Roskilde edb-skole

2010.03.31/Michael Claudius
CODS:\Opgaver_alm\MultiChat.doc

COMPUTING SUBJECT:
Socket programming

TYPE:
Assignment

IDENTIFICATION:
MultiChat
COPYRIGHT:
Michael Claudius

LEVEL:
Intermediate

TIME CONSUMPTION:
2-8 hours

EXTENT:
150 lines

OBJECTIVE:

PRECONDITIONS:
Computer Networks Ch. 2.7

Exercise SocketController
COMMANDS:

IDENTIFICATION: MultiChat/MC
The Mission

You are to program a GUI-based chat program, where a user (server) can chat with several contacts (clients) at the same time.:

At the moment we have 7 classes:

TCPClient: A client class handling the connection socket communication, reading user input and writing to a server.
ServiceInterface: An interface implementing Runnable for service classes.

ServiceEcho: A model class handling the connection socket communication and data manipulation of the echo-server. Note that the former name was: SocketConcurrent!!!
ServiceRead: A model class handling the connection socket communication and reading from a client.
ServiceWrite: A model class handling the connection socket communication and writing to a client.

SocketController: A controller class for running a service on the connection socket.

TestSocketController: A test class for management of the server socket and the connection socket using SocketController and a service.

Critical remarks
The present program is totally text based using System.in and System.out. TCPClient is really a mix of many responsibility; i.e. low cohesion.
The objective

Create a new project where a contact can chat with others using a GUI like:

[image: image1]
with a JTextArea showing sent/received messages and a JTextField for the next message to be sent.

On the “client” side we will need 4 classes:
ServiceWriteFromGUI: A model class handling the connection socket communication and writing to a contact.

ServiceReadToGUI: A model class handling the connection socket communication and reading from a contact.

SocketController: A controller class for running a service on the connection socket. Based on the old version this class will be extended with more methods.
ClientChatGUI: A Presentation class for calling and chatting.
Assignment 0: Download .zip files,if needed
If you don’t have a good solution then find the SocketController.zip file on your teacher’s homepage, download it and extract the files to the package. Clean and build this project.

This project must not be changed, instead the files should be copied to the new project.
So create a new Java application project MultiChat and copy all the files.
Assignment 1: Service Model class: ServiceReadToGUI
ServiceReadToGUI is similar to ServiceRead, but here the run method reads the input from the client and then append this to a JTextArea.
Create a Java class ServiceReadToGUI resembling the following template:
Datafields:

 Socket connectionSocket

 JTextArea textArea

Constructors

 ServiceReadToGUI (Socket connectionSocket, JTextArea textArea)
 Initialises the data fields with the parameters

Methods

 run()

 Reads input on the connectionSocket and append the text to textArea
Tip: Very similar to ServiceRead, so cut, paste and change.

Assignment 2: Controller class: SocketController
Extend the “old” SocketController class with the following methods:

Methods

 doRead(JTextArea textArea)

 Create a ServiceReadToGUI object

 Create a new Thread object serviceThread

 Call serviceThread.start()method, automatically initiating the run() method

doClose()

 Closes the connectionSocket

Tip: doRead is very similar to the former doRead(). DON’T replace it!!
Assignment 3: Test in SocketController
It is not possible to test right now as a GUI-class with a TextArea is necessary. You should just continue with assignment 4, alternatively you can jump to assignment 6 and make a preliminary GUI solution using fixed ip, portNo and then later return to assignment 4.
Comments
The doRead has a very good cohesion. But in order to respond to a client we need to be able to write back. Thus we need a ServiceWriteFromGUI class and a doWrite method.
Assignment 4: Service model class: ServiceWriteFromGUI
Create a Java class ServiceWriteFromGUI similar to ServiceWrite, but here the run method just takes a String sentence and writes this to the client.

Create a Java class ServiceWriteFromGUI resembling the following template:
Datafields:

 Socket connectionSocket

 String sentence

Constructors

 ServiceWriteFromGUI (Socket connectionSocket, String sentence)
 Initialises the data fields with the parameters

Methods

 run()

 Writes the sentence to the connectionSocket
Tip: Very similar to ServiceWrite, so copy, paste and change. Remember no while-loop waiting for user-input, as the user-input is based on events (user actions).
Assignment 5: doWrite in the SocketController class
Extend the SocketController class with the method doWrite:

public void doWrite(String sentence)

 Create a ServiceWriteFromGUI object

 Just calls the run-method directly
Tip: Similar to the former doWrite, but uses the ServiceWriteFromGUI object and no thread is needed as it will be activated when the user activates a sendButton, as we shall see later.
Assignment 6 Presentation class ClientChatGUI

Create a Java GUI Form named ClientChatGUI like:

[image: image2]
As you can see there are three JButton (callButton, sendButton, closeButton), two JLabel (ipLabel, portNoLabel), three JTextField (ipTextField, portTextField, sendTextField) and one JTextArea (dataTextArea,). Note that the ipTextfield and portTextField can be initialised at with standard vaules.

Extend ClientChatGUI with the following data fields, constructor and methods
Datafields
SocketController sc
Some default values of ip and portNo

ClientChatGUI()
Initialises the GUI-components and textFields with default values
call()

Read the ip and portNo of server.

Then creates a connectionSocket.
Creates a SocketController object sc; establishing connection to the server.
Calls the sc.doRead method; i.e. starts to listen on the connectionSocket

send()

Reads the message from the sendTextField
Calls the doWrite method; i.e. sends the message to the server”
Must be called when the sendButton is clicked.

close()

Closes the socket controller object and thereby the connection socket.
Must be called when the closeButton is clicked.
Start the old server program on one computer; then compile and run this client program on another.

Now we need to change the server-program into a GUI-based program
On the “server” side we will use 3 “old” classes.

ServiceWriteFromGUI: A model class handling the connection socket communication and writing to a contact.

ServiceReadToGUI: A model class handling the connection socket communication and reading from a contact.

SocketController: A controller class for running a service on the connection socket.

and 3 new GUI classes:

ServerChatGUI: A Presentation class for chatting to be initiated a client request.

ServerChatGUIHandler: Handles the creation of a ServerChatGUI
MultiChatGUI: A presentation class initialising the chat
Assignment 7: Presentation class ServerChatGUI

Create a Java GUI Form named ServerChatGUI, which can display the received messages and send messages to a “client”-contact.
Very similar to ClientChatGUI.

You can test this GUI from main(). Very similar to TestSocketController, but a GUI must be created on the connection.
Alternatively just proceed….
Assignment 8: Controller class: ServerChatGUIHandler

Create a controller class ServerChatGUIHandler which implements Runnable and with:

Datafields

 Socket connectionSocket

Constructor

 ServerChatGUIHandler(Socket connectionSocket)

 Initialises the data field with the parameter

Methods

 run()

 Creates a new ServerChatGUI, when activated
Assignment 9: Application class: ServerChatMain
In the main in ServerChatMain you must start up the chat-program to listen on a socket. Each time a “client” calls the server a new “server” window will be created. Use the constructions:

Declare a server socket, welcomeSocket.

Start an infinite loop

 Declare a connection socket on the welcomeSocket.accept
 Declare and construct a ServerChatGUIHandler object

 Create a new Thread object handlerThread on this object

 Call handlerThread.start()method, automatically initiating the run() method

Assignment 10: Presentation class: MultiChatGUI

Instead of running from ServerChatMain the chat program can be started from MultiChatGUI by activating various buttons etc. The GUI should control:

Initialise the connection

Set up the “server” listening for a “client” request, similar to ServerChatMain
Start the client-chat part.

Discuss very careful the structure, the connection to the other GUI’s, the actions controlled, remember to sketch the threads, how messages are floating around and design the GUI before programming…………..

Finally consider some refactoring of ClientChatGUI….
�

�

PAGE
2

[image: image3.png]WichaelHow are you?
Bonnie: Super thanks
Bonnie:U are so great

onrealy

P T —

portho 5765 |

[image: image4.png]P focanost | portio orss |

