31
Service-oriented
software engineering

Objectives

The objective of this chapter is to introduce service-oriented software
engineering, an increasingly important approach to business application
development. When you have read this chapter, you will:

B understand the basic notions of a web service and web service
standards and how these can support inter-organisational
computing;

B understand the service engineering process that is intended to
produce reusable web services;

B have been introduced to the notion of service composition as a
means of service-oriented application development;

B understand how business process models may be used as a basis
for the design of service-oriented systems.

Contents

31.1 Services as reusable components
31.2 Service engineering
31.3 Software development with services

19 “hiaplic o

T CIVILTSTUNICIHILTU DuiLvywalc CIISIIGCCIHIS

Figure 31.1
Service-oriented
architecture

In Chapter 12, I introduced the notion of service-oriented architectures as a
means of facilitating inter-organisational computing. Essentially, service-oriented
architectures (SOA) are a way of developing distributed systems where the com-
ponents of these systems are stand-alone services. These services may execute on
geographically distributed computers. Standard protocols have been designed to
support service communication and information exchange. Consequently, services
are platform and implementation-language independent. Software systems can be
constructed using services from different providers with seamless interaction between
these services.

Figure 31.1 illustrates how web services are used. Service providers design and
implement services and specify these services in a language called WSDL (discussed
later). They also publish information about these services in a generally accessible
registry using a publication standard called UDDI. Service requestors (sometimes
called service clients), who wish to make use of a service, search the UDDI registry
to discover the specification of that service and to locate the service provider. They
can then bind their application to that specific service and communicate with it,
usually using a protocol called SOAP.

Service-oriented architecture is now generally recognised as a significant develop-
ment, particularly for business application systems. It allows flexibility as services
can be provided locally or outsourced to external providers. Services may be imple-
mented in any programming language. By wrapping legacy systems (see Chapter 21)
as services, companies can preserve their investment in valuable software and make
this available to a wider range of applications. SOA allows different platforms and
implementation technologies that may be used in different parts of a company to
inter-operate. Most importantly, perhaps, building applications based on services allows
companies and other organisations to cooperate and to make use of each other’s
business functions. Thus, systems that involve extensive information exchange across
company boundaries, such as supply chain systems, where one company orders goods
from another, can easily be automated.

Perhaps the key reason for the success of service-oriented architectures is the
fact that, from the outset, there has been an active standardisation process working
alongside technical developments. All of the major hardware and software com-
panies are committed to these standards. As a result, service-oriented architectures

(UDDY)

Publish

Service '\
requestor 4

—liapLwct o SQCiviLCTUlITHILEU SuiLvwale clugniccinnyg 129D

Figure 31.2 Web
service standards

XML technologies (XML, XSD, XST,) |

L Support (WS-Security, WS-Addressing, ...) |:

Process (WS-BPEL)

Service definition (UDDI, WSDL)

|
|
r Messaging (SOAP)

_ Transport (HTTP, HTTPS, SMIP,.) |

have not suffered from the incompatibilities that normally arise with technical
innovations, where different suppliers maintain their proprietary version of the tech-
nology. Hence, problems, such as the multiple incompatible component models in
CBSE that I discussed in Chapter 19, have not arisen in service-oriented system
development.

Figure 31.2 shows the stack of key standards that have been established to
support web services. In principle, a service-oriented approach may be applied in
situations where other protocols are used; in practice, web services are dominant. Web
services do not depend on any particular transport protocol for information exchange
although, in practice, the HTTP and HTTPS protocols are commonly used.

Web service protocols cover all aspects of service-oriented architectures from the
basic mechanisms for service information exchange (SOAP) to programming lan-
guage standards (WS-BPEL). These standards are all based on XML, a human and
machine-readable notation that allows the definition of structured data where text is
tagged with a meaningful identifier. XML has a range of supporting technologies,
such as XSD for schema definition, which are used to extend and manipulate XML
descriptions. Erl (Erl, 2004) provides a good summary of XML technologies and
their role in web services.

Briefly, the key standards for web service-oriented architectures are:

1. SOAP This is a message interchange standard that supports the communication
between services. It defines the essential and optional components of messages
passed between services.

2. WSDL The Web Service Definition Language (WSDL) standard defines the way
in which service providers should define the interface to these services. Essen-
tially, it allows the interface of a service (the service operations, parameters and
their types) and its bindings to be defined in a standard way.

3. UDDI The UDDI (Universal Description, Discovery and Integration) standard
defines the components of a service specification that may be used to discover
the existence of a service. These include information about the service provider,
the services provided, the location of the service description (usually expressed

[Ba a4

“Hape sa

SLAVILL VHILTIILU JVILYIYUL L LG g

in WSDL) and information about business relationships. UDDI registries enable
potential users of a service to discover what services are available.

4. WS-BPEL This standard is a standard for a workflow language that is used
to define process programs involving several different services. I discuss the
notion of process programs in section 31.3.

These principal standards are supported by a range of supporting standards
that focus on more specialised aspects of SOA. There are a very large number of
supporting standards because they are intended to support SOA in different types
of application. Some examples of these standards include:

1. WS-Reliable Messaging is a standard for message exchange that ensures mess-
ages will be delivered once and once only.

2. WS-Security is a set of standards supporting web service security including
standards that specify the definition of security policies and standards that
cover the use of digital signatures.

3. WS-Addressing defines how address information should be represented in a SOAP
message.

4. WS-Transactions defines how transactions across distributed services should be
coordinated.

Web service standards are a huge topic and I do not have space to discuss them
in detail here. I recommend Erl’s books (Erl, 2004; Erl, 2005) for an overview of
these standards. Their detailed descriptions are also available as public documents
on the Web.

As I discuss in the following section, a service can be considered simply as a
reusable abstraction and hence this chapter complements Chapters 18 and 19 that
discuss issues of software reuse. There are therefore two themes to the chapter:

l. Service engineering. This concerns the development of dependable, reusable
services. Essentially, the concern is software development for reuse.

2. Software development with services. This concerns the development of
dependable software systems that use services either on their own or in con-
junction with other types of component. Essentially, the concern is software
development with reuse.

Service-oriented architectures and service-oriented software engineering are,
currently, a ‘hot topic’. There is an enormous amount of business interest in adopt-
ing a service-oriented approach to software development but, at the time of writing,
practical experience with service-oriented system is limited. Hot topics always
generate ambitious visions and often promise more than they finally deliver. For
example, in their book on SOA, Newcomer and Lomow (2005) state:

|
1
|
i
f

J Ll STIEVILCD AaD 1TUuD>amc Lunpuncing IEnd)

31.1

Driven by the convergence of key technologies and the universal adoption
of Web services, the service-oriented enterprise promises to significantly
improve corporate agility, speed time-to-market for new products and services,
reduce IT costs and improve operational efficiency.

[believe that service-oriented software engineering is as important a develop-
ment as object-oriented software engineering. However, the reality is that it will take
many years to realise these benefits and for the vision of SOA to become a reality.
Because service-oriented software development is so new, we do not yet have well-
established software engineering methods for this type of system. [therefore focus
here on general issues of designing and implementing services and building systems
using service composition.

Services as reusable components

In Chapter 19, I introduced component-based software engineering (CBSE) where
software systems are constructed by composing software components that are based
on some standard component model. Services are a natural development of soft-
ware components where the component model is, in essence, the set of standards
associated with web services. A service can therefore be defined as:

A loosely coupled, reusable software component that encapsulates discrete
Sfunctionality, which may be distributed and programmatically accessed. A web
service is a service that is accessed using standard Internet and XML-based
protocols.

A critical distinction between a service and a software component as defined in
CBSE is that services should be independent and loosely coupled. That is, they should
always operate in the same way, irrespective of their execution environment. Their
interface is a ‘provides’ interface that provides access to the service functionality.
Services are intended to be independent and usable in different contexts. Therefore,
they do not have a ‘requires’ interface that, in CBSE, defines the other system com-
ponents that must be present.

Services may also be distributed over the Internet. They communicate by
exchanging messages, expressed in XML, and these messages are distributed using
standard Internet transport protocols such as HTTP and TCP/IP. A service defines
what it needs from another service by setting out its requirements in a message
and sending it to that service. The receiving service parses the message, carries out
the computation and, on completion, sends a message to the requesting service. This
service then parses the reply to extract the required information. Unlike software
components, services do not ‘call’ methods associated with other services.

190 “hapwer g

QTIVILC-UlIgIICU Sulwale crgliieeiny

Figure 31.3
Synchronous
interaction when
ordering a meal

Waiter Diner

X X

[_._ What would you like? ‘

Tomato soup please

And to follow?

Fillet steak

A

How would you like it cooked?

Rare please

A

With salad or french fries?

Salad please

' etc. '

To illustrate the difference between communication using method calls and com-
munication using message passing, consider a situation where you are ordering a
meal in a restaurant. When you have a conversation with the waiter, you are involved
in a series of synchronous interactions that define your order. This is comparable to
components interacting in a software system, where one component calls methods
from other components. The waiter writes down your order along with the order
of the other people with you, then passes this message, which includes details of
everything that has been ordered, to the kitchen to prepare the food. Essentially,
the waiter service is passing a message to the kitchen service defining the food
to be prepared.

I have illustrated this in Figure 31.3, which shows the synchronous ordering pro-
cess, and in Figure 31.4, which shows a hypothetical XML message, which I hope
is self-explanatory, that defines an order made by the table of three people. The
difference is clear—the waiter takes the order as a series of interactions, with each
interaction defining part of the order. However, the waiter has a single interaction
with the kitchen where the message passed defines the complete order.

When you intend to use a web service, you need to know where the service is
located (its URI) and the details of its interface. These are described in a service
description expressed in an XML-based language called WSDL (Web Service
Description Language). The WSDL specification defines three things about a
Web service. It defines what the service does, how it communicates and where
to find it:

1. The ‘what’ part of a WSDL document, called an interface, specifies what
operations the service supports, and defines the format of the messages that
are sent and received by the service.

7
5.
i
i

Py A Iy AV R Ly

Figure 31.4

A restaurant order
expressed as an XML
message

Figure 31.5
Organisation of a
WSDL specification

<starter>
<dish name = “soup” type = “tomato” />
<dish name = “soup” type = “fish” />
<dish name = “pigeon salad” />
</starter>
<main course>
<dish name = “steak” type = “sirloin” cooking = “medium” />
<dish name = “steak” type = “fillet” cooking = “rare” />
<dish name = “sea bass">
</main>
<accompaniment>
<dish name = “french fries” portions = “2" />
<dish name = “salad” portions = “1” />
</accompaniment>

The ‘how’ part of a WSDL document, called a binding, maps the abstract inter-
face to a concrete set of protocols. The binding specifies the technical details

of how to communicate with a Web service.

The ‘where’ part of a WSDL document, called (confusingly) a service,

describes where to locate a specific Web service implementation.

The WSDL conceptual model (Figure 31.5) shows all the parts of a service descrip-
tion. Each of these is expressed in XML and may be provided in separate files. These
parts are:

An introductory part which, usually, defines the XML namespaces used and
which may include a documentation section providing additional information

about the service.

An optional description of the types used in the messages exchanged by the

service.

A description of the service interface, i.e. the operations that it provides.

A description of the input and output messages processed by the service.

WSDL. service definition

Intro » XML namespace declarations

Type declarations
Abstract interface > Interface declarations
Message declarations

. Concrete Binding declarations
implementation Endpoint declarations

5. A description of the binding used by the service, i.e. the messaging protocol
that will be used to send and receive messages. The default is SOAP but other
bindings may also be specified. The binding sets out how the input and output
messages associated with the service should be packaged into a message, and
specifies the communication protocols used. The binding may also specify how
supporting information, such as security credentials or transaction identifiers,
is included.

6. An endpoint specification which is the physical location of the service, expressed
as a Uniform Resource Identifier (URI)—the address of a resource that can be
accessed over the [nternet.

Complete service descriptions, written in XML, are long, detailed and tedious
to read. They usually include definitions of XML namespaces, which are qualifiers
for names. A namespace identifier may precede any identifier used in the XML descrip-
tion. It means that it is possible to distinguish between identifiers with the same
name that have been defined in different parts of an XML description. I do not
want to go into details of namespaces here. To understand this chapter, you need
to know only that names can be prefixed with a namespace identifier and that the
namespace:name pair should be unique.

I have included an example of a complete service description on the book
website. However, as this is very long, I focus here on the description of the abstract
interface. This is the part of the WSDL that equates to the ‘provides’ interface
of a software component. Figure 31.6 shows details of the interface for a simple
service that, given a date and a place (town and country), returns the maximum
and minimum temperature recorded in that place on that date. These temperatures
may be returned in degrees Celsius or in degrees Fahrenheit, depending on the loca-
tion where they were recorded.

In Figure 31.6, the first part of the description shows part of the element and
type definition that is used in the service specification, This defines the elements
PlaceAndDate, MaxMinTemp and InDataFault. I have only included the specifica-
tion of PlaceAndDate, which you can think of as a record with three fields—town,
country and date. A similar approach would be used to define MaxMinTemp and
InDataFault.

The second part of the description shows how the service interface is defined.
In this example, the service weatherinfo has a single operation, although there are
no restrictions on the number of operations that may be defined. The weatherinfo
operation has an associated in-out pattern, meaning that it takes one input message
and generates one output message. The WSDL 2.0 specification allows for a number
of different message exchange patterns such as in-only, in-out, out-only, in-optional-out,
out-in, etc. The input and output messages, which refer to the definitions made earlier
in the types section, are then defined.

The major problem with WSDL is that the definition of the service interface does
not include any information about the semantics of the service or its non-functional
characteristics, such as performance and dependability. It is simply a description of

Figure 31.6 Part of a
WSDL description for

a web service

31.2

Define some of the types used. Assume that the namespace prefixes ‘ws’ refers to
the namespace URI for XML schemas and the namespace prefix associated with this
definition is weathns.

<types>
<xs: schema targetNameSpace = “http://.../weathns”
xmins: weathns = “http://.../weathns” >
<xs:element name = “PlaceAndDate” type = “pdrec” />
<xs:element name = “MaxMinTemp” type = “mmtrec” />
<xs: element name = “InDataFault” type = “errmess” />

<xs: complexType name = “pdrec”

<xs: sequence>
<xs:element name = “town” type = “xs:string"/>
<xs:element name = “country” type = “xs:string”/>
<xs:element name = “day” type = “xs:date” />

</xs:complexType>

Definitions of MaxMinType and InDataFault here

</schema>
</types>

Now define the interface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures

<interface name = “weatherinfo™>
<operation name = “getMaxMinTemps” pattern = “wsdins; in-out™
<input messageLabel = “In” element = “weathns: PlaceAndDate” />
<output messageLabel = “Out” element = “weathns:MaxMinTemp” />
<outfault messageLabel = “Out” element = “weathns:InDataFault” />

</operation>

</interface>

the service signature and it relies on the user of the service to deduce what the service
actually does and what the different fields in the input and output messages mean.
While meaningful names and service documentation helps here, there is still scope
for misunderstanding and misusing the service.

Service engineering

Service engineering is the process of developing services for reuse in service-oriented
applications. It has much in common with component engineering. Service engineers
have to ensure that the service represents a reusable abstraction that could be useful
in different systems. They must design and develop generally useful functionality
associated with that abstraction and must ensure that the service is robust and reliable
so that it operates dependably in different applications. They have to document the
service so that it can be discovered by and understood by potential users.

PR ey - Tt riea wiiniilne LTl wrigiee sy

Figure 31.7 The
service engineering
process

Service
implementation
and deployment /

e

Service
candidate
identification f,f

po:

Service desig

Validated and
deployed service |

Service interface |;
specification

Service
requirements

There are three logical stages in the service engineering process (Figure 31.7).
These are:

1. Service candidate identification where you identify possible services that
might be implemented and define the service requirements.

2. Service design where you design the logical and WSDL service interfaces.

3. Service implementation and deployment where you implement and test the ser-
vice and make it available for use.

I discuss each of these stages in this section of the book.

31.2.1 Service candidate identification

The basic notion of service-oriented computing is that services should support
business processes. As every organisation has a wide range of processes, there are
therefore many possible services that may be implemented. Service candidate iden-
tification involves understanding and analysing the organisation’s business processes
to decide which reusable services are required to support these processes.

Exl identifies three fundamental types of service that may be identified:

L. Utility services These are services that implement some general functionality
that may be used by different business processes. An example of a utility service
is a currency conversion service that can be accessed to compute the conversion
of one currency (e.g. dollars) to another (e.g. euros).

2. Business services These are services that are associated with a specific busi-
ness function. An example of a business function in a university would be the
registering of students for a course.

3. Coordination or process services These are services that support a more general
business process which usually involves different actors and activities. An
example of a coordination service in a company is an ordering service that allows
orders to be placed with suppliers, goods accepted and payments made.

Jl.£4 4 JrvIVILE cHglieelny 120

Figure 31.8 Service
classification

Business Coordination
Task Currency convertor Validate claim form Process expense claim
Employee locator Check credit rating Pay external supplier
Entity Document style checker Expenses form
Web form to XML Student application
converter form

Erl also suggests that services can be considered as task-oriented or entity-
oriented. Task-oriented services are those associated with some activity whereas
entity-oriented services are like objects—they are associated with some business entity
such as, for example, a job application form. Figure 31.8 suggests some examples
of services that are task or entity-oriented. While services can be utility and busi-
ness services, coordination services are always task-oriented.

Your goal in service candidate identification should be to identify services that
are logically coherent, independent and reusable. Erl’s classification is helpful in
this respect as it suggests how to discover reusable services by looking at business
entities and business activities. However, just as the processes of object and com-
ponent identification are difficult, so too is service candidate identification. You have
to think of possible candidates then ask a series of questions about them to see if
they are likely to be useful services. Possible questions that help you to identify
reusable services are:

1. For an entity-oriented service, is the service associated with a single logical
entity that is used in different business processes? What operations are normally
performed on that entity that must be supported?

2. For a task-oriented service, is the task one that is carried out by different
people in the organisation? Will they be willing to accept the inevitable
standardisation that occurs when a single support service is provided?

3. Is the service independent, i.e. to what extent does it rely on the availability
of other services?

4. For its operation, does the service have to maintain state? If so, will a database
be used for state maintenance? In general, systems that rely on internal state
are less reusable than those where state can be externally maintained.

5. Could the service be used by clients outside of the organisation? For example,
an entity-oriented service associated with a catalogue may be accessed both
internally and externally?

6. Are different users of the service likely to have different non-functional require-
ments? If they do, then this suggests that more than one version of a service
should perhaps be implemented.

1 3%

wllapler oi

ITIVILETUHICHILEU dUILWal e cugiieening

The answers to these questions help you select and refine abstractions that can
be implemented as services. However, there is no formulaic way of deciding which
are the best services and so service identification is a skill and experience-based
process.

The output of the candidate selection process is a set of identified services and
associated requirements for these services. The functional service requirements should
define what the service should do. The non-functional requirements should define
the security, performance and availability requirements of the service.

Assume that a large company, which sells computer equipment, has arranged
special prices for approved configurations for some customers. To facilitate auto-
mated ordering, the company wishes to produce a catalogue service that will allow
customers to select the equipment that they need. Unlike a consumer catalogue, how-
ever, orders are not placed directly, through a catalogue interface, but are made through
the web-based procurement system of each company. Most companies have their
own budgeting and approval procedures for orders and their own ordering process
must be followed when an order is placed.

The catalogue service is an example of an entity-oriented service that supports
business operations. The functional catalogue service requirements are:

1. A specific version of the catalogue shall be provided for each user com-
pany. This shall include the configurations and equipment that may be ordered
by employees of the customer company and the agreed prices for catalogue
items.

2. The catalogue shall allow a customer employee to download a version of the
catalogue for off-line browsing.

3. The catalogue shall allow users to compare the specifications and prices of up
to six catalogue items.

4. The catalogue shall provide browsing and searching facilities for users.

5. Users of the catalogue shall be able to discover the predicted delivery date for
a given number of specific catalogue items.

6. Users of the catalogue shall be able to place ‘virtual orders’ where the items
required will be reserved for them for 48 hours. Virtual orders must be con-
firmed by a real order placed by a procurement system. This must be received
within 48 hours of the virtual order.

In addition to these functional requirements, the catalogue has a number of non-
functional requirements:

1. Access to the catalogue service shall be restricted to employees of accredited
organisations.

2. The prices and configurations offered to one customer shall be confidential and
shall not be available to employees of any other customer.

z

PR Y 1 JCIVILC CIISIIICCIIIIS 120

31.2.2

3. The catalogue shall be available without disruption of service from 0700 GMT
to 1100 GMT.

4. The catalogue service shall be able to process up to 10 requests per second
peak load.

Notice that there is no non-functional requirement related to the response time
of the catalogue service. This depends on the size of the catalogue and the expected
number of simultaneous users. As this is not a time-critical service, there is no need
to specify it at this stage.

Service interface design

Once you have selected candidate services, the next stage in the service engineer-
ing process is to design the service interfaces. This involves defining the operations
associated with the service and their parameters. You also have to think carefully
about how the operations and messages of the service can be designed to minimise
the number of message exchanges that must take place to complete the service request.
You have to ensure that as much information as possible is passed to the service
in a message rather than require synchronous service interactions.

You should also remember that services are stateless and managing a service-
specific application state is the responsibility of the service user rather than the
service itself. You may therefore have to pass this state information to and from
services in input and output messages.

There are three stages to service interface design:

1. Logical interface design where you identify the operations associated with the
“service, the inputs and outputs of these operations and the exceptions associ-
ated with these operations.

2. Message design where you design the structure of the messages that are sent
and received by the service.

3. WSDL development where you translate your logical and message design to
an abstract interface description written in WSDL.

The first stage, logical interface design, starts with the service requirements and
defines the operation names and parameters associated with the service. At this stage,
you should also define the exceptions that may arise when a service operation is
invoked. Figures 31.9 and 31.10 show the operations that implement the require-
ments and the inputs, outputs and exceptions for each of the catalogue operations.
At this stage, there is no need for these to be specified in detail—you add detail at
the next stage of the design process.

Defining exceptions and how these can be communicated to service users is
particularly important. Service engineers do not know how their services will be

S - M LS i e T ST RTRT™

Figure 31.9

: Description:
Functional

{. Operation

descriptions of MakeCatalogue Creates a version of the catalogue tailored for a specific
catalogue service customer. Includes an optional parameter to create a
operations downloadable PDF version of the catalogue.

Compare Provides a comparison of up to six characteristics (e.g. price,
dimensions, processor speed, etc.) of up to four catalogue
items for comparison.

Lookup Displays all of the data associated with a specified catalogue item.

Search This operation takes a logical expression and searches the
catalogue according to that expression. It displays a list of all
items that match the search expression.

CheckDelivery Retumns the predicted delivery date for an item if it is ordered today.

MakeVirtualOrder Reserves the number of items to be ordered by a customer and

Figure 31.10 provides item information for the customer's own procurement
Catalogue interface system.
design
- Operation Inputs Qutputs Exceptions
MakeCatalogue ~ mcin mcOut mcFault
Company id URL of the catalogue for Invalid company id
PDF-flag that company
Compare compin compOut compFault
Company id URL of page showing Invalid company id
Entry attribute (up to 6) comparison table Invalid catalogue number
Catalogue number (up to 4) Unknown attribute
Lookup lookin lookOut lookFault
Company id URL of page with the item Invalid company id
Catalogue number information Invalid catalogue number
Search searchin searchOut searchFault
Company id URL of web page with Invalid company id
Search string search results Badly-formed search string
CheckDelivery gdin gdOout gdFauit
Company id Catalogue number Invalid company id
Catalogue number Expected delivery date Invalid catalogue number
Number of items required No availability
Zero items requested
PlaceOrder poin poOut poFault
Company id Catalogue number Invalid company id

Number of items required
Catalogue number

Number of items required
Predicted delivery date
Unit price estimate

Total price estimate

Invalid catalogue number
Zero items requested

£
;
¢
i

Figure 31.11 UML
definition of input
and output messages

gdin

size (cID) =6
size (catNum) = 10
numitems >0

cD:sting L - - - _
catNum: string

numitems: integer

gdOut

— 1 ____] size (catNum) = 10 hI
catNum: string delivDate > Today
delivDate: date |

Invalid company id
errCode = 1

Invalid catalogue number
errCode =2

No availability
errCode =3

Zero items requested
errCode = 4

gdFault

errCode: integer

used and it is usually unwise to make assumptions that service users will have
completely understood the service specification. Input messages may be incorrect
so you should define exceptions that report incorrect inputs to the service client. It
is generally good practice in reusable component development to leave all excep-
tion handling to the user of the component—the service developer should not impose
their views on how exceptions should be handled.

Once you have established an informal logical description of what the service
should do, the next stage is to define the structure of the input and output mess-
ages and the types used in these messages. XML is an awkward notation to use at
this stage. [think it better to represent the messages as objects and either define
them using the UML or in a programming language, such as Java. They can then be
manually or automatically converted to XML. Figure 31.11 is a UML diagram that
shows the structure of the input and output messages for the getDelivery operation
in the catalogue service.

Notice how I have added detail to the description, by annotating the UML diagram
with constraints. These define the length of the strings representing the company
and the catalogue item, specify that the number of items must be greater than zero
and that delivery must be after the current date. The annotations also show which
error codes are associated with each possible fault.

The final stage of the service design process is to translate the service interface
design into WSDL. As I discussed in the previous section, a WSDL representa-
tion is long and detailed and hence it is easy to make mistakes at this stage. Most
programming environments that support service-oriented development (e.g. the
ECLIPSE environment) include tools that can translate a logical interface descrip-
tion into its corresponding WSDL representation.

31.2.3 Service implementation and deployment

Once you have identified candidate services and designed their interfaces, the final
stage of the service engineering process is service implementation. This implementa-
tion may involve programming the services using a standard programming language
such as Java or C#. Both of these languages now include libraries with extensive
support for service development.

Alternatively, services may be developed by using existing components or, as
[discuss below, legacy systems. This means that software assets that have already
proved to be useful can be made more widely available. In the case of legacy systems,
it may mean that the system functionality can be accessed by new applications.
New services may also be developed by defining compositions of existing services.
[discuss development by service composition in section 31.3.

Once a service has been implemented, it then has to be tested before it is deployed.
This involves examining and partitioning the service inputs (as discussed in
Chapter 23), creating input messages that reflect these input combinations and then
checking that the outputs are expected. You should always try to generate excep-
tions during the test to check that the service can cope with invalid inputs. Various
testing tools are now available that allow services to be examined and tested and
that generate tests from a WSDL specification. However, these can only test the
conformity of the service interface to the WSDL. They cannot test that the service’s
functional behaviour is as specified.

Service deployment, the final stage of the process, involves making the service
available for use on a web server. Most server software makes this very simple. You
only have to install the file containing the executable service in a specific directory.
It then automatically becomes available for use. If the service is intended to be
publicly available, you then have to to write a UDDI description so that potential
users can discover the service. Erl (2004) provides a useful summary of UDDI in
his book.

There are now a number of public registries for UDDI descriptions and busi-
nesses may also maintain their own private UDDI registries. A UDDI description
consists of a number of different types of information:

1. Details of the business providing the service. This is important for trust reasons.
Users of a service have to be confident that it will not behave maliciously.
Information about the service provider allows users to check a provider’s
credentials.

2. An informal description of the functionality provided by the service. This
helps potential users to decide if the service is what they want. However,
the functional description is in natural language, so it is not an unambiguous
semantic description of what the service does.

3. Information on where to find the WSDL specification associated with the service.

4. Subscription information that allows users to register for information about updates
to the service.

31.2.4

A potential problem with UDDI specifications is that the functional behav-
iour of the service is specified informally as a natural language description. As
[have discussed in Chapter 6, which covers software requirements, natural lan-
guage descriptions are easy to read but they are subject to misinterpretation. To
address this problem, there is an active research community concerned with
investigating how the semantics of services may be specified. The most promising
approach to semantic specification is based on ontology-based description where
the specitic meaning of terms in a description is specified in an ontology. A lan-
guage called OWL-S has been developed for describing web service ontologies
(OWL_Services_Coalition, 2003). At the time of writing, these techniques for
semantic service specification are still immature but they are likely to become more
widely used over the next few years.

Legacy system services

In Chapter 18, I discussed the possibility of implementing reusable components
by providing a component interface to existing legacy systems. In essence, the
functionality of the legacy systems could be reused. The implementation of the
component was simply concerned with providing a general interface to that system.
One of the most important uses of services is to implement such ‘wrappers’ for legacy
systems. These systems can then be accessed over the web and integrated with
other applications.

To illustrate this, imagine that a large company maintains an inventory of its
equipment and an associated maintenance database. This keeps track of what main-
tenance requests have been made for different pieces of equipment, what regular
maintenance is scheduled, when maintenance was carried out, how much time was
spent on maintenance, etc. This legacy system was originally used to generate
daily job lists for maintenance staff but, over time, new facilities have been added.
These provide data about how much has been spent on maintenance for each piece
of equipment and information to help to cost maintenance work to be carried out
by external contractors. The system runs as a client-server system with special-
purpose client software running on a PC.

The company now wishes to provide real time access to this system from
portable terminals used by maintenance staff. They will update the system directly
with the time and resources spent on maintenance and will query the system to
find their next maintenance job. In addition, call centre staff require access to the
system to log maintenance requests and to check their status.

It is practically impossible to enhance the system to support these require-
ments so the company decides to provide new applications for maintenance and
call centre staff. These applications rely on the legacy system, which is to be
used as a basis for implementing a number of services. This is illustrated in
Figure 31.12, where I have used a UML stereotype to indicate a service. New
applications simply exchange messages with these services to access the legacy
system functionality.

Figure 31.12 Services
providing access to a

legacy system

31.3

<<service>> <<service>> <<service>>

Maintenance Facilities Logging
getlob addEquipment addRequest
suspendJob deleteEquipment deleteRequest
completelob editEquipment queryRequests

Maintenance

support legacy
application

Some of the services provided are:

1. A maintenance service This includes operations to retrieve a maintenance job
according to its job number, priority and geographical location and to upload
details of maintenance that has been carried out to the maintenance database.
It also supports an operation to allow maintenance that has started but is incom-
plete to be suspended.

2. A facilities service This includes operations to add and delete new equipment
and to modify the information associated with equipment in the database.

3. A logging service This includes operations to add a new request for service,
delete maintenance requests and query the status of outstanding requests.

The existing legacy system is not simply represented as a single service. Rather,
the services that are developed are coherent and support a single area of function-
ality, This reduces their complexity and makes them easier to understand and reuse
in other applications. I do not have space to discuss the details of the messages that
might be exchanged by these services—their design is left as an exercise for the
reader.

Software development with services

The development of software using services is based around the idea that you
compose and configure services to create new, composite services. These may be
integrated with a web user interface to create a web application or may be used as
components in some other service composition. The services involved in the com-
position may be specially developed for the application, may be business services
developed within a company or may be services from some external provider.

A R e o

Figure 31.13
Vacation package

workflow

Many companies are now concerned with converting applications that are used
within an enterprise into service-oriented systems. This opens up the possibility of
more widespread reuse within the company. The next stage will be the development
of inter-organisational applications between trusted suppliers. The final realisation of
the long-term vision of service-oriented architectures will rely on the development
of a ‘services market’. I think it is unlikely that this will emerge during the lifetime
of this book. At the time of writing, only a relatively small number of business
services that might be included in business applications are publicly available.

Service composition may be used to integrate separate business processes to
provide an integrated process offering more extensive functionality. Say an airline
wishes to provide a complete vacation package for travellers. As well as booking
their flights, travellers can also book hotels in their preferred location, arrange car
hire or book a taxi from the airport, browse a travel guide and make reservations
to visit local attractions. To create this application, the airline composes its own
booking services with services offered by a hotel booking agency, car hire and
taxi companies and the reservation services offered by the providers of the local
attractions. The result is a single service that integrates these different services from
different providers.

You can think of this process as a sequence of separate steps as shown in
Figure 31.13. Information is passed from one step to the next—for example, the
car hire company is informed of the time that the flight is scheduled to arrive.
The sequence of steps is called a workflow—a set of activities ordered in time, with
each activity carrying out some part of the work. You can think of a workflow as
a model of a business process—the steps involved in reaching some goal that is
important for a business. In this case, the business process is the vacation booking
service, offered by the airline.

Workflow is a simple idea and the above scenario of booking a vacation seems
to be straightforward. In reality, service composition is much more complex than
this simple model implies. For example, you have to consider the possibility of
service failure and incorporate mechanisms to handle these failures. You also have
to take into account exceptional demands made by users of the application. For
example, say a traveller was disabled and required a wheelchair to be rented and
delivered to the airport.

You must to be able to cope with situations where the workflow has to be changed
because the normal execution of one of the services results in an incompatibility
with some other service execution. For example, say a flight is booked to leave on
I June and return on 7 June. The workflow then proceeds to the hotel booking stage.
However, the resort is hosting a major convention until 2 June so no hotel rooms

O~

Book Book Arrange Browse Book
fllghts hotel car or taxi attractlon attractlon

Arrwal/departure e e o e e e
dates/times Hotel location

Formulate

outline
workflow /;

/

Create
workflow
program

Test
service

Refine
workflow

Select
services

Discover
services

[/ / /

Figure 31.14 Service
construction by
composition

4
Workflow Service list Service Workflow 1 Executable Deployabie
design ervice specifications design , workflow service

are available. The hotel booking service reports this lack of availability. This is
not a failure: lack of availability is a common situation. You then have to ‘undo’
the flight booking and pass the information about lack of availability back to the
user. He or she then has to decide whether to change their dates or their resort.
In workflow terminology, a ‘compensating action’ is used to undo actions that
have already been completed.

The process of designing new services by composing existing services is, essen-
tially, a process of software design with reuse (Figure 31.14). Design with reuse
inevitably involves requirements compromises. The ‘ideal’ requirements for the sys-
tem have to be modified to reflect the services that are actually available, whose
costs fall within budget and whose quality of service is acceptable.

In Figure 31.14, T have shown six key stages in the process of service construction
by composition:

1. Formulate outline workflow In this initial stage of service design, you use the
requirements for the composite service as a basis for creating an ‘ideal’ service
design. You should create a fairly abstract design at this stage with the intention
of adding details once you know more about available services.

2. Discover services During this stage of the process, you search service registries
to discover what services exist, who provides these services and the details of
the service provision.

3. Select possible services From the set of possible service candidates that you
have discovered, you then select possible services that can implement work-
flow activities. Your selection criteria will obviously include the functionality
of the services offered. They may also include the cost of the services and the
quality of service (responsiveness, availability, etc.) offered. You may decide
to choose a number of functionally equivalent services, which could be bound
to a workflow activity depending on details of cost and quality of service.

4. Refine workflow On the basis of information about the services that you have

selected, you then refine the workflow. This involves adding detail to the abstract
description and, perhaps, adding or removing workflow activities. You then may
repeat the service discovery and selection stages. Once a stable set of services
has been chosen and the final workflow design established, you move on to
the next stage in the process.

31.3.1

5. Create workflow program During this stage, the abstract workflow design
is transformed to an executable program and the service interface is defined.
You can use a conventional programming language such as Java or C# for
service implementation or you can use a more specialised workflow language
such as WS-BPEL. As I discussed in the previous section, the service interface
specification should be written in WSDL. This stage may also involve the
creation of web-based user interfaces to allow the new service to be accessed
from a web browser.

6. Test completed service or application The process of testing the completed,
composite service is more complex than component testing in situations where
external services are used. I discuss testing issues in section 31.3.2.

In the remainder of this chapter, I focus on workflow design and testing. As I
discussed in the introduction, a market for services has not yet developed. Although
a number of public UDDI registries are available, these are sparsely populated and
the service descriptions are sometimes vague and incomplete. For these reasons,
service discovery is not yet a major issue. Most services will be discovered within
organisations where services can be discovered using internal registries and informal
communications between software engineers.

Workflow design and implementation

Workflow design involves analysing existing or planned business processes to under-
stand the different stages of these processes then representing the process being
designed in a workflow design notation. This shows the stages involved in enacting
the process and the information that is passed between the different process stages.
However, existing processes may be informal and dependent on the skills and abil-
ity of the people involved—there may be no ‘normal’ way of working. In such cases,
you have to use process knowledge to design a workflow that achieves the same
goals as current business processes.

Workflows represent business process models and are usually represented using
a graphical notation such as BPMN (White, 2004) or YAWL (van der Aalst and
ter Hofstede, 2005) At the time of writing, the process modelling language which
seems most likely to emerge as a standard is BPMN. This is a graphical language
which is reasonably easy to understand. Mappings have been defined to translate the
language to lower-level, XML-based descriptions in WS-BPEL. BPMN is therefore
conformant with the stack of web service standards that I showed in Figure 31.2.
I use BPMN here to illustrate the notion of business process programming.

Figure 31.15 is an example of a simple BPMN model of part of the above vaca-
tion package scenario. The model shows a simplified workflow for hotel booking
and assumes the existence of a Hotels service with associated operations called
GetRequirements, CheckAvailability, ReserveRooms, NoAvailability, ConfirmReservation
and CancelReservation. The process involves getting requirements from the customer,

Retry

Cancel

No rooms

Hotels.
1 Novailability
Hotels. Hotels.
GetRequirements CheckAvailability
Rooms OK

Hotels.
ReserveRooms

Hotels.
ConfirmReservation

S Eat

t
f
|
|
!
i
!
|
t
|
Avd

Kl — — ~

Customer

Figure 31.15 Hotel checking room availability then, if rooms are available, making a booking for the
booking workflow required dates.
This model introduces some of the core concepts of BPMN that are used to
create workflow models:

1. Activities are represented by a rectangle with rounded corners. An activity can
be executed by a human or by an automated service.

2. Events are represented by circles. An event is something that happens during
a business process. A simple circle is used to represent a starting event and a
darker circle to represent a end event. A double circle (not shown) is used
to represent an intermediate event. Events can be clock events, thus allowing
workflows to be executed periodically or timed out.

3. A diamond is used to represent a gateway. A gateway is a stage in the process
where some choice is made. For example, in Figure 31.15, there is a choice
made on the basis of whether rooms are available or not.

4. A solid arrow is used to show the sequence of activities; a dashed arrow
represents message flow between activities—in Figure 31.15, these messages
are passed between the hotel booking service and the customer.

These key features are enough to describe the essence of most workflows. How-
ever, BPMN includes many additional features that [do not have space to describe
here. These add information to a business process description that allows it to be
automatically translated into an executable form. Therefore, web services, based on
service compositions described in BPMN can be created from a business process
model.

L

>1
No processor

S Y

g Request Set up job Download

g- processor parameters data

3

v | | |

s rol) | P!

2 G | !

n N Report |
o I completion | | 1

[

Lot ! I I
| | | | | !
- T ; i
Y4 ! v v

k] Check I Allocate

g Availability : resources

g .

& |

g O

: e

Figure 31.16 Figure 31.15 shows the process that is enacted in one organisation, the company

Interacting workflows that provides a booking service. However, the key benefit of a service-oriented
approach is that it supports inter-organisational computing. This means that the total
computation involves services in different companies. This is represented in BPMN
by developing separate workflows for each of the organisations involved with inter-
actions between them.

To illustrate this, I use a different example, drawn from grid computing. A service-
oriented approach has been proposed to allow resources such as high-performance
computers to be shared. In this example, assume that a vector processing computer
(a machine that can carry out parallel computations on arrays of values) is offered
as a service (VectorProcService) by a research laboratory. This is accessed through
another service called SetupComputation. These services and their interactions are
shown in Figure 31.16.

In this example, the workflow for the SetupComputation service requests access
to a vector processor and, if a processor is available, establishes the computa-
tion required and downloads data to the processing service. Once the computation
is complete, the results are stored on the local computer. The workflow for
VectorProcService checks if a processor is available, allocates resources for the com-
putation, initialises the system, carries out the computation and returns the results
to the client service.

In BPMN terms, the workflow for each organisation is represented in a separate
pool. It is shown graphically by enclosing the workflow for each participant in

T TILL Glieil e LlLTT Ml e gt e ey

31.3.2

the process in a rectangle, with the name written vertically on the left edge. The
workflows defined in each pool are coordinated by exchanging messages; sequence
flow between the activities in different pools is not allowed. In situations where
different parts of an organisation are involved in a workflow, this can be shown by
separating pools into named ‘lanes’. Each lane shows the activities in that part of
the organisation.

Once a business process model has been designed, this has to be refined depend-
ing on the services that have been discovered. As I suggested in the discussion of
Figure 31.14, the model may go through a number of iterations until a design that
allows the maximum possible reuse of available services is created. Once such a
design is available, the next stage is to convert this to an executable program. As
services are implementation-language independent, this can be written in any lan-
guage and both Java and C# development environments provide support for web
service composition.

To provide direct support for the implementation of web service composi-
tions, several web service standards have been developed. The best known of
these is WS-BPEL (Business Process Execution Language) which is an XML-based
‘programming language’ to control interactions between services. This is supported
by additional standards such as WS-Coordination (Cabrera, et al., 2005), which is
used to specify how services are coordinated and WS-CDL (Choreography Descrip-
tion Language) (Kavantzas, et al., 2004) which is a means of defining the message
exchanges between participants (Andrews, et al., 2003).

All of these are XML standards so the resulting descriptions are long and diffi-
cult to read. Writing programs directly in XML-based notations is slow and error-
prone. I have therefore decided not to go into details of XML-based notations, such
as WS-BPEL, as they are not essential for understanding the principles of work-
flow and service-composition. As support for service-oriented computing matures,
these XML descriptions will be generated automatically. Tools will parse a graph-
ical workflow description and generate executable service compositions.

Service testing

Testing is important in all system development processes to help demonstrate that
a system meets its functional and non-functional requirements and to detect defects
that have been introduced during the development process. As I have discussed
in Chapters 22-24, a range of different approaches to system validation and test-
ing have been developed to support the testing process. Many of these techniques,
such as program inspections and coverage testing, rely on analysis of the software
source code. However, when services are offered by an external provider, source
code of the service implementation is not available. Service-based system testing
cannot therefore use proven, source code-based techniques.

As well as problems of understanding the operation of the service, testers may
also face further difficulties when testing services and service compositions:

i:
i
i

- Ao WM ILTE M Y M Y ST R L SN Wt e o e

1. External services are under the control of the service provider rather than the
user of the service. The service provider may withdraw these services at any
time or may make changes to them, which invalidates any previous testing
experience. These problems are handled in software components by maintaining
different versions of the component. Currently, however, there are no standards
proposed to deal with service versions.

2. The long-term vision of service-oriented architectures is for services to be bound
dynamically to service-oriented applications. This means that, an application may
not always use the same service each time that it is executed. Therefore, tests
may be successful when an application is bound to some particular service but it
cannot be guaranteed that that service will be used during an actual execution
of the system.

3. As, in most cases, a service is available to different customers, the non-
functional behaviour of that service is not simply dependent on how it is
used by the application that is being tested. A service may perform well
during testing because it is not operating under a heavy load. In practice, the
observed service behaviour may be different because of the demands made
by other users.

4. The payment model for services could make service testing very expensive.
There are different possible payment models—some services may be freely avail-
able, some paid for by subscription and others paid for on a per-use basis. If
services are free, then the service provider will not wish them to be loaded by
applications being tested; if a subscription is required, then a service user may
be reluctant to enter into a subscription agreement before testing the service;
if the usage is based on payment for each use, service users may find the cost
of testing to be prohibitive.

5. TIhave discussed the notion of compensation actions that are invoked when some
exception occurs and previous commitments that have been made (such as a
flight reservation) have to be revoked. There is a problem in testing such actions
as they may depend on failures of other services. Ensuring that these services
actually fail during the testing process may be very difficult.

These problems are particularly acute when external services are used. They are
less serious when services are used within the same company or where cooperat-
ing companies trust services offered by their partners. In such cases, source code
may be available to guide the testing process and payment for services is unlikely
to be a problem. Resolving these testing problems and producing guidelines, tools
and techniques for testing service-oriented applications is currently an important
research issue.

R
i n B0
b %5
iy
s
Sk

Y POINTS

O]
m

K

1 Service-oriented software engineering is based on the notion that programs can be
constructed by composing independent services that encapsulate reusable functionality.
Services are language independent and their implementation is based on widely adopted
XML-based standards.

3 Service interfaces are defined in an XML-based language called WSDL. A WSDL specification
includes a definition of the interface types and operations, the binding protocol used by the
service and the service location.

i Services may be classified as utility services that provide some general-purpose
functionality, business services that implement part of a business process or coordination
services that coordinate the execution of other services.

3 The service engineering process involves identifying candidate services for implementation,
defining the service interface and implementing, testing and deploying the service.

4 Service interfaces may be defined for legacy software systems that continue to be useful for an
organisation. The functionality of the legacy system may then be reused in other applications.

A The development of software using services is based around the idea that programs are
created by composing and configuring services to create new composite services.

@ Business process models define the activities and information exchange that takes place in
some business process. Activities in the business process may be implemented by services
so that the business process model represents a service composition.

B Techniques of software testing based on source-code analysis cannot be used in service-
oriented systems that rely on externally provided services.

FURTHER READING NN N . T O O s o

There is an immense amount of tutorial material on the web covering all aspects of web services.
However, | found the following two books by Thomas Erl to be the best overview and description of
services and service standards. Unlike most books, Erl includes some discussion of software
engineering issues in service-oriented computing.

Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services,
Upper Saddle River, Nj: Prentice-Hall.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology and Design, Upper Saddle River,
NJ: Prentice-Hall.

T N oA 9 = gm0 s | o

EXERCISES . I s T Lot |

31.1 What are the important distinctions between services and software components?

31.2 Explain why service-oriented architectures should be based on standards.

31.3 Why is it important to minimise the number of messages exchanged by services?

31.4 Explain why services should always include an exception interface which is used to report
faults and exceptions to service clients.

31.5 Using the same notation, extend Figure 31.6 to include definitions for MaxMinType and
InDataFault. The temperatures should be represented as integers with an additional field
indicating whether the temperature is in degrees Fahrenheit or degrees Celsius. InDataFault
should be a simple type consisting of an error code.

31.6 Define an interface specification for the Currency Converter and Check credit rating services
shown in Figure 31.8.

31.7 Design possible input and output messages for the services shown in Figure 31.12. You may
specify these in the UML or in XML.

31.8 Giving reasons for your answer, suggest two important types of application that are unlikely
to make use of a service-oriented approach.

31.9 In section 31.2.1, | introduced an example of a company that has developed a catalogue
service that is used by the web-based procurement systems used by customers. Using BPMN,
design a workflow that uses this catalogue service to lookup and place orders for computer
equipment.

31.10 Explain what is meant by a ‘compensation action’ and, using an example, show why these
actions may have to be included in workflows.

31.11 For the example of the vacation package reservation service, design a workflow that will book
ground transportation for a group of passengers arriving at an airport. They should be given
the option of booking either a taxi or a hire car. You may assume that the taxi and car hire
companies offer web services to make a reservation.

31.12 Using an example, explain in detail why the thorough testing of services that include

compensation actions is difficult.

32

Aspect-oriented
software development

Objectives

The objective of this chapter is to introduce you to aspect-oriented
software development, which is based on the idea of separating
concerns into separate system modules. When you have read this
chapter, you will:

B understand why the separation of concerns is a good guiding
principle for software development;

B have been introduced to the fundamental ideas underlying
aspects and aspect-oriented software development;

B understand how to use an aspect-oriented approach for
requirements engineering, software design and programming;

® know the problems of testing aspect-oriented systems.

Contents

32.1 The separation of concerns
32.2 Aspects, join points and pointcuts
32.3 Software engineering with aspects

