemArray[logIn].Equals(CurrentUser

))

{

int id = users.Tables[0].Columns.IndexOf

("ID");

userID = Convert.ToInt32(user.ItemArray[

id]);

int admin = users.Tables[0].Columns.Inde

xOf("Administrator");

isAdministrator = (user.ItemArray[admin]

.ToString() == "True");

return;

}

}

T.2 Users Management 273

public static User getUser(System.Web.SessionState.H

ttpSessionState Session)

{

if (Session["UserInfo"] == null)

Session["UserInfo"] = new ProjectRegistry.Us

ers.User();

return Session["UserInfo"] as ProjectRegistry.Us

ers.User;

}

}

}

T.2 Users Management 274

sectionPictures

ProjectRegistry/Pictures/calendar.gif

ProjectRegistry/Pictures/Delete.gif

ProjectRegistry/Pictures/Edit.gif

ProjectRegistry/Pictures/logo bb.gif

ProjectRegistry/Pictures/Tasks.gif

ProjectRegistry/Pictures/View.gif

sectionHeader and Footer Controls

ProjectRegistry/HeaderControl/CopyrightControl.ascx

ProjectRegistry/HeaderControl/CopyrightControl.ascx.resx

ProjectRegistry/HeaderControl/CopyrightControl.ascx.cs

namespace ProjectRegistry

{

using System;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

/// <summary>

/// Summary description for WebUserControl1.

/// </summary>

public class WebUserControl1 : System.Web.UI.UserControl

{

protected System.Web.UI.WebControls.Panel pnlCopyRig

ht;

protected System.Web.UI.WebControls.ImageButton Imag

eButton1;

private void Page_Load(object sender, System.EventAr

gs e)

T.2 Users Management 275

{

// Put user code to initialize the page here

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do no

t modify

/// the contents of this method with the code ed

itor.

/// </summary>

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_L

oad);

}

#endregion

}

}

T.2 Users Management 276

ProjectRegistry/HeaderControl/HeaderControl.ascx

ProjectRegistry/HeaderControl/HeaderControl.ascx.resx

ProjectRegistry/HeaderControl/HeaderControl.ascx.cs

namespace Project_Register.Clean

{

using System;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

/// <summary>

/// Summary description for HeaderControl.

/// </summary>

public class HeaderControl : System.Web.UI.UserControl

{

protected System.Web.UI.WebControls.ImageButton Imag

eButton1;

protected System.Web.UI.WebControls.Label Label7;

protected System.Web.UI.WebControls.ImageButton Imag

ebutton1;

protected System.Web.UI.WebControls.Label HeaderCtrl

Date;

protected System.Web.UI.WebControls.Label Label6;

protected System.Web.UI.WebControls.HyperLink hlProj

ects;

protected System.Web.UI.WebControls.HyperLink hlMyPr

ojects;

protected System.Web.UI.WebControls.HyperLink hlMyTa

sks;

protected System.Web.UI.WebControls.HyperLink hlTask

T.2 Users Management 277

s;

protected System.Web.UI.WebControls.HyperLink hlMyAp

provals;

protected System.Web.UI.WebControls.HyperLink hlEven

ts;

protected System.Web.UI.WebControls.HyperLink hlRepo

rts;

protected System.Web.UI.WebControls.Image Image1;

protected System.Web.UI.WebControls.Panel pnlHeader;

protected System.Web.UI.WebControls.Panel pnlLogo;

protected System.Web.UI.WebControls.Table pblHeaderM

enu;

protected System.Web.UI.WebControls.HyperLink hlAdmi

nistration;

protected System.Web.UI.WebControls.TableCell AdminP

age;

private void Page_Load(object sender, System.EventAr

gs e)

{

ProjectRegistry.Users.User user = ProjectRegistr

y.Users.User.getUser(this.Session);

this.hlMyProjects.NavigateUrl = "~/Pages/BatchVi

ews/BatchProjectView.aspx?PMID=" + user.UserID;

this.hlTasks.NavigateUrl = "~/Pages/BatchViews/B

atchTaskView.aspx?ProjectID=-1&EmployeeID=-1";

this.hlMyTasks.NavigateUrl = "~/Pages/BatchViews

/BatchTaskView.aspx?EmployeeID=" + user.UserID;

this.hlEvents.NavigateUrl = "~/Pages/BatchViews/

BatchEventView.aspx";

this.AdminPage.Visible = user.IsAdministrator;

}

T.2 Users Management 278

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET

Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do no

t modify

/// the contents of this method with the code ed

itor.

/// </summary>

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_L

oad);

}

#endregion

}

}

T.2 Users Management 279

sectionDatabase

ProjectRegistry/DataBase/AbstractController.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase

{

/// <summary>

/// Controllers provides methods of adding, removing, ch

anging data in DB.

/// each controller manipulates his own logical ara, pro

viding custom methods.

/// </summary>

public abstract class AbstractController

{

protected ProjectRegistry.DataBase.DBManager dbManag

er;

public AbstractController()

{

this.dbManager = new DBManager();

}

public void addParam(string parameterName,object par

ameterValue)

{

this.dbManager.setSqlParam(parameterName,paramet

erValue);

}

}

}

T.2 Users Management 280

ProjectRegistry/DataBase/DBManager.cs

using System;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase

{

/// <summary>

/// Base object designed to accomplishe base tasks with

database:

/// 1. Connect to it

/// 2. Execute a query

/// </summary>

public class DBManager

{

private System.Data.SqlClient.SqlConnection connecti

on;

private System.Data.SqlClient.SqlCommand command

;

private System.Data.SqlClient.SqlDataAdapter dataAda

pter;

public DBManager()

{

// A connection with datase is being established

connection = new System.Data.SqlClient.SqlConnec

tion();

connection.ConnectionString = connectionString;

}

public void executeSQLNonQuery(string query)

{

T.2 Users Management 281

this.sqlCommand.CommandText=query;

this.sqlCommand.Connection.Open();

this.sqlCommand.ExecuteNonQuery();

this.sqlCommand.Connection.Close();

}

public System.Data.SqlClient.SqlConnection sqlConnec

tion

{

get

{

return this.connection;

}

}

public SqlCommand sqlCommand

{

get

{

if (this.command == null)

{

this.command = new SqlCommand();

this.command.CommandType = System.Data.C

ommandType.Text;

this.command.Connection = this.connectio

n;

}

return this.command;

}

}

public SqlDataAdapter sqlAdapter

T.2 Users Management 282

{

get

{

if (this.dataAdapter==null)

{

this.dataAdapter=new SqlDataAdapter(this

.sqlCommand);

}

return this.dataAdapter;

}

}

/// <summary>

/// returns a connection string, based on a user dom

ain name

/// </summary>

protected string connectionString

{

get

{

switch (ProjectRegistry.Users.User.UserDomai

nName)

{

case @"ARKLYS\ASPNET":

return @"workstation id=Integrated S

ecurity=SSPI;Packet Size=4096;Initial Catalog=pr;Persist Sec

urity Info=False;Workstation ID=ARKLYS;";

case @"VIKTORAS\ASPNET":

return @"workstation id=VIKTORAS;pac

ket size=4096;integrated security=SSPI;data source=""VIKTORA

S\VIKTORAS"";persist security info=False;initial catalog=pr"

;

T.2 Users Management 283

case @"RAGANYNAS\ASPNET":

return @"Integrated Security=SSPI;In

itial Catalog=pr;Data Source=RAGANYNAS;Packet Size=4096;Work

station ID=RAGANYNAS;";

case @"PROGRAM1\ASPNET":

return @"workstation id=PROGRAM1;pac

ket size=4096;integrated security=SSPI;data source=""PROGRAM

1\PRDEMOSERV"";initial catalog=pr";

case @"MINDAUGASV\ASPNET":

return @"Integrated Security=SSPI;In

itial Catalog=pr;Data Source=MINDAUGASV\MINDAUGASV;Packet Si

ze=4096;Workstation ID=MINDAUGASV;";

default:

throw new System.Exception("getConne

ctionString returned NULL.");

}

}

}

/// <summary>

/// Sets parameters for the upcomming SQL query

/// </summary>

public void setSqlParam(string parameterName, object

value)

{

parameterName="@" + parameterName;

if (this.sqlCommand.Parameters.Contains(paramete

rName))

this.sqlCommand.Parameters.RemoveAt(paramete

rName);

this.sqlCommand.Parameters.Add(parameterName, va

T.2 Users Management 284

lue);

}

}

}

T.2 Users Management 285

subsectionDatabase Controllers

ProjectRegistry/DataBase/Employee/EmployeeController.cs

using System;

namespace ProjectRegistry.DataBase.Employee

{

/// <summary>

/// Handles data manipulation with Emploee table

/// </summary>

public class EmployeeController:AbstractController

{

public EmployeeController() : base () {}

public void insertEmployee()

{

string query = @"INSERT INTO Employees

(Name, Email, Working, DepartmentID,

WindowsLogin, Administrator)

VALUES

(@Name, @Email, @Working, @Departmen

tID, @WindowsLogin, @Administrator)";

this.dbManager.executeSQLNonQuery(query);

}

public void updateEmployee(string id)

{

this.addParam("EmployeeID", id);

string query = @"UPDATE Employees SET

Name=@Name, Email=@Email, Working=@W

orking, DepartmentID=@DepartmentID,

WindowsLogin=@WindowsLogin, Administ

rator=@Administrator

Where Employees.ID = ’" + id + "’";

T.2 Users Management 286

this.dbManager.executeSQLNonQuery(query);

}

}

}

T.2 Users Management 287

ProjectRegistry/DataBase/Event/EventController.cs

using System;

namespace ProjectRegistry.DataBase.Event

{

/// <summary>

/// Handles data manipulation with Event table

/// </summary>

public class EventController : AbstractController

{

public EventController() : base()

{

}

public void addEvent()

{

string query = @"INSERT INTO Events

(ProjectID, Name, Date, LinkToReport

)

VALUES

(@ProjectID, @Name, @Date, @LinkToRe

port)";

this.dbManager.executeSQLNonQuery(query);

}

public void updateEvent(string eventID)

{

this.addParam("EventID",eventID);

string query = @"UPDATE Events SET

ProjectID = @ProjectID, Name = @Name, Da

te = @Date,

LinkToReport = @LinkToReport

T.2 Users Management 288

WHERE Events.ID = @EventID";

this.dbManager.executeSQLNonQuery(query);

}

public void deleteEvent(string id)

{

string query=@"UPDATE Events

SET ";

query+=" Deleted= 1 ";

query+=" Where Events.ID = ’" + id + " ’";

this.dbManager.executeSQLNonQuery(query);

}

}

}

T.2 Users Management 289

ProjectRegistry/DataBase/Project/ProjectController.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.Project

{

/// <summary>

/// Handles data manipulation with Project table

/// </summary>

public class ProjectController : AbstractController

{

public ProjectController() : base() {}

public void addProject()

{

string query=@"INSERT INTO Projects

(Code, Name, BeginDate, EndDate,Fini

shed, Description,

ProjectManagerID, ProjectTeam, PPK,

ProjectSize, Client,

ClientRepresentative, Contract, Proj

ectPlan, Deleted)

VALUES

(@Code,@Name,@BeginDate,@EndDate, @F

inished, @Description,

@ProjectManagerID,@ProjectTeam, @PPK

, @ProjectSize, @Client,

@ClientRepresentative, @Contract, @P

rojectPlan, 0)";

this.dbManager.executeSQLNonQuery(query);

}

public void updateProject(string projectID)

T.2 Users Management 290

{

this.addParam("ProjectID",projectID);

string query=@"UPDATE Projects SET

Code=@Code, Name=@Name, BeginDate=@BeginDate

, EndDate=@EndDate,

Finished= @Finished, Description=@Descriptio

n,

ProjectManagerID=@ProjectManagerID, ProjectT

eam=@ProjectTeam,

PPK=@PPK, ProjectSize=@ProjectSize, Client=@

Client,

ClientRepresentative=@ClientRepresentative,

Contract=@Contract,

ProjectPlan=@ProjectPlan WHERE Projects.ID=@

ProjectID";

this.dbManager.executeSQLNonQuery(query);

}

public void deleteProject(string id)

{

string query=@"UPDATE Projects

SET ";

query+=" Deleted= 1 ";

query+=" Where Projects.ID = ’" + id + " ’";

this.dbManager.executeSQLNonQuery(query);

}

}

}

T.2 Users Management 291

ProjectRegistry/DataBase/Task/TaskController.cs

using System;

namespace ProjectRegistry.DataBase.Task

{

/// <summary>

/// Handles data manipulation with Tasks table

/// </summary>

public class TaskController :AbstractController

{

public TaskController(): base() {}

public void insertTask()

{

string query = @"INSERT INTO Tasks

(ProjectID, EmployeeID, Name, Planne

dHours, StartDate,

EndDate, Priority, Description, Acce

ptanceCriteria)

VALUES

(@ProjectID, @EmployeeID, @Name, @Pl

annedHours,

@StartDate, @EndDate, @Priority, @De

scription,

@AcceptanceCriteria)";

this.dbManager.executeSQLNonQuery(query);

}

public void updateTask(string taskID)

{

this.addParam("TaskID",taskID);

string query=@"UPDATE Tasks SET

ProjectID=@ProjectID, EmployeeID=@Em

T.2 Users Management 292

ployeeID, Name=@Name,

PlannedHours=@PlannedHours, StartDat

e=@StartDate,

EndDate=@EndDate, ApprovedPM=@Approv

edPM, ApprovedDM=@ApprovedDM,

FinishDate=@FinishDate, UsedHours=@U

sedHours,

Priority=@Priority, Description=@Des

cription,

AcceptanceCriteria=@AcceptanceCriter

ia WHERE Tasks.ID=@TaskID";

this.dbManager.executeSQLNonQuery(query);

}

public void deleteTask(string tid)

{

string query=@"UPDATE Tasks

SET ";

query += " Deleted= 1 ";

query += " Where Tasks.ID = ’" + tid + " ’";

this.dbManager.executeSQLNonQuery(query);

}

}

}

T.2 Users Management 293

subsectionDatabase Fillers

ProjectRegistry/DataBase/DataSets/AbstractDSFiller.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.DataSets

{

/// <summary>

/// Filler classes fills data from DB tables. Each fille

r fills a specific set of data.

///

/// </summary>

public abstract class AbstractDSFiller

{

protected DataBase.DBManager dbManager;

protected DataSet dataSet;

public AbstractDSFiller(DataSet dataSet)

{

this.dbManager = new DBManager();

this.dataSet = dataSet;

}

/// <summary>

/// Given a column name in DB table, returns a colum

n id

/// </summary>

/// <param name="columnName"> column name</param>

/// <returns> column in</returns>

protected int getCID(string columnName)

{

int cid = this.dataSet.Tables[0].Columns.IndexOf

(columnName);

T.2 Users Management 294

if (cid == -1) throw new System.Exception("bad c

olumn name");

return cid;

}

/// <summary>

/// gets a Value from DS given a column name. Return

s value of the first row in DS

/// </summary>

public string getFromDS(string columnName)

{

System.Data.DataSet ds=this.dataSet;

if (ds.Tables[0].Columns.Contains(columnName) ==

false)

throw new System.Exception("bad column name"

);

int cid = ds.Tables[0].Columns.IndexOf(columnNam

e);

return ds.Tables[0].Rows[0].ItemArray.GetValue(c

id).ToString();

}

}

}

T.2 Users Management 295

ProjectRegistry/DataBase/DataSets/Departments/AllDepartment.xsd

ProjectRegistry/DataBase/DataSets/Departments/AllDepartment.xsx

ProjectRegistry/DataBase/DataSets/Departments/AllDepartment.cs

ProjectRegistry/DataBase/DataSets/Departments/AllDepartmentDSF.cs

using System;

namespace ProjectRegistry.DataBase.DataSets.Departments

{

/// <summary>

/// Fills a dataset with each attribute of Department ta

ble

/// </summary>

public class AllDepartmentDSF : ProjectRegistry.DataBase

.DataSets.AbstractDSFiller

{

public AllDepartmentDSF(System.Data.DataSet dataSet)

: base(dataSet) {}

/// <summary>

/// Fills DS with all rows

/// </summary>

public void fillDataSet()

{

string select =

@"SELECT Departments.ID as ID, Departments.N

ame as Name

FROM Departments";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = select;

this.dbManager.sqlAdapter.Fill(dataSet, "Departm

ents");

}

T.2 Users Management 296

/// <summary>

/// Fills DS with only one department

/// </summary>

public void fillDataSet(string id)

{

string select =

@"SELECT Departments.ID as ID, Departments.N

ame as Name

FROM Departments Where Departments.ID = ’" +

id + "’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = select;

this.dbManager.sqlAdapter.Fill(dataSet, "Departm

ents");

}

/// <summary>

/// Makes an empty DS with one row, which has -1 or

"" values (used in Insert pages)

/// </summary>

public void fillDataSetEmpty()

{

string[] row = new string[this.dataSet.Tables[0]

.Columns.Count];

row[this.getCID("ID")] = "-1";

row[this.getCID("Name")] = "true";

this.dataSet.Tables[0].Rows.Add(row);

}

}

}

T.2 Users Management 297

ProjectRegistry/DataBase/DataSets/Employees/DSEmployees.xsd.xsd

ProjectRegistry/DataBase/DataSets/Employees/DSEmployees.xsd.xsx

ProjectRegistry/DataBase/DataSets/Employees/DSEmployees.xsd.cs

ProjectRegistry/DataBase/DataSets/Employees/EmployeesDSF.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase.DataSets.Employees

{

/// <summary>

/// Fills DS with data from Employees table

/// </summary>

public class EmployeesDSF : ProjectRegistry.DataBase.Dat

aSets.AbstractDSFiller

{

public EmployeesDSF(DataSet dataSet) : base(dataSet)

{}

string query =

@"SELECT Employees.ID,

Employees.Name AS Name,

Employees.Email, Employees.Working, Empl

oyees.WindowsLogIn,

Employees.Administrator,

Departments.Name AS DepartmentName,

Employees.DepartmentID as DepartmentID

FROM Employees

INNER JOIN

Departments ON Employees.DepartmentID =

Departments.ID";

T.2 Users Management 298

/// <summary>

/// fills data set with all rows

/// </summary>

public void fillDataSet()

{

fillFilteredDateSet("");

}

protected void fillFilteredDateSet(string filter)

{

string query = this.query;

if (filter != "")

query += " WHERE " + filter;

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = query;

this.dbManager.sqlAdapter.Fill(dataSet, "Employe

es");

}

/// <summary>

/// fills data set with only one row

/// </summary>

/// <param name="id"> id of the employee</param>

public void fillDataSet(string id)

{

fillFilteredDateSet("Employees.ID = ’" + id + "’

");

}

public void fillDataSetEmpty()

{

T.2 Users Management 299

string[] row = new string[this.dataSet.Tables[0]

.Columns.Count];

row[this.getCID("ID")] = "-1";

row[this.getCID("Working")] = "True";

row[this.getCID("DepartmentID")] = "-1";

row[this.getCID("DepartmentName")] = "";

row[this.getCID("Administrator")] = "False";

this.dataSet.Tables[0].Rows.Add(row);

}

}

}

T.2 Users Management 300

ProjectRegistry/DataBase/DataSets/Events/DSEvents.xsd.xsd Pro-

jectRegistry/DataBase/DataSets/Events/DSEvents.xsd.xsx ProjectReg-

istry/DataBase/DataSets/Events/DSEvents.xsd.cs

ProjectRegistry/DataBase/DataSets/Events/EventsDSF.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.DataSets.Events

{

/// <summary>

/// Fills DS with data from Events table

/// </summary>

public class BatchEventsDSF : ProjectRegistry.DataBase.D

ataSets.AbstractDSFiller

{

public BatchEventsDSF(DataSet dataSet) : base(dataSe

t) {}

string selectEvents = @"SELECT Events.ID as ID,

Events.ProjectID as ProjectID, Events.Name a

s Name,

Events.Date as Date, Events.LinkToReport as

LinkToReport,

Projects.Code as ProjectCode

FROM Events

INNER JOIN Projects ON Projects.ID = Events.

ProjectID";

/// <summary>

/// fills DS will all rows from table

/// </summary>

public void fillDataSet()

T.2 Users Management 301

{

string query = selectEvents;

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = query;

this.dbManager.sqlAdapter.Fill(dataSet, "Events"

);

}

public void fillDataSet(string eventID)

{

string query = selectEvents + " Where Events.Id

= ’" + eventID + "’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = query;

this.dbManager.sqlAdapter.Fill(dataSet, "Events"

);

}

public void fillDataSetEmpty()

{

string[] row = new string[this.dataSet.Tables[0]

.Columns.Count];

row[this.getCID("ID")] = "-1";

row[this.getCID("Name")] = "True";

row[this.getCID("ProjectID")] = "-1";

row[this.getCID("Date")] = "";

row[this.getCID("LinkToReport")] = "False";

this.dataSet.Tables[0].Rows.Add(row);

}

}

T.2 Users Management 302

}

T.2 Users Management 303

ProjectRegistry/DataBase/DataSets/Years/DSYears.xsd ProjectReg-

istry/DataBase/DataSets/Years/DSYears.xsx ProjectRegistry/DataBase/DataSets/Years/DSYears.cs

ProjectRegistry/DataBase/DataSets/Years/YearsDSF.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.DataSets.Years

{

/// <summary>

/// builds a DS, which shows year numbers.

/// </summary>

public class YearsDSF : ProjectRegistry.DataBase.DataSet

s.AbstractDSFiller

{

public YearsDSF(DataSet dataSet) : base(dataSet) {}

public void fillDataSet()

{

for (int i = 1998; i <= DateTime.Now.Year; i++)

{

object[] row = new object[1];

row[0] = i;

dataSet.Tables[0].Rows.Add(row);

}

}

}

}

T.2 Users Management 304

ProjectRegistry/DataBase/DataSets/ProjectManagers/PMs.xsd Pro-

jectRegistry/DataBase/DataSets/ProjectManagers/PMs.xsx Projec-

tRegistry/DataBase/DataSets/ProjectManagers/PMs.cs

ProjectRegistry/DataBase/DataSets/ProjectManagers/PMsDSF.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase.DataSets.ProjectManagers

{

/// <summary>

/// Fills data set with info about Project Managers

/// </summary>

public class PMsDSF : AbstractDSFiller

{

public PMsDSF(DataSet dataSet) : base(dataSet) {}

public void fillDataSet()

{

string selectPMs = @"SELECT DISTINCT Employees.I

D, Employees.Name

FROM Projects

INNER JOIN Employees ON Projects.ProjectMana

gerID = Employees.ID

WHERE Projects.deleted = 0";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectPMs;

this.dbManager.sqlAdapter.Fill(dataSet, "PManage

rs");

}

T.2 Users Management 305

}

}

T.2 Users Management 306

ProjectRegistry/DataBase/DataSets/Projects/AllProject.xsd Pro-

jectRegistry/DataBase/DataSets/Projects/AllProject.xsx ProjectReg-

istry/DataBase/DataSets/Projects/AllProject.cs

ProjectRegistry/DataBase/DataSets/Projects/AllProjectDSF.cs

using System;

namespace ProjectRegistry.DataBase.DataSets.Projects

{

/// <summary>m

/// Fills DS with all data from Projects table

/// </summary>

public class AllProjectDSF:ProjectRegistry.DataBase.Data

Sets.AbstractDSFiller

{

public AllProjectDSF(System.Data.DataSet dataSet) :

base(dataSet) {}

public void fillDataSet(string projectID)

{

string selectProjects = @"SELECT

Projects.ID, Projects.Code, Projects.Name, P

rojects.BeginDate,

Projects.EndDate, Projects.Finished, Project

s.Description,

Projects.ProjectManagerID as PMID, Projects.

ProjectTeam, Projects.PPK,

Projects.ProjectSize, Projects.Client, Proje

cts.ClientRepresentative,

Projects.Contract, Projects.ProjectPlan, Pro

jects.Deleted,

Employees.Name as PMName

FROM Projects

INNER JOIN Employees

T.2 Users Management 307

ON Projects.ProjectManagerID = Employees

.ID

WHERE

Projects.ID= ’"+projectID +"’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectProjects;

this.dbManager.sqlAdapter.Fill(dataSet, "Project

s");

}

}

}

T.2 Users Management 308

ProjectRegistry/DataBase/DataSets/Projects/DSProjectCode.xsd.xsd

ProjectRegistry/DataBase/DataSets/Projects/DSProjectCode.xsd.xsx

ProjectRegistry/DataBase/DataSets/Projects/DSProjectCode.xsd.cs

ProjectRegistry/DataBase/DataSets/Projects/ProjectCodeDSF.cs

using System;

namespace ProjectRegistry.DataBase.DataSets.Projects

{

/// <summary>

/// Fills data with Project.ID and Project.Code

/// </summary>

public class ProjectCodeDSF : ProjectRegistry.DataBase.D

ataSets.AbstractDSFiller

{

public ProjectCodeDSF(System.Data.DataSet dataSet) :

base(dataSet) {}

string query = @"SELECT

Projects.ID, Projects.Code

FROM Projects

Where Projects.Deleted = 0";

public void fillDataSet()

{

string selectProjects = query;

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectProjects;

this.dbManager.sqlAdapter.Fill(dataSet, "Project

s");

}

T.2 Users Management 309

public void fillDataSet(string projectID)

{

string selectProjects = query + "WHERE Projects.

ID= ’" + projectID + "’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectProjects;

this.dbManager.sqlAdapter.Fill(dataSet, "Project

s");

}

}

}

T.2 Users Management 310

ProjectRegistry/DataBase/DataSets/Projects/DSProjects.xsd Pro-

jectRegistry/DataBase/DataSets/Projects/DSProjects.xsx ProjectReg-

istry/DataBase/DataSets/Projects/DSProjects.cs

ProjectRegistry/DataBase/DataSets/Projects/ProjectsDSF.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase.DataSets.Projects

{

/// <summary>

/// Creates DS with data from projects table

/// </summary>

public class ProjectsDSF : ProjectRegistry.DataBase.Data

Sets.AbstractDSFiller

{

public ProjectsDSF(DataSet dataSet) : base(dataSet)

{}

private string selectProjects =

@"SELECT

Projects.ID, Projects.Code, Projects.Nam

e,

Projects.Code + ’:’ + Projects.Name as E

xtendedName,

Projects.BeginDate, Projects.EndDate,

Projects.Finished,

Employees.Name AS PMName,

Projects.Client,

Projects.ProjectManagerID AS PMId

FROM Projects

INNER JOIN Employees

T.2 Users Management 311

ON Projects.ProjectManagerID = Employees

.ID";

public void fillDataSet()

{

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectProjects;

this.dbManager.sqlAdapter.Fill(dataSet, "Project

s");

}

public void fillDataSet(string projectID)

{

string sp = selectProjects + " WHERE Projects.ID

= ’" + projectID + "’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = sp;

this.dbManager.sqlAdapter.Fill(dataSet, "Project

s");

}

}

}

T.2 Users Management 312

ProjectRegistry/DataBase/DataSets/Projects/ProjectStatusDSF.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.DataSets.Projects

{

/// <summary>

/// creates a DS with two values: Uzdarytas and Aktyvus

/// </summary>

public class ProjectStatusDSF : ProjectRegistry.DataBase

.DataSets.TrueFalse.TrueFalseDSF

{

public ProjectStatusDSF(DataSet dataSet) : base(data

Set, "Uzdarytas", "Aktyvus") {}

}

}

T.2 Users Management 313

ProjectRegistry/DataBase/DataSets/Tasks/DSTasks.xsd ProjectReg-

istry/DataBase/DataSets/Tasks/DSTasks.xsx ProjectRegistry/DataBase/DataSets/Tasks/DSTasks.cs

ProjectRegistry/DataBase/DataSets/Tasks/TasksDSF.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace ProjectRegistry.DataBase.DataSets.Tasks

{

/// <summary>

/// Fills DS with data from Tasks table

/// </summary>

public class TasksDSF : ProjectRegistry.DataBase.DataSet

s.AbstractDSFiller

{

public TasksDSF(DataSet dataSet) : base(dataSet) {}

private string selectTasks =

@"SELECT Tasks.ID as ID, Projects.Name AS Projec

tName,

Employees.Name AS EmployeeName,

Tasks.Name AS TaskName, Tasks.PlannedHou

rs,

Tasks.StartDate, Tasks.EndDate,

Tasks.ApprovedPM, Tasks.ApprovedDM, Task

s.FinishDate,

Tasks.UsedHours, Tasks.ProjectID as Proj

ectID,

Tasks.EmployeeID, Projects.Code as Proje

ctCode,

Tasks.Description as Description

FROM Tasks

T.2 Users Management 314

INNER JOIN

Projects ON Tasks.ProjectID = Projects.I

D

INNER JOIN

Employees ON Tasks.EmployeeID = Employee

s.ID";

public void fillDataSet()

{

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = selectTasks;

this.dbManager.sqlAdapter.Fill(dataSet, "Tasks")

;

}

public void fillDataSet(string taskID)

{

string st = selectTasks + " Where Tasks.ID = ’"

+ taskID + "’";

this.dbManager.sqlAdapter.SelectCommand.CommandT

ext = st;

this.dbManager.sqlAdapter.Fill(dataSet, "Tasks")

;

}

}

}

T.2 Users Management 315

ProjectRegistry/DataBase/DataSets/TrueFalse/DSTrueFalse.xsd Pro-

jectRegistry/DataBase/DataSets/TrueFalse/DSTrueFalse.xsx Projec-

tRegistry/DataBase/DataSets/TrueFalse/DSTrueFalse.cs

ProjectRegistry/DataBase/DataSets/TrueFalse/TrueFalseDSF.cs

using System;

using System.Data;

namespace ProjectRegistry.DataBase.DataSets.TrueFalse

{

/// <summary>

/// Summary description for ProjectStatusDSF.

/// </summary>

public class TrueFalseDSF : ProjectRegistry.DataBase.Dat

aSets.AbstractDSFiller

{

private string True;

private string False;

public TrueFalseDSF(DataSet dataSet) : this(dataSet,

"Taip", "Ne") {}

public TrueFalseDSF(DataSet dataSet, string True, st

ring False) : base(dataSet)

{

this.True = True;

this.False = False;

}

public void fillDataSet()

{

object[] row = new object[2];

row[0] = false; row[1] = False;

T.2 Users Management 316

dataSet.Tables[0].Rows.Add(row);

row = new object[2];

row[0] = true; row[1] = True;

dataSet.Tables[0].Rows.Add(row);

}

}

}

T.3 Common Library 317

T.3 Common Library

PRCommonLibrary/Persistency/FilterHashTable.cs

using System;

namespace PRCommonLibrary.Persistency

{

public class FilterHashTable: SessionPersistency

{

/// <summary>

/// Defines filtering rules.

///

/// Each filter rule has at least one value. The sec

ond value is optional, as only

/// some rules utilizes it (e.g. InRange).

/// </summary>

/// <remarks> <see cref="FilterHashTable.buildFilter

"/> </remarks>

public class FilterRule

{

public enum FilterOperation {NoFilter, Equals, L

essOrEqual,

EqualOrHigher, InRange, IsLike, InYear, Sort

ing};

public FilterOperation fOperation;

public string value1;

public string value2;

public FilterRule(FilterOperation op, string val

ue1, string value2)

T.3 Common Library 318

{

this.fOperation = op;

this.value1 = value1;

this.value2 = value2;

}

}

/// <summary>

/// Creates a FilterHash Table

/// </summary>

/// <param name="id"> an id, which uniquely identifi

es this object between other SessionPersistency objects </pa

ram>

public FilterHashTable(string id) : base(id)

{

}

protected override object createNewObject()

{

return new System.Collections.Hashtable();

}

protected System.Collections.Hashtable getHashTable(

)

{

return this.getPersistenObject() as System.Colle

ctions.Hashtable;

}

/// <summary>

/// Adds a filter rule, and deletes an existing one,

if any. if rule is "-1",

/// deletes filter

T.3 Common Library 319

/// </summary>

/// <param name = "filter"> a filter string. For exa

mple a collumn name for a drop down list </param>

/// <param name = "rule"> a filter value </param>

/// <example> <code> BatchView.addFilterRuleSingle("

ProjectCode", "AXCF") </code> </example>

public void injectRule(string columnName, FilterRule

.FilterOperation operation,

string colValue1, string colValue2)

{

this.removeRule(columnName);

if (operation == FilterRule.FilterOperation.NoFi

lter) return;

if ((colValue1 == "-1") || (colValue1 == ""))ret

urn;

//if ((colValue2 == "-1") || (colValue2 == ""))

return;

this.getHashTable().Add(columnName, new FilterRu

le(operation, colValue1, colValue2));

}

public void removeRule(string columnName)

{

if (getHashTable().ContainsKey(columnName))

getHashTable().Remove(columnName);

}

public FilterRule getFilterRule(string columnName)

{

if (this.getHashTable()[columnName] == null) ret

urn null;

return this.getHashTable()[columnName] as Filter

T.3 Common Library 320

Rule;

}

/// <summary>

/// Removes all rules

/// </summary>

public void removeRules()

{

this.getHashTable().Clear();

}

/// <summary>

/// Builds a string combining all filter rules. exam

ple result: "Code = ’axa’ AND ID=1"

///

/// </summary>

/// <returns></returns>

public string buildFilter()

{

bool bAddAnd = false;

string rule = "";

System.Collections.IDictionaryEnumerator e = thi

s.getHashTable().GetEnumerator();

while (e.MoveNext())

{

if (bAddAnd)

rule += " AND ";

else

bAddAnd = true;

FilterRule fr = e.Value as FilterRule;

string eval = "";

T.3 Common Library 321

if (fr.fOperation == FilterRule.FilterOperat

ion.Equals)

eval = "{0} = {1}"; else

if (fr.fOperation == FilterRule.FilterOperat

ion.IsLike)

eval = "{0} LIKE ’*{1}*’"; else

if (fr.fOperation == FilterRule.FilterOperat

ion.InYear)

eval = "{0} > ’01/01/{1}’ AND {0} < ’12/

31/{1}’"; else

if (fr.fOperation == FilterRule.FilterOperat

ion.Sorting)

eval = "{0} {1}";

rule += String.Format(eval, e.Key.ToString()

, fr.value1, fr.value2);

}

return rule;

}

}

}

T.3 Common Library 322

PRCommonLibrary/Persistency/SessionPersistency.cs

using System;

namespace PRCommonLibrary.Persistency

{

/// <summary>

/// Makes a class persistent, by saving it into session

/// </summary>

abstract public class SessionPersistency

{

private string id;

private System.Web.SessionState.HttpSessionState ses

sion;

public SessionPersistency(string id)

{

this.id = id;

this.session = null;

}

public string PageID

{

get{ return this.id;}

}

public System.Web.SessionState.HttpSessionState Page

Session

{

get

{

if (this.session == null) throw new System.E

xception("must set PageSession before use");

return this.session;

T.3 Common Library 323

}

set {this.session = value;}

}

/// <summary>

/// Creates an object, which will be saved in a sess

ion

/// </summary>

/// <returns> a new object</returns>

protected abstract object createNewObject();

protected object getPersistenObject()

{

if (session[id] == null)

{

session[id] = this.createNewObject();

}

return session[id];

}

}

}

T.4 Custom Controls 324

T.4 Custom Controls

PRControls/DatePicker.cs

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.ComponentModel;

namespace PRControls

{

/// <summary>

/// A calendar

/// </summary>

[DefaultProperty("Text"),

ToolboxData("<{0}:DatePicker runat=server></{0}:Date

Picker>")]

public class DatePicker : System.Web.UI.WebControls.Text

Box

{

public DatePicker(): base()

{

Attributes["elemDateInputs"] = "this";

Attributes["popupType"] = "both";

Attributes["pickerDateFormat"] = "[MMMM] [yyyy]"

;

Attributes["inputDateFormat"] = "[yyyy]-[MM]-[dd

]";

Attributes["firstDayOfWeek"] = "1";

Attributes["daynameLetters"] = "S;P;A;T;K;P;S;";

Attributes["monthnamesLong"] = "Sausis;Vasaris;K

ovas;Balandis;Geguze;Birzelis;Liepa;Rugpjutis;Rugsejis;Spali

T.4 Custom Controls 325

s;Lapkritis;Gruodis;";

Attributes["initialEmpty"] = "1";

}

/// <summary>

/// Render this control to the output parameter spec

ified.

/// </summary>

/// <param name="output"> The HTML writer to write o

ut to </param>

protected override void Render(HtmlTextWriter output

)

{

string buttonID = "btn" + UniqueID;

Attributes["elemDateButtons"] = buttonID;

base.Render(output);

output.Write("<BUTTON id=\"" + buttonID + "\" ty

pe=\"button\" class=\"" + CssClass + "\" />");

}

}

}

T.4 Custom Controls 326

PRControls/FilterDropDownList.cs

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.ComponentModel;

using PRCommonLibrary;

namespace PRControls

{

/// <summary>

/// PRDropDownList extends System.Web.UI.WebControls.D

ropDownList and

/// adds such new features:

/// 1. You can add an extra item which will be as a head

er. E.g. "Select...",

/// 2. You can specify a Value of an item which will be

selected by default.

/// 3. You can specify a FilterOperation

/// </summary>

[DefaultProperty("DefaultValueText"),

ToolboxData("<{0}:FilterDropDownList runat=server></{0}:

FilterDropDownList>")]

public class FilterDropDownList : System.Web.UI.WebContr

ols.DropDownList, System.Web.UI.INamingContainer

{

private string defaultValueText;

private string defaultValueID;

private string filterColumnName;

private PRCommonLibrary.Persistency.FilterHashTable.

FilterRule.FilterOperation filterOperation;

/// <summary>

/// Default Value

T.4 Custom Controls 327

/// </summary>

[Bindable(true), Category("Appearance"), DefaultValu

e("<nefiltruoti>")]

public string DefaultValueText

{

get

{

if (defaultValueText != null)

return defaultValueText;

else

return "<nefiltruoti>";

}

set

{

defaultValueText = value;

}

}

/// <summary>

/// Default Value ID

/// </summary>

[Bindable(true), Category("Appearance"), DefaultValu

e("-1")]

public string DefaultValueID

{

get

{

if (defaultValueID != null)

return defaultValueID;

else

return "-1";

}

T.4 Custom Controls 328

set

{

defaultValueID = value;

}

}

/// <summary>

/// Filter Column Name

/// </summary>

[Bindable(true), Category("Appearance"), DefaultValu

e("")]

public string FilterColumnName

{

get

{

return filterColumnName;

}

set

{

filterColumnName = value;

}

}

/// <summary>

/// Filter Operation

/// </summary>

public PRCommonLibrary.Persistency.FilterHashTable.F

ilterRule.FilterOperation FilterOperation

{

T.4 Custom Controls 329

get

{

return this.filterOperation;

}

set

{

this.filterOperation = value;

}

}

/// <summary>

/// adds a default item to Filter DDL

/// </summary>

protected override void OnDataBinding(EventArgs e)

{

base.OnDataBinding(e);

if (DefaultValueText != "")

Items.Insert(0, new ListItem(DefaultValueTex

t, DefaultValueID));

}

}

}

T.4 Custom Controls 330

PRControls/FilterTextBox.cs

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.ComponentModel;

using PRCommonLibrary;

namespace PRControls

{

/// <summary>

/// A custom text box, which has a FilterOperation and F

ilter Column values

/// </summary>

[DefaultProperty("Text"),

ToolboxData("<{0}:FilterTextBox runat=server></{0}:F

ilterTextBox>")]

public class FilterTextBox : System.Web.UI.WebControls.T

extBox

{

private string filterColumnName;

private PRCommonLibrary.Persistency.FilterHashTable.

FilterRule.FilterOperation filterOperation;

/// <summary>

/// FilterColumnName

/// </summary>

[Bindable(true), Category("Appearance"), DefaultValu

e("")]

public string FilterColumnName

{

get

{

return filterColumnName;

T.4 Custom Controls 331

}

set

{

filterColumnName = value;

}

}

/// <summary>

/// FilterOperation

/// </summary>

public PRCommonLibrary.Persistency.FilterHashTable.F

ilterRule.FilterOperation FilterOperation

{

get

{

return this.filterOperation;

}

set

{

this.filterOperation=value;

}

}

}

}

T.5 Tests 332

T.5 Tests

PRTests/PageExistenceTests.cs

using System;

using NUnit.Extensions.Asp;

using NUnit.Extensions.Asp.AspTester;

namespace PRTests

{

/// <summary>

/// Summary description for Class1.

/// </summary>

public class PageExistenceTests : WebFormTestCase

{

public void TestBatchProjectViewPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/BatchViews/BatchProjectView.aspx");

}

public void TestBatchTaskViewPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/BatchViews/BatchTaskView.aspx");

}

public void TestBatchEmployeeViewPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/BatchViews/BatchEmployeeView.aspx");

}

T.5 Tests 333

public void TestBatchEventViewPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/BatchViews/BatchEventView.aspx");

}

public void TestAdministratePageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Administrator/Administrate.aspx");

}

public void TestViewProjectPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/DetailView/ViewProject.aspx?ProjectID=1");

}

public void TestInsertEmployeePageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Inserts/InsertEmployee.aspx");

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Inserts/InsertEmployee.aspx?EmployeeID=1");

}

public void TestInsertProjectPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Inserts/InsertProject.aspx");

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Inserts/InsertProject.aspx?ProjectID=1");

}

T.5 Tests 334

public void TestInsertTaskPageExistence()

{

Browser.GetPage("http://localhost/ProjectRegistr

y/Pages/Inserts/InsertTask.aspx");

}

}

}

T.5 Tests 335

	Introduction to Project Report
	Company Analysis
	Company Background
	Problem
	Project Constraints and Terms

	Resources
	Place and Time
	Hardware
	Software
	Human Resources
	Project Adviser
	Customer Contact Person

	Project Report Structure

	Iteration 1 -- Inception phase (17 08 -- 22 08)
	Iteration Goals and Objectives
	Methodology Choice
	Agreeing on Development Case
	Initiating Project
	Artifact Templates
	Risk Assessment
	Risk Management Strategy
	Role Assignment
	Teamwork Contract
	Company and Team Contract
	Software Development Plan
	Phase Plan
	Iteration Management Plan

	Requirements and UI Prototype
	Development
	Testing
	Iteration Assessment
	Are the Goals Met?
	Reevaluate Risks

	Next Iteration Planning

	Iteration 2 (23 08 -- 30 08)
	Iteration Goals and Objectives
	Doing Domain Model
	Doing Use Case Collection

	Development
	Build Two Use Cases
	Initial Database Usage Strategy

	Testing
	Iteration Assessment
	Are the Goals Met?
	Reevaluate Risks

	Next Iteration Planning
	Goals

	Iteration 3 (31 08 -- 13 09)
	Iteration Goals and Objectives
	Iteration Planning Problems

	Requirements and UI Prototype
	UI Navigation Diagram

	Development
	Testing
	Iteration Assessment
	Are the Goals Met?

	Iteration 4 (14 09 -- 28 09)
	Iteration Goals and Objectives
	Phase Plan Change

	Development
	Database Architecture
	System Architecture
	Test Plan

	Testing
	Iteration Assessment
	Are the Goals Met?

	Next Iteration Planning

	Iteration 5 (29 09 -- 29 10)
	Iteration Goals and Objectives
	Requirements and UI Prototype
	Development
	Database Subsystem
	Filtering

	Testing
	Iteration Assessment
	Are the Goals Met?

	Requirements
	Introduction to Requirements
	First Step - Domain Model
	One Important Mistake
	Use Cases
	Purpose
	Collecting Use Cases

	Encountered Problems
	User Navigation
	User Interface Requirements
	System Prototype Requirements
	Final Iteration Requirements

	User Interface
	User Interface
	User Interface Goals
	Web Elements Functionality
	Building User Interface

	Cascading Style Sheets
	CSS Evaluation
	CSS Choice
	User Interface Evaluation

	Conclusion

	Implementation
	Building Implementation Queue
	Development Risks
	Use Case Prioritization
	Building Final Development Queue

	Database Design
	Problem
	Possible Solutions
	Our Choice

	The Page Life Cycle
	Dynamic vs Static
	Building two Functional Prototypes
	Darius Prototype -- Nano Pages
	Prototype Goals
	Explained
	Class Diagram
	Advantages of this Prototype
	Disadvantages of this Prototype

	Martynas Prototype
	Prototype Goals
	Limitations of ASP.Net
	Design
	Advantages of this Prototype
	Disadvantages of this Prototype

	Prototype Choice
	Building Arklys Injections
	How to Prepare the Page to Use DymacicContent
	How to Add or Remove DynamicContent
	How to Create DynamicContent Web User Control
	Problems Creating Arklys Injections

	Improvements to System
	New DBFillers and Improved Controllers
	FilterDropDownList
	FilterTextBox and DatePicker

	Final System Design
	Package View
	Project File Structure

	Testing
	Introduction
	Purpose of Testing
	Test Types
	Unit Testing
	User Interface Testing

	Iteration 1 -- 17 08 - 22 08 Inception Phase
	Goals
	Objectives
	Work Orders
	Iteration Assessment
	IterationSummary

	Iteration 2 -- 23 08 - 30 08 Elaboration Phase
	Goals
	Objectives
	Iteration Assessment
	Iteration Summary

	Iteration 3 -- 31 08 - 13 09
	Goals
	Objectives
	Iteration Assessment
	IterationSummary

	Iteration 4 -- 14 09 - 28 09
	Goals
	Objectives
	Iteration Assessment
	IterationSummary

	Iteration 5 -- 29 09 - 28 10 Construction Phase
	Iteration Goals and Objectives
	Requirements and UI Prototype
	Development
	Database Subsystem
	Filtering

	Testing
	Iteration Assessment
	Are the Goals Met?

	Iteration Management Plan
	Introduction
	Document Holder
	Iteration Timing
	Iteration Plan Structure
	Iteration Evaluation and Assessment

	Software Development Plan
	Deliverables
	Supplementary Specification
	Use Case Specification
	User Interface Specification
	Software Architecture Document
	Test Plan
	Initial Prototype
	Functional Prototype
	Operational System
	Deployment Tools

	Human Resources
	Team Structure
	Team Capabilities
	Roles and Responsibilities

	Project Planning
	Phase Plan
	Iteration Plans
	Project Plan

	Technical Process Plans and Guidelines
	Iteration Management

	Risk Management Strategy
	Introduction
	Document Holder
	What is a Risk
	Specifying a Risk
	Risk Management Strategy

	Project Management Risk List
	Introduction
	Document Holder
	Risk List
	Mis-conceived or Undefined Project Scope
	Low-risk Tasks go First

	Glossary
	Document Holder
	Glossary

	Development Risk List
	Introduction
	Document Holder
	Risk List
	Lack of .Net Knowledge
	Inappropriate Database Design

	Software Architecture
	Introduction
	Document Holder
	Architectural Goals
	Main Components
	Database
	Web Application

	Supplementary Specification
	Introduction
	Document Holder
	Requirements
	Development Environment
	Persistency
	User Interface
	Security
	Accurateness

	Functional Requirements
	Data Versioning / History
	Multi-attachment Ability
	Filtering Boxes in Datagrid

	Use Case Specification
	Introduction
	Document Holder
	Domain Model Diagram
	Business Logic
	Task Creation Cycle

	Use Case Template
	UC1: Insert Project
	UC2: Log Into System
	UC3: Insert Task
	UC4: View Projects
	UC5: View Project In Detail
	UC6: View Events
	UC7: View Event in Detail
	UC8: View Task in Detail
	UC9: Edit Task
	UC10: View Tasks
	UC11: View My Approvals
	UC12: Approve Task
	UC13: Delete Task
	UC14: Delete Project
	UC15: Edit Project
	UC16: Delete Event
	UC17: Edit Event
	UC19: Filter

	Company, School and Team Contract
	Development Case
	Test Plan
	Introduction
	Document Holder
	Types of Tests
	Functional Tests
	User Interface Tests
	Security Testing

	Team Contract
	Purpose of this Document
	What is the Goal for the Team Work (What is to be Delivered to Who)
	Team Members
	Resources Available for the Team and Assessment of Strengths and Weaknesses
	Work Organisation
	What is the Goal for Team Work
	Technical Resources Available
	Software
	Hardware
	Working Place
	Risks

	XP versus UP a Methodology Comparison Study Work
	Introduction
	Philosophy
	Paradigm
	Objectives
	Domain
	Target

	Model
	Techniques and Tools
	UP Techniques
	UP Tools
	XP Techniques
	XP Tools

	Scope
	Outputs
	Introduction
	UP Outputs

	Practice
	Background
	User Base
	Participants
	UP Participants
	XP Participants

	Product
	UP Products
	XP Products

	Conclusion
	References

	Project Registry Source
	Pages
	BatchView Pages
	Insert Pages
	Edit Pages
	DetailView Pages
	Administrator Pages

	Users Management
	Common Library
	Custom Controls
	Tests

