168 Describing Web services Chapter 5

Table 5.1 Summary of WSDL message exchange paf,ierns

r g

Type Definition

One-way The operation can receive a message but will not réturn a response
Request/response The operation can receive a request and will return a response
Notification The operation can send a message but will not wait for a response
Solicit/response The operation can send a request and will wait for a response

Table 5.1 summarizes and compares the four WSDL messaging patterns described in the
previous section.)

It should be noted that any combination of incoming and outgoing operations can be
included in a single WSDL interface. As a result, the four types of operations presented
above provide support for both push and pull interaction models at the interface level. The
inclusion of outgoing operations in WSDL is motivated by the need to support loosely
coupled peer-to-peer interactions between services.

/5.3 Using WSDL:to generate client stubs

In this chapter we have introduced several elements of WSDL to help readers understand
the WSDL foundation for Web services. Understanding this technology is fundamental
to comprehending the Web services model. However, most Web services developers will
not have to deal with this infrastructure directly. There are a number of Web services
development toolkits to assist with this undertaking. There are currently many tools,
which automate the process of mapping WSDL to programming languages, such as Java,
for both the service requestor and the service provider. One of the most popular tools for
achieving this is WSDL2Java provided by Axis. Axis is an open source toolkit that is
developed as part of Apache (xml.apache.org). Axis allows developers to write Java
code and deploy that code as a Web service. In the following, we shall concentrate on how

- code generation tools allow automatic generation of WSDL definitions and creation of
Web services.

Developers can implement Web services logic within their applications by incorporat-
ing available Web services and certainly without having to build new applications from
scratch. The mechanism that makes this possible is the proxy class. Proxy classes enable
developers to reference remote Web services and use their functionality within a. local
application, as if the data the services return was generated locally. The application devel- -
oper communicates with any remote objects by sending messages to these local objects,
which are commonly known as proxy objects. The proxy classes (or stub classes) are
client-side images of the remote (provider) object classes that implement the Web ser-
vices. The server-side counterparts are commonly known as skeletons in the distributed
computing systems parlance, see section 2.4.1. Proxies implement the same interfaces as
the remote class counterparts and forward the invoked methods on their local instances to
corresponding remote instances (skeletons). The proxy object is simply a local object with
methods that are merely a pass-through to the Web service it is representing. There exists

Using WSDL to generate client stubs 169

Service Service
requestor provider
Web service @ Exchange SOAP Web service
e plroxy messages interfice i |

- > D e R : :

il

Pre-existing

te JAX-RP
@ Generate J ¢ (Java) implementation

proxy and endpoint interface

Client application

<wsdl>

Code
generator

(1) Read WSDL definitions <wsdl>

Figure 5.10 Generating proxies from WSDL code generators

exactly one proxy for each remote object for which a local object (application) holds a
remote object reference. A proxy implements the methods in the remote interface of the
service provider object it represents. This ensures that method invocations are suitable for
the remote object in question. The role of the proxy class is to act as the local represent-
ative for the remote object and basically is, to the client, the remote reference. However,
instead of executing an invocation, the proxy forwards it in a message to a remote object.
The proxy hides the details of the remote object reference, the marshaling of arguments to
the remote object methods using object serialization, and sends the marshaled invocation
across the wire to the service provider’s site. It also handles the unmarshaling of results
that are received from the remote object implementing the service.

WSDL is well suited for code generators that can read WSDL definitions and generate
a programming interface for accessing a Web service. For instance, a JAX-RPC provider
may use WSDL 1.1 to generate Java RMI interfaces and network stubs, which can be used
to exchange messages with a Web service interface. Figure 5.10 shows how a WSDL
toolkit, such as JAX-RPC [Monson-Haefel 2004], can generate a Java RMI (an endpoint)
interface and networking proxy that implements that interface. From the WSDL definition
of a Web service. such as PurchaseOrderService, the Web service development
tool generates a (Java) client proxy, which uses service requests from a local application
(also shown to be coded in Java in Figure 5.10) to interact with a remote Web service
implementing the WSDL interface.

WSDL code generator tools allow automatic creation of Web services, automatic
generation of WSDL files, and invocation of Web services. These toolkits speed the
creation of Web services by generating the service implementation template code from
the WSDL specifications, leaving only the application-specific implementation details to
the developer. They also simplify the development of client applications by generating
service proxy code from the WSDL specification. Several code generators can generate
interfaces and network stubs from WSDL documents.

Once the proxy class is_built. the client simply calls the Web method from it. and the
proxy. in tum. performs the actual request of the Web service. This request may, obvi-
ously, have its endpoint anywhere in the network. When we reference the Web service in

ey

170 Describing Web services Chapter 5

Service producer
application server

©

Application-specific
code, written by a
developer

Figure 5.11 Communicating between proxy classes and Web services

the client application, it appears to be part of the consumer application itself, just like a
normal internal function call, Figure 5.11 illustrates the process of communicating @
between a proxy and a Web service. This is shown to include the following steps:

1. The client-side application performs a call in the proxy class, passing any appropriate
arguments to it, unaware that the proxy is actually invoking a remote Web service.

2. The proxy receives the call and formulates the request to the service, using the
parameters the client application provides.

The call is transported from the proxy to the Web service across the network.

4. The Web service uses the parameters provided by the Proxy to execute its Web
service callable operations and expresses the result in XML,

5. The resulting data from the Web service is returned to the proxy at the client.

6. The proxy parses the XML returned from the Web service to retrieve the individual
data values that are generated. These values may be simple or complex data types
as already explained in this section.

7. The application receives the expected values In a normalized form from the proxy @
. operation, completely unaware that they resulted from a Web service call.

Summary 171

5.4 Non-functional descriptions im WSDL

From what we have seen so far, one can understand that WSDL specifies the syntactic
signature for a service but does not specify any non-functional service aspects. However,
in section 1.8, we argued that non-functional characteristics are an integral part of any
Web service. The Web services platform should be capable of supporting a multitude of
different types of applications with different QoS requirements. In fact, programmers and
applications need to be able to understand the QoS characteristics of Web services to be
able to develop applications that invoke Web services and interact with them. Thus, the
non-functional characteristics of a Web service should be described too.

QoS-enabled Web services require a separate language to describe non-functional
characteristics of Web services. Currently, the most widely used approach to describing
non-functional Web services characteristics is the combination of two specifications,
which we shall examine in Chapter 12. These are WS-Policy and WS-PolicyAttachment.
The Web services policy framework provides an additional description layer for services
and offers a declarative policy language for expressing and programming policies. By
employing this policy language, characteristics of the hosting environment can be
described including security characteristics (including authentication and authorization)
at the provider’s endpoint, transactional behavior, the levels of QoS and quality of protec-
tion offered by the provider, privacy policies observed by the provider, and application-
specific service options, or capabilities and constraints specific to a particular service
domain.

When considering QoS-aware Web services, the service interface specifications need to
be extended with statements on QoS that can be associated to the whole interface or to
individual operations and attributes. It would be helpful if these non-functional service
descriptions were to be added to WSDL in a standard manner. WS-PolicyAttachment
accomplishes this objective (see section 12.4.3). It offers a flexible way of associating
policy expressions with existing and future Web services artifacts. For instance, WS-
PolicyAttachment addresses the requirements for associating Web services policy with
a policy subject such as a WSDL <portType> or <message> and can even attach
policies to UDDI entities.

5.5 Summary

A service description language is an XML-based language that describes the mechanics
of interacting with a particular Web service and is inherently intended to constrain both
the service provider and all requestors who make use of that service.

The Web Services Description Language is an XML-based specification schema pro-
viding a standard service representation language used to describe the details of the public
interface exposed by a Web service. This public interface can include operational informa-
tion relating to a Web service such as all publicly available operations, the XML message
protocols supported by the Web?)service, data type information for messages, binding
information about the specific transport protocol to be used, and address information for

172 Describing Web services Chapter 5

locating the Web service. WSDL allows the specification of services in terms of XML
documents for transmission under SOAP,

The service implementation part of WSDL describes how a particular service interface
is implemented by a given service provider. The service implementation describes where
the service is located, or more precisely, to which network address the message must be
sent in order to invoke the Web service.

WSDL specifies the Syntactic signature for a service but does not specify any non-

provider, privacy policies observed by the provider, and so on, can be attached to the Web
services description,

Currently, the World Wide. Web Consortium is busy standardizing WSDL. Although
WSDL 1.1, which we use throughout this book, is the de facto standard, WSDL 2.0 is the
version of WSDL that the W3C is currently standardizing. WSDL 2.0 is a simpler and
more usable language than WSDL L.1. It provides several improvements over WSDL 1.1,

Review questions

¢ Why is a service description necessary for representing Web services?

¢ What is the purpo- - of the Web Services Description Language? How does WSDL
achieve its objective?

¢ Define and describe the Web services interface.

¢ Define and de- the rvices implementation,

¢ How do the Wel rvice: face and implementation relate to each other?

® Describe - parts "the W ervices <portType> element.

¢ Describe th: parts the We. >rvices <wsd1l :bindings element.

® How can you defin ’PC and document-style Web services in WSDL?

