Roskilde edb-skole

2011.09.09/Michael Claudius
CODS:\Opgaver_alm\SocketIterative.doc

COMPUTING SUBJECT:
Socket programming

TYPE:
Assignment

IDENTIFICATION:
SocketIterative
COPYRIGHT:
Michael Claudius

LEVEL:
Intermediate

TIME CONSUMPTION:
1-4 hours

EXTENT:
50 lines

OBJECTIVE:
TCP-sockets iterative style

PRECONDITIONS:
Computer Networks Ch. 2.7

COMMANDS:

IDENTIFICATION: SocketIterative
The Mission

We are going to explore the TCP socket programming using n iterative server. First we shall look into good design principles.

Useful Java classes

· java.net.ServerSocket http://java.sun.com/javase/6/docs/api/java/net/ServerSocket.html

· java.net.Socket http://java.sun.com/javase/6/docs/api/java/net/Socket.html

· java.io.BufferedReader, especially the method readLine http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html#readLine()

Take a look at the following iterative socket server program:

[image: image1]
Assignment 1 Good programming and design principles

Although this program was only made for fast educational purpose, we shall now critise it!!

Use 10 minutes together with some other students to discuss the disadvantages of the program in relation to the Abstract Data Type (ADT) concepts and OO-principles for good programming. Don’t look on the next page !!

Take the time to write down keywords and then proceed to the next page.
Critical remarks (I said don't look !)

The class does not have a good and unique (unambiguous ADT) Interface-functionality as the offered methods in principle is mixing socket purpose, I/O and management (main). For a model class method main should be considered as a test method and nothing else.

Furthermore main throws an exception, instead of having a try-catch sentence, some might call this nasty or unusual….

Note, that although main() is in the class, other classes might use/utilize the TCPServer-class.

Why and how ?

Now we will restructure the program, so we have two classes:

TestSocketIterative: A Test class for management and setting up the connection

SocketIterative: A Model class handling the connection socket communication and data manipulation

The class SocketIterative is defined as a public class, only containing the constructor SocketIterative and the method run:
Datafields:

 Socket connectionSocket

Constructors

 SocketIterative(Socket connection)

Methods

 void run()

Assignment 2: Model class: SocketIterative

Create a new project SocketIterative and a Java class SocketIterative with the mentioned data fields and the constructor:

SocketIterative(Socket connection)

 initializes the data field

Assignment 3: public void run()
In the SocketIterative class declare a new method run which only handles all the I/O and connection socket communication. Thus the run method resembles the following template:

 BufferedReader inFromClient = new BufferedReader(

 new InputStreamReader(connectionSocket.getInputStream()));

 PrintStream outToClient = new PrintStream(

 connectionSocket.getOutputStream());

 String clientSentence = inFromClient.readLine();

 System.out.println("FROM CLIENT: " + clientSentence);

 String capitalizedSentence = clientSentence.toUpperCase();

 outToClient.println(capitalizedSentence);

Tip: Cut and paste from the TCPServer.

Compile! Got errors?….You need a try–catch-sentence catching SocketException and IOException.
Assignment 4: Application class: TestSocketIterative

Create a new application class Test SocketIterative with the usual main method:

main()
Create welcome socket
State an infinite while-loop and inside the loop:

Create connection socket by calling an accept-method

Create a SocketIterative object and then call the run method.

Tip: Similar to TCPServer. Compile and run!

Then start the TCPClient and see that everything operates fine….

Critical remarks

The present program is unfavourable as it only handles a client-request one time.

Assignment 5: Several clients

Create a new TCPClient1 class extended with a for-loop so one client can send 5 sentences from the user to the server.

Then start the client program on several machines.
What happens?

Tip: To understand what goes on, it might be necessary to slow down the speed using: Thread.sleep(100).
Assignment 6: Several client-requests

Insert a while-loop in the SocketIterative class so it handle a client sending many sentences to the server.
Tip: Insert a loop: while(clientSentence != null)
Assignment 7: Problems

Try to run many clients against the same server.

What do you observe ? What happens ? Why ?

Assignment 8: Several clients

Create a new TCPClient2 class extended with a for-loop so one client automatically can send many sentences (just with sender name and lines numbered) to the server, i.e. no user input.
Then start the client program on several machines.
What happens?

Tip: To understand what goes on, it might be necessary to slow down the speed using: Thread.sleep(100).
public class TCPServer{

 public static void main(String argv[]) throws Exception{

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while (true){

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient = new BufferedReader(

 new InputStreamReader(connectionSocket.getInputStream()));

 PrintStream outToClient = new PrintStream(

 connectionSocket.getOutputStream());

 String clientSentence = inFromClient.readLine();

 System.out.println("FROM CLIENT: " + clientSentence);

 String capitalizedSentence = clientSentence.toUpperCase();

 outToClient.println(capitalizedSentence);

 }

 }

}

